
Emerging natural and tailored
perovskite-type mixed
oxides–based catalysts for CO2

conversions

Juan Wu1, Runping Ye2*, Dong-Jie Xu3, Lingzhong Wan1,
Tomas Ramirez Reina4,5, Hui Sun1, Ying Ni1, Zhang-Feng Zhou3*
and Xiaonan Deng1*
1Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China, 2Key Laboratory of Jiangxi
Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry
and Chemical Engineering, Nanchang University, Nanchang, China, 3Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, China, 4Department of Chemical and Process Engineering,
University of Surrey, Guildford, United Kingdom, 5Department of Inorganic Chemistry and Materials
Sciences Institute, University of Seville-CSIC, Seville, Spain

The rapid economic and societal development have led to unprecedented

energy demand and consumption resulting in the harmful emission of

pollutants. Hence, the conversion of greenhouse gases into valuable

chemicals and fuels has become an urgent challenge for the scientific

community. In recent decades, perovskite-type mixed oxide-based catalysts

have attracted significant attention as efficient CO2 conversion catalysts due to

the characteristics of both reversible oxygen storage capacity and stable

structure compared to traditional oxide-supported catalysts. In this review,

we hand over a comprehensive overview of the research for CO2 conversion by

these emerging perovskite-type mixed oxide-based catalysts. Three main CO2

conversions, namely reverse water gas shift reaction, CO2 methanation, and

CO2 reforming of methane have been introduced over perovskite-type mixed

oxide-based catalysts and their reaction mechanisms. Different approaches for

promoting activity and resisting carbon deposition have also been discussed,

involving increased oxygen vacancies, enhanced dispersion of active metal, and

fine-tuning strong metal-support interactions. Finally, the current challenges

are mooted, and we have proposed future research prospects in this field to

inspire more sensational breakthroughs in the material and environment fields.
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Introduction

The rapid development of society and the economy has led to

the huge demand for global energy (Vignieri, 2020). Although

renewable energy resources such as tidal, geothermal power,

wind, and solar have emerged in recent years, traditional fossil

fuels including coal, oil, and natural gas are still dominant within the

energy portfolio (Li 2021; Zhao et al., 2021). The high reliance on

fossil fuels is accompanied by massive greenhouse gases (GHGs)

emissions, mostly in the form of carbon dioxide (CO2), which brews

a potential threat to the ecological environment and human health

(Roy et al., 2018). According to the World Energy Statistical

Yearbook (70th Edition) released by the British Petroleum

Company, global carbon emissions have maintained continuous

growth since 2013 and reached a formidable record of 3.436 × 1010

tons in 2019 (Hu et al., 2021). As a result, a series of global action

plans such as the Intergovernmental Panel on Climate Change

(IPCC), the United Nations Climate Change Conference (COP21,

Paris, 2015), and the International Energy Agency (IEA) have

accentuated the imperativeness to diminish CO2 emissions by at

least half of the current amount by 2050 (Roy et al., 2018; Hussain

et al., 2021). China has come up with the target to reach a “carbon

peak” by 2030 and be “carbon neutral” by 2060 in carbon dioxide

emissions (Wang et al., 2020; Li 2021; Zhao et al., 2021). Therefore,

the conversion and utilization of waste CO2 emissions into higher-

value commodities while mitigating climate change has drawn great

attention, which is critical for a sustainable future (Ye et al., 2019a;

Sun et al., 2020; Ye et al., 2020).

However, CO2 is a highly oxidized, thermodynamically stable

molecule (ΔG0 = -400 kJ/mol) with ultra-low reactivity, which

requires surmounting the tremendous thermodynamic

activation barrier. Thus, the chemical conversion and

economic utilization of CO2 is an awesome scientific and

technical challenge (Ashok et al., 2020). CO2 is mainly used

as raw material to manufacture fuels or bulk chemicals for the

chemical industry in the following ways: 1) CO2 to CO (Chen

et al., 2020; Kopac et al., 2020; Lim et al., 2021b); 2) CO2 to CH4

(Shin et al., 2016; Ulmer et al., 2019; Wang X et al., 2019); 3) CO2

to CH3OH (Zhan et al., 2014; Li et al., 2017; Li F et al., 2019); 4)

