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Inverse method based on 3D nonlinear physically con-

strained minimisation in the framework of traction force

microscopy

J.A. Sanz-Herrera,a J. Barrasa-Fano,b M. Cóndor,b and H. Van Oosterwyck∗b,c

Traction force microscopy is a methodology that enables to estimate cellular forces from the mea-

surement of the displacement �eld of an extracellular matrix (ECM)�mimicking hydrogel that a cell is

mechanically interacting with. In this paper, a new inverse and physically-consistent methodology is

developed and implemented in the context of 3D nonlinear elasticity. The proposed method searches

for a displacement �eld that approximates the measured one, through the imposition of ful�llment of

equilibrium with real and known forces acting in the hydrogel. The overall mathematical formulation

leads to a constrained optimisation problem that is treated through a Lagrange operator and that

is solved numerically by means of a nonlinear �nite element framework. In order to illustrate the

potential and enhanced accuracy of the proposed inverse method, it is applied to a total of 5 di�erent

real cases of cells cultured in a 3D hydrogel that is considered to behave as a nonlinear elastic mate-

rial. Di�erent error indicators are de�ned in order to compare ground truth simulated displacements

and tractions to the ones recovered by the new inverse as well as by the forward method. Results

indicate that the evaluation of displacement gradients leads to errors, in terms of recovered tractions,

that are more than three times lower (on average) for the inverse method compared to the forward

method. They highlight the enhanced accuracy of the developed methodology and the importance

of appropriate inverse methods that impose physical constraints to traction and stress recovery in

the context of traction force microscopy.

1 Introduction

The importance of mechanical factors in cell biology and phys-
iology has been evidenced in many publications in the last
decades1–6. Given this importance, the measurement and quan-
tification of mechanical variables in cell biological environments
is essential in order to develop hypotheses and theories which
eventually may explain a certain observed behavior.

Traction force microscopy (TFM) allows to estimate the forces
exerted by a cell in contact with a substrate that mimics its ex-
tracellular matrix (ECM). These forces are inferred from the mea-
surement of the deformation of the substrate, provided the me-
chanical properties of the substrate are known. Typically, the de-
formational state of the substrate is determined from the motion
of marker points from a deformed (stressed) to an undeformed
(relaxed) configuration. TFM has been applied to investigate
force exertion during cell migration on flat (2D) substrates7–11,
as well as in 3D matrices12–15. The reader is referred to fig. 1

a Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain.
b Biomechanics section, Department of Mechanical Engineering, KU Leuven, Leuven,
Belgium. E-mail: hans.vanoosterwyck@kuleuven.be
c Prometheus division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.

where a scheme of the overall methodology is sketched for a cell
embedded in a 3D hydrogel.

Even though a TFM approach is simplistic from a conceptual
point of view, it introduces important technical, theoretical, com-
putational and numerical challenges, especially for cells embed-
ded in 3D matrices. Following the elasticity theory (either lin-
ear or nonlinear), from a given displacement field (assumed as
true) as an input data, the solution of the remaining variables,
i.e. strain, stress and tractions, turns into an algebraic problem,
which involves only the derivatives of the displacement field fol-
lowing the compatibility and material constitutive equations, as
well as the relation between the outward surface normal and the
stress tensor, i.e. Cauchy’s formula. Therefore, the problem can
be straightforwardly solved following a so-called forward method.
Since the displacement field is obtained from measurements at
discrete locations, the problem only concerns the numerical treat-
ment of the derivative kernel. Finite differences are employed13,
as well as in conjunction with an improved noise filtering tech-
nique16,17. Base interpolation (shape) functions can be used as
well under a Finite Element Method (FEM) scheme as an alterna-
tive to solve the problem18,19. In the case of well-characterized
materials such that any deviation from a certain constitutive law
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is negligible, this kind of direct approaches do not assure the ful-
fillment of equilibrium of internal forces with real and known act-
ing forces, as far as the obtained displacement field is not error–
free despite any filtering techniques.

The formulation of the problem including force equilibrium
following an inverse method leads to an incompatible displace-
ment solution versus the measured (noisy) displacements, as well
as unstable traction computation20, rendering the problem ill-
posed. In this context, a regularization process is followed to
avoid overfitting such as L2 (Tikhonov) regularization:

min t

(
||Gt−u||22 +λ ||t||22

)
(1)

where u is the recovered input displacement field, t the cell
boundary tractions and G the compliance matrix of the (dis-
cretized) algebraic (linearized) system. The first term of the ob-
jective function in (1) expresses equilibrium of forces, while the
second term is the regularization term that in this case promotes
traction solutions with smaller norm. The parameter λ is the so-
called regularization parameter which needs to be chosen a priori
under some mathematical21 or empirical22 criteria. This kind
of approaches has been implemented by means of a BEM, FEM
or Fourier transformation techniques (the reader is referred to
Ref.20 for a review of the methods).

An alternative formulation of Eq. (1) has been presented in
Ref.23. In this paper, the author considered the linear elasticity
equations as a constraint on a regularization procedure similar
to (1). Results are presented for different cells on linear elas-
tic 2D substrates23,24. While the method was initially developed
for planar substrates, it was later extended to a cell embedded
in a 3D substrate for a cell geometry that was simplified to an
ellipsoid25. As cells are typically not ellipsoidal, the applicabil-
ity of the method towards real experimental conditions may be
somewhat limited. Moreover, the method has not been applied to
nonlinear elastic substrates, which is typically the case for natural
ECM-derived substrates, like collagen and fibrin14.