CO2 to bulk chemicals like DME, urea, salicylic acid,

polycarbonates (Utsis et al., 2016; Ye et al., 2019a; An et al.,

2021). Among the proposed CO2 recycling options, catalytic CO2

hydrogenation to carbon fuels, especially via CO as an

intermediate for the Fischer-Tropsch synthesis to generate

more complicated chemicals, is of particular industrial

importance (Gao et al., 2020). Thence, hydrogenation reaction

has been regarded as an influential chemical conversion of CO2

since it offers a promising prospect to achieve sustainable

development in energy and the environment. However, CO2

hydrogenation and conversion technology are still challenging

for inadequate conversion and poor selectivity, which are

outcomes of unfavorable kinetic and thermodynamic factors

(Moradi et al., 2010). For example, CO2 conversion involves

selective reduction of CO2 with H2 or another reductant under

high temperatures and pressures, while metal-based catalysts

used are inclined to sinter and deactivate under severe operating

conditions, thus the use of improved catalysts or an alternative

approach is necessary (Tavasoli and Ozin 2018). During the

reaction, carbon deposition on the surface of the catalyst is the

most frequent reason for catalyst deactivation because the access

of reactant molecules to the active metal sites was hampered (Li

and Gong 2014). Thence, the solution to these issues is to develop

catalysts and integrated reactor systems with high efficiency and

specific selectivity to produce products with high conversion and

minimal energy consumption among industrial time scales

(Rodriguez et al., 2017; Liu et al., 2020a).

Among the various materials, the perovskites-type mixed

oxides-based catalysts have become the focus of research due to

their high-temperature thermochemical stability and high

oxygen transport properties (Huang et al., 2018). Compared

with traditionally supported catalysts, most of the active

metals are substituted in the crystal structure and only a small

fraction of active metals is on the surface in perovskites-type

mixed oxides-based catalysts (Zhu et al., 2014; Wu et al., 2018).

The substituted active metal particles would be exsolved to the

surface under reduction atmosphere to gain highly dispersed

metal crystals on the surface, which performed outstanding

resistance to coarsening and agglomeration (Messaoudi et al.,

2018). These inherent properties allow perovskite-type mixed

oxides-based catalysts to have a wide range of applications in

chemical catalysis (Ishikawa et al., 2020; Wang K et al., 2021; Zhu

and Thomas 2009), electrochemical catalysis (Okamoto and

Suzuki 2014; Yin et al., 2019), and photocatalysis (Peng et al.,

2020; Xu R et al., 2020). As for the structural properties of

perovskite-type mixed oxides-based catalysts, we will describe

them in detail in the second section of this review.

CO2 hydrogenation and conversion technology need high

temperatures to ensure thermodynamically favorable conditions,

and naturally, lots of people have applied perovskite-type

catalysts in this process (Su et al., 2016). Under the high

reducing temperatures, the perovskite oxides are recognized to

be partly reduced, leading to the formation of nanoparticles of B

site metals, which are not only active for the reforming reaction

but also insusceptible to carbon deposition (Jing et al., 2009;

Tsiotsias et al., 2020). For example, le Saché et al. have applied a

La2Zr2-xNixO7-δ pyrochlore-double perovskite catalyst for gas-

phase CO2 recycling conversion, and the active Ni clusters were

exsolved from pyrochlore-double perovskite materials after the

reaction leading to highly dispersed active ensembles which

account for the high activity and stability of the catalyst

during CO2 recycling conversion reactions (le Saché et al.,

2020). Valderrama et al. synthesized a series of perovskite-

type oxides based on La-Sr-Co (La1-xSrxCoO3) used as

precursors for the catalytic CO2 reforming of CH4, the Co0

nano-size particles are achieved and highly dispersed in the

La2O2CO3-SrO solid matrix after activation/reduction process
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which leading to high activity performance (Valderrama et al.,

2013). Perovskites-type based materials with a defined element

have been reviewed for specific CO2 conversion reactions (Tabish

et al., 2020; Madi et al., 2021), as far as we know, the review on the

perovskites-type based catalysts for the thermal CO2 conversions

has been rarely reported. . Here, we have especially attempted to

expatiate on the catalytic pathways and the position of

perovskite-type mixed oxides based catalysts in deciding the

selectivity of CO2 hydrogenation and conversion to CO and

CH4. In particular, we classify the main reactions for catalytic

CO2 hydrogenation and conversion: 1) reverse water gas shift

reaction (RWGS), 2) CO2 methanation, and 3) CO2 reforming of

methane. We would provide an elaborated account of recent

perovskite-type mixed oxides-based catalyst developments,

together with the pathways and mechanisms of reactions. In

addition to showing the latest optimal catalysts including their

properties, we also provide the challenges that need to be dealt

with and prospects for future research and development.