In this paper we formulate and numerically implement a new
physics-based nonlinear inverse method (PBNIM) in the frame-
work of TFM. Physics-based refers to the fact that the fulfillment
of equilibrium of internal forces with real and known acting forces
as a universal physical law is imposed as a constraint to the so-
lution of the displacement field. Novelty of the paper relates to
the formulation of the inverse problem, as well as the numerical
implementation and solution of the problem, which is fully 3D
and considers nonlinear ECM mechanics, including finite strains
and hyperelasticity. As previously said, the minimisation prob-
lem includes the imposition of physical constraints, in particular
equilibrium of forces in the ECM, through a Lagrange operator
similarly to recent constrained problems in the context of data
driven techniques26. The optimal solution of the overall min-
imisation problem is analytically derived which avoids the imple-
mentation of costly solvers based on searching algorithms. More-
over, the resulting optimal solution is nonlinear due to the as-
sumed nonlinear elastic behavior of the ECM-mimicking hydro-
gel and considered finite strains, which is implemented following
a Newton-Raphson iterative scheme. The numerical treatment of

the problem is elaborated in detail in the present paper by means
of the FEM. The method is applied to the geometry of a total of 5
real cells embedded in a 3D nonlinear matrix. Several statistics–
based error indicators are defined in order to quantify the per-
formance of the new inverse and the forward method versus a
ground truth reference solution. While displacement fields are
well recovered by both methods, errors in the recovered tractions
are more than three times lower (on average) in the case of the
inverse approach.

Hydrogel (deformed state) with 
embedded cell and fluorescent 
beads

Hydrogel (undeformed state) 
after cell mechanical inhibition

Optical 
fluorescence 
microscopy

Displacement field 
calculation

+
Traction field 

recovery

Displacement field

Traction field

Cell image Z-stack

Bead image Z-stack

t = t0

t = t1

Undeformed state
Deformed state

Fig. 1 TFM work�ow. Cells are seeded in an ECM-mimicking hydrogel

with embedded �uorescent beads. A �rst set (z-stack) of microscopy im-

ages of the �uorescent beads are acquired while cells are applying forces

to the hydrogel (deformed state at t = t0). Images of the cells can also

be acquired to locate the cell boundary. Next, cell mechanical interac-

tions are inhibited and a second set of microscopy images is acquired

(undeformed state at t = t1). Finally, the two image data sets of the

�uorescent beads are used to calculate the displacement �eld of the hy-

drogel. This displacement �eld is then combined with a model of the

hydrogel's mechanical behavior to recover cellular forces.

2 Mechanical problem underlying TFM

The mechanical problem underlying TFM is sketched in fig. 2a.
A cell exerts forces on its surrounding ECM through its internal
cytoskeletal (CSK) machinery and its focal adhesions (FA) that
connects the cell to the ECM27. As explained above, positional in-
formation in stressed and relaxed configurations are available at
sampling points (discrete locations) in the hydrogel domain (fig.
2a). From that information, the reconstruction of the displace-
ment field and the remaining mechanical variables are explained
next.

Displacement field recovery
Different time point images of the deformed (stressed) and fi-

nal undeformed (relaxed) configurations of the hydrogel region
are the input data at this point, hydrogel is assumed to be an elas-
tic (conservative) material such that any dissipative energy source
is neglected. Voxelized 3D data are converted into a displacement
field following any of the methods found in literature such as Par-
ticle Image Velocimetry (PIV)28,29, Particle Tracking Velocimetry
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(PTV)12,30 or Free Form Deformation (FFD)–based non-rigid im-
age registration31. Briefly, PTV maps individual beads motions
such that the displacement field is available at those (discrete)
locations. On the other hand, PIV follows digital image correla-
tion techniques and the mapping of tracked beads is established
over regular (voxel) blocks. FFD, uses a deformable mesh con-
trolled by B-spline based functions which avoids individual par-
ticle tracking and retrieves a continuous displacement field. The
details of the FFD method as well as its advantages versus PTV
and PIV methods have been shown in Jorge-Peñas et al.31.

Hydrogel domain (H) 

Focal adhesion (FA) 

Cell region (C) uH/C 

tCell 

Cell Hydogel 

      tCell 
A/M motors 

uH/C 

KCell KHydrogel 

tHydrogel 

Cell Hydrogel 

tHydrogel 

Passive element 

Active element 

(a) 

(b) 

(c) 

Fig. 2 Mechanical problem underlying TFM. (a) Sketch of a cell embed-

ded in a hydrogel. (b) Scheme of cellular forces at cell-hydrogel interface

region. (c) Simpli�ed 1D linear model of (b) accounting for passive and

active cytoskeletal (CSK) machinery of the cell.

Traction analysis
From a given displacement field uH (subscript H referring to

hydrogel domain), at discrete locations of the domain of the hy-
drogel, tractions at the boundary of the cell are estimated accord-
ing to the forward or inverse methodologies. In this paper, the
forward method is briefly introduced next in the framework of
the FEM, and a new version of the inverse method is developed
in the next sections.

From the recovered displacement field at this location uH/C at
the cell boundary (with subscript H/C referring to hydrogel/cell
interface), tractions may be estimated in a first simplified ap-
proach according to a 1D linear model of cell-ECM mechanical
interactions (fig. 2). We assume that displacements at the bound-
ary uH/C are affine. The CSK of the cell may be simply modeled by
means of active and passive elements that act in parallel. Active
elements account for actin filaments and myosin motors whereas
the passive elements represent the overall stiffness of the CSK
as a passive material (the reader is referred to Refs.27,32,33 for a
discussion on this kind of CSK models). The hydrogel is repre-
sented as a passive material in this simplified model. Equilibrium
of forces in this model yields,

tCell = tHydrogel (2)

Using the split of cell tractions into its active and passive com-
ponents,

tC−act + tC−pass = tHydrogel (3)

When using a linear relationship (without loss of generality)
between displacements and tractions, we obtain,

tC−act +KC−pass ·uH/C = KHydrogel ·uH/C (4)

Therefore, this simplified 1D linear model allows to draw the
following conclusions which are applicable to the more general
case of 3D TFM:

1. TFM allows to estimate total cell tractions tCell through the
displacement field available at the cell-hydrogel boundary
uH/C.

2. Discrimination between active or passive tractions is not pos-
sible unless a reliable estimation of the passive stiffness of
the CSK is available.

3. Under the assumption that passive tractions are negligible,
active tractions exerted by the cell CSK machinery may be
estimated through uH/C following Eq. (4).

4. Total cell tractions tCell , or active tractions tC−act under the
assumption 3, are only a function of the recovered displace-
ment field uH/C and the mechanical properties of the hydro-
gel domain (represented through KHydrogel in the simplified
1D linear model). Therefore, the main sources of error are
due to the methods related to the estimation of the displace-
ment field, and the measurement of the mechanical proper-
ties of the hydrogel.

3 Traction recovery by means of the forward

method

The forward method, as well as the inverse method introduced
in the next section, is developed in the framework of finite strain
hyperelasticity. The forward displacement solution is assumed to
be the recovered (measured) displacement field in the hydrogel
domain. Therefore, given the recovered displacement field ui at
discrete points i refering to the spatial (Eulerian) description*, the
motion of a material point Xi is given by,

Xi = xi−ui (5)

The deformation gradient is defined as,

F =
∂x
∂X

(6)

Using (5) in (6) yields,

F−1 = I− ∂u
∂x

(7)

I being the identity matrix in Eq (7). The derivative of the second
term on the right hand side of Eq. (7) may be obtained by means

* Remark that the reference configuration in TFM is the deformed hydrogel and
stressed cell state after which a relaxed hydrogel configuration is achieved (see sec-
tion 2).
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of a general numerical procedure, such as finite differences or
specific interpolating functions13,16,17. Note that in this case, a
consistent numerical method such as finite or boundary elements
is not necessary to account for the (discrete) deformation gradi-
ent and subsequent stress and tractions quantities as is developed
next. Nonetheless, the FEM is used in this paper as the numerical
solver both for the forward and inverse methodologies. Then, the
displacement field is approached as follows:

u≈ N(x) ·ui and
∂u
∂x
≈ ∂N

∂x
·ui (8)

with the displacement field ui in (8) defined at nodal locations
i. N(x) is the matrix which contains standard shape functions
associated to element interpolation. Then, using (8) in (7), the
gradient of displacements and the discretized inverse of the de-
formation gradient is computed at the Gauss points x j of the finite
element mesh†,

F−1
j ≈ I− ∂N

∂x

∣∣∣∣
x=x j

·ui (9)

The right Cauchy-Green tensor is defined as,

C = FT ·F (10)

Moreover, the Cauchy (true) stresses can be obtained through
the following expression34,

σ =
2
J

F · ∂ψ

∂C
·FT (11)

where J = det(F) and ψ is the strain energy function of the ma-
terial (hydrogel). Eq. (11) can be further developed for isotropic
materials as follows (see Ref.34),

σ =
2
J

F
[(

∂ψ

∂ I1
+ I1

∂ψ

∂ I2

)
I− ∂ψ

∂ I2
C+ I3

∂ψ

∂ I3
C−1

]
·FT (12)

For the sake of simplicity, a quasi-incompressible Neo-Hookean
behavior is selected to describe the hydrogel mechanics. Hence,

ψ =
G
2
(Ī1−3)+

κ

2
(J−1)2 and Ī1 = J−2/3I1 (13)

where G and κ are the shear and bulk moduli of the material,
respectively. I1 is the first invariant (trace) of C, and Ī1 is the first
invariant of its isochoric part.

Using (13) in (12), and after some algebraic manipulations,
yields,

σ = F
[

GJ−5/3 · I+
[

κ(J−1)− G
3J

Ī1

]
·C−1

]
·FT (14)

Note that the right hand side of (14) can be expressed as a
function of the deformation gradient according to the definitions
given above. Moreover, the deformation gradient is obtained at
discrete Gauss points x j of the mesh according to Eq. (9) as a
function of a (given) displacement field and (chosen) interpola-

† The finite element mesh in TFM is derived from the deformed hydrogel state.

tion functions. In a FEM framework (as followed in this paper)
these interpolation functions are well described, however, other
interpolation techniques may be used including B-Splines31,35,
or finite differences13,17. Hence, Cauchy stresses σ j can be com-
puted at those Gauss points as well. Finally, tractions are com-
puted following Cauchy’s formula as,

tn
i = σ i ·ni (15)

tn
i is the traction vector associated to the spatial configuration at

nodal points i of the finite element mesh. σ i is the Cauchy stress
tensor at nodal points i after an averaging procedure of σ j from
Gauss points is conducted36. Finally, ni is the outward normal
to node i. The normal is numerically computed at nodal points
from the surfaces of elements of the finite element mesh in the
deformed (reference) configuration.

4 Traction recovery by means of a physics-

based nonlinear inverse method (PBNIM)

According to the discussion in section 2, the displacement field is
given in the hydrogel domain. Moreover, given certain assump-
tions (see also section 2), cell boundary tractions can be estimated
as a function of the displacement field in the hydrogel domain.
Therefore, our domain of analysis is restricted to the hydrogel
interior domain ΩH(x) and cell boundary ΓH/C(x), see fig. 2a.

The proposed PBNIM includes two main ingredients: (i) Search
for an inverse displacement field solution u that is as close as pos-
sible to the recovered (measured) field u?, and (ii) which fulfills
equilibrium of internal forces with real and known forces acting
in the hydrogel domain region. This statement can be seen as a
minimization problem including the equilibrium constraint equa-
tion, and can be mathematically described as follows:

min u
( 1

2 ||u−u?||22
)

s.t.
Θ = 0

(16)

where Θ generically represents the equilibrium – i.e. the
physical– constraint manifold where the desired displacement so-
lution u must lie. The functional Θ is selected in terms of the
Principle of Virtual Work (PVW) equation for convenience in its
subsequent finite element numerical discretization as presented
in section 5. The continuum and scalar PVW equation is devel-
oped in this section. Geometrically, the problem can be seen as
the projection of u? over the manifold Θ.