Perovskites-type mixed oxides-based
catalysts

The performance of a catalyst largely depends on the structural

and geometric parameters of the surface (Monteiro et al., 2019;

Kopac et al., 2020; Riani et al., 2021). Apart from the traditionally

supported catalysts, a class of crystalline oxide catalysts has attracted

extensive attention due to their excellent thermal stability (Godding

et al., 2019; Koch et al., 2020). In these materials, the active sites are

incorporated into the structure, resulting in catalysts that are

thermally stable at high temperatures. Moreover, a few of them

possess instinctive oxygen mobility that can be strengthened by the

replacement of active metals in the lattice, which is helpful to

mitigate carbon deposition (Li M et al., 2020; Peng et al., 2020).

Large numbers of these materials, such as perovskites (Huang et al.,

2018; Ishikawa et al., 2020; Koch et al., 2020), pyrochlores (Li et al.,

2016; Talanov and Talanov 2021; Trump et al., 2018; le Saché et al.,

2018), fluorites (Chen et al., 2019; Gao et al., 2021), and hexa-

aluminates (Tian et al., 2016; Xu L et al., 2020) have been

investigated for varied high-temperature reactions.

Perovskite-type oxides (ABO3), which acquire the structure

that large cation A locates on the edge and smaller cation B

locating in the center of the octahedron, as shown in Figure 1A (Ji

et al., 2020), are favorable materials to catalyze high-temperature

reactions due to their tunable catalytic properties and thermal

stabilities. Generally, the A site is filled with lanthanide metals (La,

Nd, Sm, etc.) or alkaline earth metals (Sr, Ca, etc.), and the B site

element is chosen from the transition metals (Fe, Ni, Mn, etc.)

(Shin et al., 2016; Mateo et al., 2021). Another class of crystalline

oxidematerials with the general formula A2B2O7 has been used for

CO2 conversion reactions (Kumar et al., 2016; Fang et al., 2021).

Themetals of the framework are similar to those of perovskite-type

mixed oxides (ABO3) based materials and its model, as shown in

Figure 1B. Namely, the larger rare-earth trivalent metal like La is at

the A position, and the smaller tetravalent transition metal like Zr,

Ti occupies the B site of these materials. However, the formation of

the crystal phase depends on the ionic radius ratio of A-position to

B-position: when the ratio is over 1.8, a perovskite structure

appears; if the ratio is in the range of 1.4–1.8, pyrochlore is the

dominant structure; and the fluorite phase prevails when the ratio

is less than 1.4 (Pakhare and Spivey 2014).

The crystalline oxides can be prepared using the Pechini sol-gel

method (Haynes et al., 2008; Haynes et al., 2009; Blanco et al., 2022).

Ethylene glycol or citric acid are used as complexing materials to

mingle with the metal precursors (Li S et al., 2020; Onrubia-Calvo

et al., 2021). The resulting amorphous resins, which are precursors of

FIGURE 1
Ideal models of ABO3 (A) ((Ji et al., 2020); Copyright

© 2020 (Royal Society of Chemistry) and A2B2O7 (B) [(Pakhare and Spivey 2014); Copyright ©

2014 (Royal Society of Chemistry)] structure.
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the perovskites, pyrochlores, or fluorites, are then calcined at high

temperatures (usually 800–1000°C) to remove the remaining

organics and construct the crystallographic ABO3 or A2B2O7

phase (Haynes et al., 2009; Kumar et al., 2016). The catalytic

activity of ABO3 or A2B2O7 can be modulated by partial

replacement of cations at the A and/or B sites, leading to the

formation of structural defects to stabilize the uncommon

oxidation states by B site components (Hare et al., 2018; Jiang

et al., 2021; Zhang J et al., 2021). The appealing properties of

crystalline oxides for catalytic reactions involve the high oxygen

movability and stability of uncommon oxidation states in the

structure, as well as high-temperature thermal stability (Su et al.,

2014; Bai et al., 2019). In both pyrochlores and perovskites, most of

the active metals are replaced inside the body of the crystal structure,

except for a small percentage at the surface (Moradi et al., 2012;

Bhavani et al., 2013; Valderrama et al., 2018). Under a reducing

atmosphere, the transition metals could be exsolved to the surface of

oxide to form highly dispersed crystals, meanwhile, the reduced

states can be used as supported catalysts too (Valderrama et al., 2005;

Valderrama et al., 2013; Yang et al., 2018). As the exsolutionmethod

can immobilize the particles more firmly on the support than the

impregnation method, the exsolved particles have outstanding

insusceptibility to coarsening and agglomeration. Therefore, the

catalytic activity of the exsolved particles is more stable during

the reaction operation. Moreover, the highly dispersed particles

inhibit the formation of carbon deposition, thusly preventing the

deactivation of catalysts (Jing et al., 2009; Wang X et al., 2019; Lim

et al., 2021a).