The equilibrium constraint equation Θ can be enforced in (16)
by means of a (continuum and scalar) Lagrange multiplier oper-
ator η as follows,

min u

(
1
2
||u−u?||22 +Θ ·η

)
(17)

Remark that the equilibrium constraint term in Eq. (17) can be
interpreted as a regularization term according to Eq. (1). Using
the Gateaux derivative, Eq. (17) has its minimum (analytical)
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stationary solution at,

δu = 0 → u+
δΘ

δu
·η = u? (18a)

δη = 0 → Θ = 0 (18b)

As previously discussed, the equilibrium constraint equation
Θ is proposed to be defined in terms of the principle of virtual
work. In fact, the PVW is intrinsically defined as an equilibrium
equation such that its fulfillment ensures the equilibrium of inter-
nal (stress) forces with real and known acting external forces34.
Hence,

Θ := δW (u,δu) (19)

with δu being a kinematically admissible (virtual) displacement
field. Since the software Simulia Abaqus is used in the numerical
implementation (see next section), the updated Lagrangian ver-
sion of the PVW is selected. Therefore, in the absence of body
forces, the PVW yields,

δW (u,δu) =
∫

Ω

τ : δεdv−
∫

Γ

t ·δuds = 0 (20)

with, τ being the Kirchhoff stress tensor, τ = Jσ , and,

δε =
1
2
(∇δu+∇

T
δu) (21)

Substitution of Eq. (19) in Eqs. (18a)–(18b), and using the
definition of the PVW in (20), yields the following set of nonlinear
equations:

u+DδW (u,δu) ·η = u? (22a)

δW (u,δu) =
∫

Ω

τ : δεdv−
∫

Γ

t ·δuds = 0 (22b)

Next, a linearization procedure of Eq. (22b) is followed by
means of a (first order) Taylor expansion around a configuration
u,

δW (u,δu)+DδW (u,δu)[∆u] = 0 (23)

Therefore, the linearized set of equations of the proposed in-
verse method yields,

u+DδW (u,δu) ·η = u? (24a)

δW (u,δu)+DδW (u,δu)[∆u] = 0 (24b)

The directional derivative term DδW (u,δu)[∆u] is split into in-
ternal and external work components,

DδW (u,δu)[∆u] = DδWint(u,δu)[∆u]−DδWext(u,δu)[∆u] (25)

with

DδWint(u,δu)[∆u] =
∫

Ω

D(τ : δε)[∆u]dv (26)

DδWext(u,δu)[∆u] =
∫

Γ

D(t ·δu)[∆u]ds (27)

The internal work term (26) is developed through the Jau-
mann (corotational) derivative of the Kirchhoff stres tensor as
follows37,

DδWint(u,δu)[∆u] =
∫

Ω

∇δu : (Jc+H) : ∇∆udv+
∫

Ω

τ : [(∇δu)T
∇∆u]dv

(28)

where

ε =
1
2
(∇∆u+∇

T
∆u) (29)

with c the spatial elasticity tensor and defined (in index notation)
as,

ci jkl =
1
J

FiIFjJFkKFlLCIJKL (30)

and,

Hi jkl =
1
2
(
δ jkτil +δikτ jl +δ jlτik +δilτ jk

)
(31)

Note that repeated index denotes summation in (30). On the
other hand, the material elasticity tensor is defined as follows,

C= 4
∂ 2ψ

∂C∂C
(32)

The integration of the traction (surface) forces present in the
right hand side of Eq. (27), is treated by means of a parametriza-
tion of the surface area. The reader is referred to Bonet and
Wood37 for additional details.

The numerical implementation of Eqs. (18a), (18b) and (23)
is developed in the next section.

5 Numerical implementation

Linearized Eqs. (24) are discretized, in a FE framework, following
two principal ingredients:

1. Discretization of field variables: Such that, ∆u ≈ N(e) ·∆ui

and δu ≈ N(e) · δui. Where N(e) is the matrix that contains
the shape (interpolation) functions in element (e). On the
other hand, ∆ui, δui, u?,i and η i are vectors that contain the
discrete values of ∆u, δu, u? and η at node positions i.

2. Domain discretization into finite elements: Such that
∫

Ω
•=

Nel

∑
e=1

∫
Ωe
•, where Ωe is the finite element domain of element

(e) and Nel the number of elements of the mesh.
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Therefore, using the discretization before Eqs. (24) yield,

ui
k+1 +

Nel

∑
e=1

DδW (e)(ui
k,δui) ·η i

k+1 = u?,i (33a)

Nel

∑
e=1

δW (e)(ui
k,δui)+

Nel

∑
e=1

DδW (e)(ui
k,δui)[∆ui] = 0 (33b)

where ui
k+1 = ui

k +∆ui, with ui
k the solution of the k− th iteration

of the Newton-Raphson procedure. The development of the field
and domain discretization in (33), with the definitions introduced
in section 4 and after some algebraic manipulations (the reader
is referred to Refs.37,38 for additional details of the implementa-
tion), yields the following system in matrix form:

ui
k+1 +A

Nel
e=1 K(e) ·η i

k+1 = u?,i (34a)

A
Nel
e=1

(
F(e),int

k −F(e),ext
k

)
+ANel

e=1 K(e) ·∆ui = 0 (34b)

where A is the finite element assembly operator, and F(e),int
k and

F(e),ext
k the element vector (discretized version) of internal and

external forces of Eq. (17) evaluated at the k− th iteration. K(e)

is the tangent element matrix. After assembly, Eqs. (34) yield,

ui
k+1 +K ·η i

k+1 = u?,i (35a)

Fint,i
k −Fext,i

k +K ·∆ui = 0 (35b)

Eqs. (35) can be expressed in matrix form as follows,

[
I K
K 0

]
·

[
ui

k+1
η i

k+1

]
=

[
u?,i

Fext,i
k −Fint,i

k −K ·ui
k

]
(36)