Perovskites-type mixed oxides-based
catalysts applied in CO2 conversion

We discuss the CO2 conversions, namely 1) reverse water gas

shift reaction (RWGS), 2) CO2 methanation reaction, and 3) CO2

reforming of methane to form target products mainly over

perovskites-type mixed oxides based catalysts. Before discussing

the reaction performance of the crystalline oxide catalyst, we first

briefly introduce the CO2 conversion reactions. Subsequently, we

introduce the application of perovskite-type mixed oxides-based

catalysts in CO2 conversion reactions, especially regarding the

modification of perovskite with improving the reaction

performance. Finally, we give an outlook on the future

application of perovskite catalysts in CO2 conversions.

RWGS reaction

The hydrogenation of CO2 to CO, commonly referred to as

the reverse water gas shift reaction (RWGS), is one of the most

technically achievable reactions to realize the clean utilization of

CO2 as an abundant renewable carbon source (Chen et al., 2020;

Wang X et al., 2021). Apart from generating CO, this reaction

may also be regarded as an intermediate process (e.g., CO2

methanation) for supplementary fuel and chemical synthesis

(Hare et al., 2019a). The RWGS reaction is a reversible and

energy-intensive way (Eq. 1), and its conversion of CO2 and

selectivity of CO are typically determined by thermodynamic

equilibrium (Liu et al., 2020b).

CO2 +H2 → CO +H2O,ΔΗ � 41.5kJ mol−1 (1)

Owing to its endothermic property, the RWGS reaction is

typically operated at high temperatures (up to 700 K) to achieve

a satisfactory CO2 conversion (Liu et al., 2022). However, it could

suffer the effect of catalyst sintering deactivation at elevated

temperatures. Therefore, improving the catalytic activity at lower

temperatures or adopting catalysts with higher temperature stability

is the main strategy to realize the industrialization of the RWGS

reaction (Kopac et al., 2020; Yang et al., 2020; Lim et al., 2021b; Jo

et al., 2022). In any case, green hydrogen is needed for the RWGS

when this process is envisaged as a greenhouse gas conversion route

(Nityashree et al., 2020).

RWGS reaction on catalysts mainly proceeds through the

redox mechanism or the formate dissociation progress (Chen

et al., 2020). As shown in Figure 2, there are two main reaction

pathways reported in literature 1) Formate pathway: goes on via

more reactive carboxyl (*COOH) or formate (*HCOO)

intermediates; 2) C-O bond cleavage pathway: CO2 is directly

decomposed into *CO and *O. In the metal oxide systems, the

metals adsorb dissociative H2 and spill it to the M-O sites in

FIGURE 2
Simplified RWGS mechanism. Reproduced from Kattel et al.
(2017); Copyright © 2017 (American Chemical Society).
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which CO2 is adsorbed (Lindenthal et al., 2020). Typically, in

perovskite oxide (ABO3), CO2 conversion occurs on oxygen

vacancies, and oxygen-deficient structures (ABO3-δ) are

formed by reduced H2 (Kopac et al., 2020). According to all

the catalysts reported so far, it is indicated that both mechanisms

are common in any reaction, and which route has a relative

advantage over the other depends on the specific catalyst

(Thalinger et al., 2015).

Considering the importance of oxygen vacancies in the RWGS

reaction, perovskite-like structure materials with high content of

oxygen vacancies have been promising candidates (Maiti et al.,

2018). Perovskite oxides (ABO3) are readily doped with highly

reactive elements, these dopants escape from the perovskite lattice

or form nanoparticles through diffusion (by exsolution) after

controlled reduction or during the reaction, which leads to more

oxygen vacancies generated thereby increasing the performance of

RWGS reaction (Lindenthal et al., 2020). On the other hand, the

exsolution of active metal well dispersed on perovskite surface, which

is very beneficial to improve the catalytic activity, an example is shown

in Figure 3 (Lindenthal et al., 2021). Analogously, Kuhn et al.

synthesized five various Sr-doped lanthanum cobaltates, La1-

XSrXCoO3−δ (0 ≤ X ≤ 1, with a step size of 0.25), to evaluate their

carbon dioxide conversion properties. The result indicated that when

X was 0.25, the La0.75Sr0.25CoO3−δ sample carried the best structure

stability under reducing conditions and the top CO generation ability

during the CO2 reoxidation process (Daza et al., 2014). Meanwhile,

they also found the strontium-doped La0.75Sr0.25FeO3 (LSF)

perovskite-type oxide combined with silica promoted a prominent

extent of oxygen vacancies in the active phase, and concomitantwith a

decreased average LSF crystallite size, resulting in unprecedented rates

of reverse water gas shift chemical looping. Furthermore, the support

SiO2 could also suppress the perovskite sintering through the

interfacial wettability effect which is confirmed by visual

examination of microscopy. The inhibiting species of FeSiO3

and La2SiO5, which may lead to interfacial energy barriers and

thereby limit accessibility to active surfaces, can restrict its

formation by adjusting the mass ratio of perovskite and support

silica (Hare et al., 2018). The combination of different supports

and different morphologies of perovskites produces unexpected

outcomes, which in turn exhibit different RWGS properties.