Eq. (36) accounts for all the degrees of freedom of the nodes of
the FE discretization. Next, Eq. (36) is ordered according to cell
boundary nodes H/C and hydrogel internal nodes H as follows,


I 0 K(H,H) K(H,H/C)

0 I K(H/C,H) K(H/C,H/C)

K(H,H) K(H,H/C) 0 0
K(H/C,H) K(H/C,H/C) 0 0

 ·

·


ui

k+1(H)

ui
k+1(H/C)

η i
k+1(H)

η i
k+1(H/C)

=


u?,i(H)

u?,i(H/C)

Fext,i
k (H)−Fint,i

k (H)

Fext,i
k (H/C)−Fint,i

k (H/C)

−

−


0
0[

K(H,H) K(H,H/C)

K(H/C,H) K(H/C,H/C)

]
·

[
ui

k(H)

ui
k(H/C)

]
 (37)

Fext,i(H/C) in the fourth row of the right hand side of Eq. (37)

represents the nodal reaction forces exerted by the cell at cell-
hydrogel boundary nodes and is an unknown variable in the sys-
tem above. Therefore, the associated Lagrange multiplier is pre-
scribed as a boundary (Dirichlet) condition as η i(H/C) = 0. Note
that, in practical terms, this is equivalent to impose equilibrium
of internal (stress) forces with real acting forces, assumed to be
known only in the hydrogel interior. Indeed, nodal reaction forces
at hydrogel internal nodes Fext,i(H) must be zero in the absence of
any body or active forces in the passive hydrogel interior. Hence
Eq. (37) can be rewritten as,

 I 0 K(H,H)

0 I K(H/C,H)

K(H,H) K(H,H/C) 0

 ·
 ui

k+1(H)

ui
k+1(H/C)

η i
k+1(H)

=

 u?,i(H)

u?,i(H/C)

−Fint,i
k (H)−K(H,H) ·ui

k(H)K(H,H/C) ·ui
k(H/C)

 (38)

After convergence, and once ui(H), ui(H/C) and η i(H) are ob-
tained, nodal reaction forces exerted by the cell at cell-hydrogel
boundary nodes are obtained as a postprocessing as Fext,i(H/C) =

Fint,i(ui(H/C)) according to Eqs. (36)–(38). Note that, in this
case, the equilibrium of internal with external forces is prescribed,
although these external forces are the unknown quantities in the
modeling. However, since null external (body) forces are pre-
scribed in the hydrogel interior domain in the overall formulation
(38), the computation of cell forces is affected by this imposition,
and hence they are more accurate than as computed without this
constraint (as in the forward method). The efficiency of the pro-
posed inverse method and the proof of this affirmation is shown
in the results section.

The overall developed numerical method is summarized below.

Box 1: Solution algorithm of the developed PBNIM in TFM.

1. Obtain the displacement field vector u? by applying any
of the displacement field recovery methods mentioned
earlier (see section 2).

2. Build a finite element mesh of the imaged hydrogel re-
gion of interest around the embedded cell. Select hy-
drogel internal nodes and cell boundary nodes.

3. Interpolate the given displacement field at FE node lo-
cations→ u?.

4. Initialize k = 0, u0 = 0,

5. DO WHILE ||uk+1−uk||/||uk+1||>TOL

5.1 FOR e = 1..Nel

i. Obtain element tangent stiffness matrices
K(e).

ii. Obtain element vector forces F(e),int
k .

END FOR.
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5.2 Assemble and obtain K, Fint
k .

5.3 Order K and Fint
k for cell boundary nodes H/C and

hydrogel (internal) nodes H. Assemble the sys-
tem (38) and solve.

END DO

6. Obtain converged solution u.

7. Obtain remaining variables, i.e. stresses and tractions,
for a given displacement field u as elaborated in section
3.

The numerical algorithm shown in box 1 was implemented us-
ing code programming in Matlab R2017a and Abaqus Simulia
6.14. Specifically, the main code implementation of box 1 was
developed in Matlab. First, the input displacement field and the
binary (voxelized) mask of the microscopy images are loaded.
Then, the finite element mesh (point 2 in box 1) is built from
the binary mask, using the tool Iso2Mesh of Matlab39. Then, the
Abaqus input (inp) files are automatically written from the gen-
erated mesh and the loaded displacement field using a Matlab
script. Abaqus is then externally called from Matlab in the main
code file. Element tangent stiffness matrices and internal element
vector forces (point 5.1 in box 1) are obtained as a request in the
inp file. The assembly and solution of the system (38) is per-
formed in Matlab following the scheme shown in box 1. Results
are loaded in Matlab from Abaqus and visualized using the soft-
ware GID.

The accuracy of the implemented method is analyzed by means
of the error indicators defined in the next section for the example
application introduced in section 7.

6 Analysis

The following mechanical variables are introduced for analysis
purposes:

• Displacement, ui (µm): the magnitude of the displacement
field vector at each FE node i.

• Traction, ti (Pa): the magnitude of the traction vector at each
FE node i of the cell boundary.

To validate the proposed methods, the error recovering mean
and extreme values of the mechanical variables in the cell surface
region and in the hydrogel region was computed as described be-
low. The purpose of assessing both the mean and extreme values
of cell mechanical activity is because both can be relevant for the
study of cell (mechanical) behaviour.

Let yb
a represent a set of measures a of the mechanical variables

at region b. Measures a refer to mean values m or extreme values
e of the mechanical variables. Regions b refer to the cell boundary
region c or hydrogel region h. Therefore, the following four sets
are defined:

yc
m = {xi}, i ∈ cell boundary nodes (39)

yh
m = {xi}, i ∈ hydrogel nodes (40)

yc
e = {xi : xi > E[xi]+ k · std[xi]}, i ∈ cell boundary nodes (41)

yh
e = {xi : xi > E[xi]+ k · std[xi]}, i ∈ hydrogel nodes (42)

where xi = ui, tn
i ,σ

i as defined above, E[•] and std[•] are the expec-
tation and standard deviation of •, respectively, and k defines the
extreme level of the variable and is set to 1 in this paper. More-
over, the error of the quantities versus the ground truth solution
(GT ) is defined as follows:

zb
a = 100 · (1− corr[yb

a,y
b
a|GT ]), (43)

where corr[yb
a,y

b
a|GT ] is the correlation coefficient between the

probability density functions (PDF) of variable yb
a and its corre-

sponding ground truth (GT ) solution. According to the definition
in Eq. (43), the following error indicators are analyzed just by
substition of corresponding variables yb

a in Eq. (43):

• uc
m: Error indicator of the displacement mean variable at the

cell boundary region.

• uh
m: Error indicator of the displacement mean variable at the

hydrogel region.

• uc
e: Error indicator of the displacement extreme variable at

the cell boundary region.

• uh
e : Error indicator of the displacement extreme variable at

the hydrogel region.

• tc
m: Error indicator of the traction mean variable at the cell
boundary region.

• tc
e : Error indicator of the traction extreme variable at the cell
boundary region.

7 Examples of application

Human umbilical vein endothelial cells (HUVECs) were embed-
ded in 1.2 mg/ml collagen type I hydrogels (a mixture of rat tail
Collagen R, 2mg/ml and bovine skin Collagen G, 4mg/ml both
from Matrix Bioscience) at low cell densities, so that they ap-
peared as single, isolated cells. For more information about the
critical parameters and troubleshoting for collagen gel prepara-
tion see previous published work40,41. HUVECs expressing Green
Fluorescent Protein (GFP) were imaged by means of a Leica SP8
confocal microscope using a 25× NA 0.95 water-immersion objec-
tive, with a voxel size of 0.57×0.57×1 µm3. Cells were imaged
using 2-photon excitation at 404 nm and detection of its fluores-
cence emission with a 550/200 nm single-bandpass filter. A total
of 5 typical HUVECs were selected and imaged. The image was
enhanced by a contrast stretching operation and segmented by
means of Otsu’s thresholding, resulting in a 3D binarized image
of a cell geometry.
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Then, the voxelized cell boundary geometries were meshed us-
ing the Matlab tool Iso2Mesh39. The cell boundary geometry was
centered in a box (matrix) with dimensions given in Table 1. The
meshes of the hydrogel included tetrahedra with linear interpola-
tion and corresponding nodes (see figs. 3, S1 and Table 1). The
volume of the cell over the volume of the box ratio, as well as
the mesh size parameters, were kept as constant for all the 5 cells
in order to perform the numerical experiments under the same
conditions. The hydrogel was assumed to be a hyperelastic Neo-
Hookean material with an equivalent elastic modulus of 1645 Pa
(in accordance with Steinwachs and co-workers14 for the same
collagen hydrogel composition) and 0.45 [–] for the Poisson’s ra-
tio.

Table 1 Hydrogel (box) dimensions and FE mesh data for each cell of

the study.

Cell Box size [µm3] FE mesh elements FE mesh nodes
1 133× 133× 80 200820 37602
2 118× 118× 78 161622 30597
3 166× 166× 60 212904 40200
4 119× 119× 68 150814 28549
5 104× 104× 67 102539 19543

a)

b)

c) Gel domain

Cell boundary

Fig. 3 FE mesh of a human umbilical vein endothelial cell (HUVEC)

embedded in 1.2 mg/ml collagen type I hydrogel (cell #4 of a total of 5

cells, see �g. S1), used for TFM analysis. (a) 3D view and (b) top view

of the cell (boundary) mesh. (c) Top view of the cell (boundary) mesh.

Coordinates are in µm.

The ground truth solution of the problem was synthetically gen-
erated by applying a contractile force state in the cell’s protrusions
along the main protrusion direction (see figs. 4 and S2). First, the
software program GID was used for manual selection of the nodes
at the boundary of the cell protrusions. Then, nodal forces paral-
lel to the protrusion axes were applied at these nodes. No force
was applied at the rest of the nodes of the cell surface. Nodal
force magnitude (per node) was constant for each cell, such that
the order of magnitude of the resulting maximum displacements
was similar to those shown in previous works12. The number
of protrusions and magnitude of forces (per node) is detailed in

Table 2 for each cell of the study. Nodal normal displacements
on the hydrogel bounding box were set to zero in 3 orthonormal
faces to avoid rigid body motions. The cell interior was modelled
as a hole. The ground truth solution in terms of cell boundary
tractions and displacements was obtained using Abaqus Simulia
6.14 software.

Table 2 Number of considered protrusions and magnitude of protrusive

contractile forces (per node) for each cell of the study.

Cell Protrusions Force magnitude [pN]
1 2 395.78
2 4 487.46
3 2 341.53
4 6 448.22
5 4 668.90

Following the analogy with the TFM methodology (see intro-
duction and section 2), the displacement field was recovered by
mimicking bead-based displacement calculations. In this work,
different bead densities expressed as percentage of beads per
voxel were simulated, for each considered cell, using the follow-
ing approach. The number of sampled voxels were calculated for
each bead density case as:

n =
bd
100
·

3

∏
i=1

bs(i)
vs(i)

(44)

where bd is the bead density (in %), bs(i) is the box size in di-
mension i and vs(i) is the voxel size in dimension i (in µm). Four
different bead densities were considered, namely, 0.5, 1, 5 and
10% (see Table 3). A wide bead density range was selected to
cover both theoretical and experimental values presented in pre-
vious works12,29,42–44.

Table 3 Bead densities used in this study. The corresponding concentra-

tions, number of sampled points n, and inter-bead distance are included

to ease the comparison with other works. (IBD: Inter-bead distance, de-

�ned as the average of the distances between one bead and its nearest

neighbor). Parameters n and IBD were averaged over the 5 considered

cells.