For example, the researchers also developed the effect of

using various supports (CeO2, Al2O3, SiO2, TiO2, and ZrO2)

in combination with perovskite oxides for RWGS (Hare et al.,

2018; Hare et al., 2019b). It is worth noting that the synthesis

method of perovskite also influences the RWGS performance

(Lim et al., 2021b; Jo et al., 2022).

The production of carbon monoxide via conventional,

thermally driven RWGS is a costly process, requiring energy-

intensive operating conditions. To decrease the operating

temperature, Kawi et al. used non-thermal plasma (NTP)

combine with perovskite La0.9Ce0.1B0.5B′0.5O3−δ-derived

bimetallic catalysts (B: Cu, Ni, Fe, B’: Ni, Fe, Cu) formed a

dielectric barrier discharge plasma-catalysis system to ignite

RWGS reaction, the results revealed that the plasma-catalysis

system has excellent capability to promote the RWGS reaction at

low temperature and normal pressure (Liu et al., 2020b; Liu et al.

2020b; Liu et al. 2022). Furthermore, RWGS reaction with

chemical looping (RWGS-CL) (Maiti et al., 2018; Lim et al.,

2021b; Lee et al., 2022), which is comprised of a two-step redox

step: reduction procedure by renewable H2 and oxidation step by

CO2, would be a promising method because it can considerably

reduce the operating temperature of the reduction process. High

oxygen mobility of the perovskite oxides allows for the operation

of these looping cycles without phase change of the oxides. The

process is depicted in Figure 4A. The mechanism of RWGS-CL

mainly relies on the generation of oxygen vacancies on these

surfaces and the conversion of carbon dioxide to these oxygen

vacancies. Therefore, probing these oxygen vacancies on different

perovskite oxide compositions is essential to better formulate

catalysts and understand their roles in CO2 conversion.

Bhethanabotla et al. using density functional theory (DFT)

calculated the oxygen vacancy formation energy in different

perovskite oxides during CO2 conversion reaction (Figure 4B),

and they found that using lanthanum and Ca-based perovskite

oxides can achieve 100% selective CO generation at record low-

temperature process temperatures of 450–500°C, and these

materials performed very stably in several RWGS-CL cycles

(Maiti et al., 2018).

CO2 methanation to CH4

The CO2 methanation, also known as “Sabatier reaction”,

was discovered by Sabatier et al., in 1902 (Senderens and Sabatier,

1902). From a thermodynamics perspective (Ye et al., 2019b), the

FIGURE 3
Comparison of RWGS reaction activity results on Co-, Ca-,
and Ni-doped samples. Reproduced from Lindenthal et al. (2021);
Copyright © 2021 (Elsevier).
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enthalpy and Gibbs free energy of the CO2 methanation process

are both negative, indicating a very favorable process (Eq. (2))

(Tsiotsias et al., 2020).

CO2 + 4H2 → CH4+2H2O,

ΔΗ � −165 kJ/mol&ΔG � −130.8 kJ/mol
(2)

Although thermodynamically favored, the reaction is

kinetically limited due to the high inertness of CO2. Indeed

experimental CO2 methanation does not yield significant

methane production at room temperature and atmospheric

conditions (González-Castaño et al., 2021). Therefore, many

studies have been carried out on CO2 methanation to CH4 in

various types of catalytic systems (Wang et al., 2016; Rosid et al.,

2019; Lv et al., 2020; Pastor-Pérez et al., 2020). However, CO2

methanation catalysts are prone to rapid and severe deactivation

during the reaction process due to various physicochemical

changes such as thermal degradation of support materials,

metal sintering, and especially coke formation (le Saché et al.,

2020; Sreedhar et al., 2019). Therefore, the development of

effective and stable catalysts lefts a major challenge for CO2

methanation commercialization (Mebrahtu et al., 2018; Ashok

et al., 2020).

In order to rationally design advanced catalytic systems, it is

necessary to study the reaction mechanism of CO2 methanation

(Lv et al., 2020). Roughly there are three potential reaction

pathways well-accepted in literature: 1) RWGS pathway:

Proceeds through *CO and then undergoes consecutive *CO

hydrogenation via *HCO which ends up in *CHx species to

produce methane. 2) C-O bond cleavage pathway: proceeds

through direct dissociation of CO2 generates *CO and *O,

and then *CO is further dissociated to *C and *O, the *C is

hydrogenated to methane. 3) Formate pathway: proceeds

through *HCOO and then consecutive hydrogenation via

*H2CO and *H2COH which end up in *CH3 species to

produce methane (Figure 5) (Aziz et al., 2015; Roy et al.,

2018; Hussain et al., 2021). Typically, the presence of multiple

active sites on the catalyst surface promotes the activation and

FIGURE 4
The process of RWGS-CL (A) Reproduced from (Hare et al., 2018); Copyright © 2018 (American Chemical Society) and the empirical modeling of
oxygen vacancy formation energies (Evac) of the perovskite oxides (B) Reproduced from Maiti et al. (2018); Copyright ©2018 (Royal Society of
Chemistry).

FIGURE 5
Simplified CO2 methanation reaction mechanism.
Reproduced from Kattel et al. (2017); Copyright © 2017 (American
Chemical Society).
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dissociation of reactants to generate the desired product through

different reaction intermediates (Rosid et al., 2019; Sreedhar

et al., 2019; Riani et al., 2021).

The CO2 methanation reaction system is often accompanied

by complex multiple side reactions, and the formation of coke

from the side reactions is the main reason for the CO2

methanation catalysts’ deactivation (Hussain et al., 2021).

Another main CO2 methanation catalysts drawbacks

concerning deactivation issues are high-temperature sintering

(Roy et al., 2018). Therefore, the development of anti-carbon

deposition and high-temperature sintering resistance catalysts is

the key to solving the bottleneck of CO2 methanation (Ashok

et al., 2020; Price et al., 2021). During the CO2 methanation

reaction, oxygen vacancies usually play a role in favoring CO2

adsorption and enhancing the ability to resist carbon deposition

(González-Castaño et al., 2021; Blanco et al., 2022). In addition,

the oxygen vacancies are also considered to be the key factor for

C-O dissociation obtaining higher CH4 yields (Wang et al., 2016).

Considering the importance of oxygen vacancies, perovskite-like

materials are promising candidates due to their the elevated

oxygen mobility and high-temperature stability (González-

Castaño et al., 2021). The generation, recovery, and

regeneration of oxygen vacancies (cycle process) are often

accompanied by the occurrence of redox reactions (Zhang J

et al., 2021). It is found that the using (or doping) of variable

valence metal in perovskite (A/B site) can accelerate the

generation of oxygen vacancies or elevated oxygen mobility in

the CO2 methanation (Li S et al., 2020; Zhang J et al., 2021). For

example, M. González-Castaño et al. synthesized Ni catalyst

supported on YMnO3 perovskite via coprecipitation method,

and the replacement of Mn3+ by Ni2+ atoms result in the

formation of Mn4+ species by way of a charge compensation

mechanism, which attained the ability to exchange oxygen

species, leading to the remarkable performance with TOFs =

20.1 s−1 at 400°C and 60 L/(g·h). The presence of oxygen

vacancies in the YMnO3-x support effectively enhances the

dissociative adsorption of CO2 through easier redox

interconversion, resulting in high activity and stable catalytic

behavior without evidence of deactivation (González-Castaño

et al., 2021). Similarly, the variable valence metals like Ce (Ren

et al., 2021; Zhang J et al., 2021), Fe (Thalinger et al., 2016b;

Steiger et al., 2020), Ti (Tang et al., 2018; Do et al., 2020; Jiang

et al., 2021), etc. can also lead to oxygen vacancies increase in

perovskite structure materials.

It is found that the dispersion of active metals has a great

influence on the performance of the CO2 methanation reaction

(Lim et al., 2021a). In order to attain well-dispersed active metals,

the metal loading on the catalyst is usually low to suppress

agglomeration during the catalyst preparation. Low loading of

active species would inevitably lead to relatively low activity; thus,

the research focus is on fabrication catalysts with high dispersion

under high loading (Jiang et al., 2021). In addition to oxygen

mobility properties, perovskite oxides also exhibit good reactivity

and thermal stability at higher metal loadings, so they are often

used as redox catalysts in CO2 methanation reactions. Apart

from increasing the dispersion of active metal by substitution

(Lim et al., 2021a; Jiang et al., 2021), a variety of tandem catalysts

consisting of two interfaces with a single structure has been

recently designed and used to catalyze the continuous reaction of

CO2 hydrogenation to methane (Do et al., 2020). Wang et al.