Bead density [%] Concentration [beads/µ m3] n IBD [µm]
0.5 0.02 17979 2.26
1 0.03 35960 1.78
5 0.15 179802 1.04

10 0.31 359604 0.82

Next, for each cell of study, the ground truth displacement val-
ues were evaluated at n random bead positions by means of lin-
ear interpolation of the nodal displacements (from the ground
truth FEM simulation). Finally, a corrupted displacement field
was obtained by interpolating the n displacement values from the
previous step to the position of the FE nodes. In this work, this
procedure is repeated 20 times (20 bead realizations) and then
averaged, for each bead density case, in order to provide repre-
sentative performance results. This corrupted (interpolated and
averaged) displacement field is further referred to as the recov-
ered displacement field used as input for the forward and inverse
method, and at the same time is equal to the displacement field
provided by the forward method (as the latter method treats the
recovered displacement field as exact). As a validation of the
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developed code, we checked that an error free (uncorrupted) dis-
placement field solution, used as input in the forward and inverse
solvers, converges exactly to the same solution both for the for-
ward and proposed inverse methods. The converged solution was
in fact equal to the ground truth solution, as expected.

Fig. 4 Prescribed uniform nodal forces (see magnitude in Table 2) syn-

thetically applied along 6 selected protrusions of cell #4. Scale bar 20

µm.

8 Results

Results are given for the solutions provided by both the PBNIM
and forward methodologies for the different considered bead den-
sities and compared to the ground truth solution. In this section,
graphical results are shown for cell #4 for illustrative purposes,
while the rest of analyzed results of the different cells is avail-
able in the supplementary information (SI) section. However, the
analysis and discussion in this section considers all 5 analyzed
cells.

Figs. (5) and (6) show the displacement magnitude on the cell
#4 boundary and in the mid cross section of the hydrogel, respec-
tively. Qualitatively, minimal differences are found between the
inverse and forward methodologies for a given bead density. This
behavior is also seen for the other 4 cells (see figs. S3-S10). As
expected, both the inverse and forward solutions approach the
ground truth solution with increasing (sampling) bead density. It
is important to remark that the forward displacement field solu-
tion is the result of a downsampling and interpolation procedure
from the voxel imaged position of the beads to the finite element
mesh. The improvement of the forward displacement field with
increasing bead density is therefore due to the increase of the
dimension of the interpolation dataset. On the other hand, the
inverse displacement field is dependent both on the recovered
displacements, but also on the optimisation procedure shown in
box 1.

Solutions for traction magnitude are depicted in fig. (7) on the
cell #4 boundary. In this case, qualitative differences are found be-
tween the inverse and forward solutions versus the ground truth
one. Again, this finding is reproduced in other analyzed cells (see

figs. S11-S14). The inverse method leads to traction distributions
that are qualitatively more similar to the ground truth solution
for the considered range of bead densities. Both the inverse and
forward solutions improve with increasing bead density in com-
parison to the ground truth solution. The improvement is more
evident for the forward method, which implies that the proposed
inverse method is less sensitive to bead density (sampling), and
which is corroborated by fig. (8). This behavior is further ex-
plained below.

The different error indicators, as defined in section 6 (Eq.
(43)), are presented in fig. (8), which quantify the performance
of the inverse and forward approaches for the different consid-
ered bead densities. Overall, displacement-based error indica-
tors (fig. 8b,d,e) show similar trends and values for both meth-
ods and for the entire range of bead densities, with the inverse
method generally performing slightly better (lower error indica-
tor averaged over the 5 cells). However, results show significant
differences and improved performance of the inverse method in
displacement-based error indicators (averaged over the 5 cells,
fig. 8b,d,e) at low bead densities, showing large differences for
extreme displacement-based error indicator (fig. 8d,e). As an
exception, the mean displacement-based error indicator in the
hydrogel region (fig. 8a) shows a slightly better performance
in the forward method, although both the forward and inverse
methods provide negligible errors. It is worth remarking that the
computed displacement field is conditioned both by an interpo-
lation procedure from beads to interior hydrogel nodes, and by
an extrapolation procedure from beads to cell boundary nodes
(the latter due to a lack of positional information at the cell in-
terface). The values of the displacement-based error indicators
were substantially lower in the hydrogel region (fig 8 a,d) than at
the cell boundary (fig 8 b,e) for all bead densities. This suggests
that the extrapolation procedure inherently leads to higher errors
than interpolation.

In contrast, tractions are recovered much more accurately by
means of the inverse method, compared to the forward method.
Mean traction-based error indicators (as averaged over the 5
cells) reach much higher values (between 53% and 30% for low
to high bead densities) in case of the forward method, while for
the inverse method this error indicator ranges from 17% to 8%
for low to high bead densities (fig. 8c). Also, for the recovery of
extreme traction values, the inverse method outperforms the for-
ward method, with the value of the corresponding error indicator
ranging from 26% to 7% for the forward method, and from 7%
to 5% for the inverse method, for low to high bead densities (fig.
8f).

Traction-based error indicators are relatively insensitive to
bead density in the case of the inverse method. Combined with
the fact that for the inverse method, errors for traction recovery
are already at low values for the lowest bead density, it suggests
that the use of relatively low bead densities in TFM experiments
could be acceptable when tractions are recovered by means of
the inverse method. This effect is explained by the fact that in
the case of the forward method recovered tractions at the cell
boundary are strongly dependent on the extrapolation procedure
referred to previously, and hence to the presence of beads close to
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Fig. 5 Displacement magnitude [µm] on cell #4 boundary (top view). Forward method, for a bead density of: (a) 0.5%, (b) 1%, (c) 5% and (d) 10%.

Inverse method, for a bead density of: (e) 0.5%, (f) 1%, (g) 5% and (h) 10%. (i) Ground truth results.