utilize LaNiO3 with perovskite structure as a La-modified

catalysts precursor to the synthesis of Ni-La2O3/SBA-15(C) for

CO2 methanation. Owing to the LaNiO3 distinct perovskite

structure, the interaction between La and Ni is enhanced,

thereby reinforcing the synergistic effect of La2O3 and Ni,

making Ni nanoparticles with high dispersibility as well as

satisfactory resistance to sintering and carbon deposition. In

addition, compared to the Ni-La2O3/SBA-15 catalyst synthesized

by the traditional wet impregnation method, the Ni-La2O3/SBA-

15(C) demonstrated a higher dispersion of Ni and displayed a

better catalytic performance with a CO2 conversion of 90.7% and

a CH4 selectivity of 99.5% at 320°C (Figure 6) (Wang X et al.,

2019). Coincidentally, Liu G et al. (2020) also utilized the specific

perovskite structure of LaNiO3/LaNi1-xCoxO3 to synthesize

LaNi1-xCoxO3-based catalysts supported on mesostructured

cellular foam (MCF) silica (LaNi1-xCoxO3/MCF) and evaluate

its CO2 methanation performance. The highly dispersed La2O3

and Ni/Ni-co alloy nanoparticles were formed within the pores of

the MCF support after reduction, which exhibited high

performance (Zhang and Liu 2020a; Zhang and Liu 2020b). In

addition to the above SBA-15 and MCF, using perovskite-

structured LaNiO3 as the precursor, a high-performance CO2

methanation catalyst with highly dispersed Ni nanoparticles and

strong metal interactions was prepared, which also appeared on

the supports of CeO2 (Onrubia-Calvo et al., 2021), ZrO2 (Li S

et al., 2020), SiO2 (Li S et al., 2019), γ-Al2O3 (Do et al., 2020) etc.

To avoid the agglomeration of active metal, it is desirable to

have strong SMSI between the metal and support to achieve high

performance (Shin et al., 2016; González-Castaño et al., 2021).

Shin et al. study found that at the same loading of Co. and Pt

(1 and 0.2 wt%, respectively), the barium zirconate support

provides a more than six-fold increase in CH4 formation rate,

accompanied by a high CH4 selectivity as compared to previously

studied γ-Al2O3 supports at 325 °C. This enhancement is

attributed to a strong interaction between the Co. particles

and the BaZrO3 support, as well as atomically dispersing of

the Pt. It is noted that Pt atoms decorating the surface Co/CoOx

interface within the nanoparticle, and prefers to remain

associated with the metallic Co. core as opposed to being

incorporated into the CoOx shell during oxidation of the

particle (Shin et al., 2016). However, Penner, et al. reported

that strong metal-support interactions have limitations in

complex metal-oxide systems. They employed Rh/Ni-

La0.6Sr0.4FeO3-δ and Rh/Ni-SrTi0.7Fe0.3O3-δ as precursors to

explore the relationship between metal-support interactions

and the performance of CO2 methanation. The results
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exhibited there is no typical, reversible strong metal-support

interaction during the reaction (Thalinger et al., 2016a; Thalinger

et al., 2016b).

In addition to regular doping modification or using

supports, novel strategies like special preparation methods or

materials have emerged to improve the performance of CO2

methanation over perovskite structure (Arandiyan et al., 2018;