Fig. 6 Displacement magnitude [µm] on cell #4 boundary and mid cross section of the hydrogel (3D view). Forward method, for a bead density of:

(a) 0.5%, (b) 1%, (c) 5% and (d) 10%. Inverse method, for a bead density of: (e) 0.5%, (f) 1%, (g) 5% and (h) 10%. (i) Ground truth results.
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Fig. 7 Traction magnitude [Pa] on cell boundary #4 (top view). Forward method, for a bead density of: (a) 0.5%, (b) 1%, (c) 5% and (d) 10%.

Inverse method, for a bead density of: (e) 0.5%, (f) 1%, (g) 5% and (h) 10%. (i) Ground truth results.

the boundary (which statistically improves with increasing num-
ber of sampling beads). Specifically, inter-bead distance (on av-
erage) varies in the range of 0.82–2.26 µm for a bead density
of 0.5-10% (table 3). Tractions recovered by the inverse method
are also a function of the imposition of the equilibrium condition
which is independent of the number of beads.

The average value of the different error indicators (averaged
over the considered bead densities and cells) is plotted in fig. 9,
for both the inverse and forward method. Except for the case of
mean displacement errors (which values are negligible both for
the inverse and forward methods), this figure corroborates that
the inverse method outperforms the forward method for all the
defined error indicators, especially tractions (variable of interest
in TFM). Together with the results of figs. 7 (and corresponding
figs. S11-S14 for the other 4 analyzed cells), it suggests that the
accuracy of cell traction recovery is improved by the imposition
of the equilibrium constraint in the hydrogel region, as provided
by the inverse method.

9 Conclusions

A new inverse method for cell traction recovery in the context
of 3D nonlinear elasticity was proposed in this paper. Both the
theoretical background and the numerical implementation were
elaborated in detail. The method minimises the difference be-
tween a measured and calculated displacement field in the hy-
drogel region surrounding the cell, and imposes a physical con-
straint to possible displacement field solutions, namely equilib-
rium of forces in the hydrogel region. The equilibrium constraint
equation was formulated using the Principle of Virtual Work and
discretised by means of the Finite Element Method in the con-
text of finite strain nonlinear elasticity. Enhanced accuracy for
traction and displacement recovery with respect to the forward

method was shown for a total of 5 real cell geometries embed-
ded in a hydrogel that was modelled by means of a hyperelastic,
quasi-incompressible Neo Hookean constitutive model, as a first
approach without loss of generality. While this material model
is unlikely to capture the full nonlinear elastic response of col-
lagen hydrogels (as used here for embedding HUVEC cells and
acquiring their geometry), we applied this material model for rea-
sons of simplicity. This simplification should not affect the gen-
eral conclusions of this study concerning the merits of the new
inverse method, especially since its implementation is compatible
with any nonlinear elastic material model. Moreover, hydrogel
materials undergo a viscoelastic response as evidenced in the lit-
erature45,46. The general theoretical framework shown in the
present paper is also valid to extend to the viscoelasticity case. In
particular, the constitutive model (Eq. (11)) needs to be reformu-
lated, and then numerically implemented following for instance
a convolution representation for the viscoelastic behavior. Classi-
cal numerical approaches can be followed for the extension of the
nonlinear approach to account for viscoelasticity47.

The deviation between the recovered displacement field (which
is equal to the displacement field of the forward solution) and
the ground truth displacement field is low on average. On the
contrary, the deviation between the recovered tractions and the
ground truth tractions is more than 3 times for mean traction-
based error indicator according to fig. 8c, depending on the
cell of interest, with faster convergence as a function of bead
density (i.e. deviations that are already low for relatively low
bead densities and that are less sensitive to a further increase
in bead density) for the inverse method. The cases where little
improvement in tractions is found with bead density, could be at-
tributed to unavoidable extrapolation errors in the displacement
field due to lack of positional information at the cell boundary,
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(a) (d)

(b)

(c)

(e)

(f)

Fig. 8 Error indicators as a function of bead density. Mean value error

indicators for (a) displacements in hydrogel region uh
m, (b) displacements

at cell boundary uc
m, and (c) tractions at cell boundary tc

m. Extreme

value error indicators for (d) displacements in hydrogel region uh
e , (e)

displacements at cell boundary uc
e, and (f) tractions at cell boundary tc

e .

The intervals represent the range of variation of values for the 5 analyzed

cells (see SI section). Dashed lines represent the average of values over

the 5 analyzed cells.
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Fig. 9 Average and standard deviation of error indicators, averaged over

the considered bead density values and the 5 analyzed cells.

which highlights the importance of a proper sampling procedure.
Note that this behavior cannot be interpreted strictly as an asymp-
tote for the considered range of bead densities. These errors are
likely to decay to negligible values for extremely large bead den-
sities. Nonetheless, remark that bead densities higher than the
analyzed ones are not feasible in practice, because conventional
(diffraction-limited) optical microscopy would not be able to re-
solve the individual beads due to overlapping point spread func-
tions, which hampers the tracking of bead movements48. More-
over, the use of higher bead densities could change the mechan-
ical properties of the hydrogel as well. In addition, only errors
related to interpolation/extrapolation from bead to nodes were
considered. Even though this is an important source of error in
TFM, consideration of additional sources of error (e.g. related to
the microscope setup) may yield an additional improvement of
the inverse versus the forward method.

While this study focuses on the establishment of a new inverse
method that preserves mechanical equilibrium and its compari-
son to a forward method, future efforts should aim at comparing
different inverse methods, by applying them to a number of real-
istic, synthetically generated data sets that could serve as bench-
marking problems for the assessment of TFM accuracy. For exam-
ple, it would be interesting to compare our inverse method to an
inverse method that employs Tikhonov regularization, the latter
having the disadvantage that it does not ensure the fulfilment of
mechanical equilibrium in the hydrogel.

In conclusion, the evaluation of the performance of the inverse
method presented in this paper suggests that this framework may
be used to accurately estimate cell displacements and tractions
in 3D TFM experiments with nonlinear elastic hydrogels, even
for relatively low bead densities that are compatible with TFM
experimental procedures.
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