Wang X et al., 2019). The colloidal crystal template method is

widely used to create three-dimensional ordered macroporous

(3DOM) structured materials due to its single-step low-

temperature process, facile control in composition and

morphology, and wide applicability to metal precursors. The

interconnected porous network of 3DOM structured materials

enables to control the active metal particle size and dispersion

and influences the metal-support interaction during the

exsolution process. For example, Rose Amal et.al using a

poly(methyl methacrylate) microsphere colloidal crystal-

templating route successfully prepared Ni-Rh nanoalloy/

3DOM LaAlO3, the schematic illustration of in situ

exsolution of the catalyst from an ABO3 perovskite structure

shown in Figure 7A. The reduced Ni-Rh/3DOM LaAlO3 has

high dispersion of bimetallic Ni-Rh NPs, rich surface adsorbed

oxygen species and basic sites, and strong metal-support

interaction after reduction treatment. The performance of

CO2 conversion confirmed a significant enhancement in

activity for the RhNi/3DOM LaAlO3 sample relative to the

other catalysts (Figure 7B) (Arandiyan et al., 2018). Similarly,

Wang et al. also used a template of poly methyl methacrylate

colloidal crystal to synthesize Ni/Y2Zr2O7-3DOM, which has a

much stronger interaction of NiO and the Y2Zr2O7-3DOM

than Y2Zr2O7-CP support synthesized by a co-precipitation

method. Under reducing conditions, the strong interaction of

NiO and the Y2Zr2O7-3DOM achieved high active Ni surface

and large quantities of surface-active O2
−/alkaline sites, which

are the mainly active agent trigger the CO2 methanation (Fang

et al., 2021). Besides, the water is generated because of hydrogen

oxidation and RWGS side reactions during CO2 methanation,

which may cause the catalyst deactivation for not stable in water

materials. For this, Kageyama et al. investigated the perovskite-

type oxyhydride BaTiO2.4H0.6 as an effective water-stable

support material for Ni-, Ru-based catalysts for CO2

methanation. The result proved that the oxyhydride support

is 2–7 times more active for Ni and Ru than the oxide support of

BaTiO3 (Tang et al., 2018).

FIGURE 6
(A) TEM images for the catalysts after reaction: Ni/SBA-15 (a); Ni-La2O3/SBA-15(I) (b); Ni-La2O3/SBA-15(c). (B)Catalytic activity and selectivity of
the catalysts. Reproduced from Wang X et al. (2019); Copyright © 2019 (American Chemical Society).
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FIGURE 7
Schematic illustration of in situ exsolution of the catalyst from an ABO3 perovskite structure (A), and catalytic activities for the different catalysts
(B). Reproduced from Arandiyan et al. (2018); Copyright © 2018 (American Chemical Society).

FIGURE 8
The partial pressures of CO, H2, CH4, and CO2 during the CO hydrogenation reaction for LaNiO3 (A) and LaFe0.5Ni0.5O3 (B). Potential energy
diagram for the reaction routes of *CO + H on Ni (111) (C) and NiO (111) (D). Reproduced from Zhao et al. (2018); Copyright © 2018 (Royal Society of
Chemistry).
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According to the mechanisms of CO2 methanation, it can be

found that there is one mechanism through consecutive RWGS

and CO hydrogenation. That means the selectivity of CO2

hydrogenation to CH4/CO can be adjusted by controlling the

stability of the CO intermediate. It is found that crystalline oxide

catalyst shows good catalytically active in both CO2 methanation

and the RWGS routes and has different selectivity and activity

under various reaction conditions (Tsiotsias et al., 2020). The

products can be selectively controlled by adjusting the reaction

temperature or the type of catalyst (Ma et al., 2019; Ho et al.,

2020; Xu et al., 2022). For example, Chen et al. found that by

changing the valence state of Ni, the product selectivity of CO2

hydrogenation can be adjusted on La-Fe-Ni perovskites, and the

result suggests that higher-valence nickel-related species could

produce more CO. They analyzed technology to illustrate that

under reaction conditions, metallic Ni and higher-valence nickel-

related species were formed on LaNiO3 and LaFe0.5Ni0.5O3,

respectively. Furthermore, the DFT calculations indicate that

CO is weakly bound to NiO (111), and the desorption of *CO is

more favorable than its further hydrogenation to CH4, resulting

in higher selectivity for CO (Figure 8) (Zhao et al., 2018).

Similarly, Scott et al. have studied the product selectivity of

CO2 hydrogenation by K cation substitution of La over

LaNiO3 perovskite catalysts. It is found that when the

potassium incorporation is up to 0.2, the La0.8K0.2NiO3 have

the maximum amount of NiO in the catalyst which leads to an

increase the CO selectivity. Therefore, keeping nickel-related

species in higher-valence states under the reaction conditions

is one of the important strategies in promoting CO selectivity

(Tsounis et al., 2020).

CO2 reforming of CH4

The greenhouse gases of CH4 and CO2 are major

contributors to global warming. The conversion of CH4 and

CO2 to syngas (H2 + CO) has plentiful applications in synthetic

chemistry (Li et al., 2021). Therefore, CO2 reforming of CH4 can

not only alleviate global environmental problems but also

provide a valuable chemical feedstock (Monteiro et al., 2019).

It has been proved that the reserves of combustible ice (Gas

Hydrate/Natural Gas Hydrate) in the South China Sea are as high

as about 200 million cubic meters, equivalent to eight million

tons of oil. Among many mining methods, the CO2 replacement

method is a new mining method of combustible ice, which

inevitably causes natural gas contaminated with CO2 in the

product gas. Therefore, the efficient utilization of methane,

especially the reforming of carbon dioxide, has attracted

widespread attention. Simultaneously, the greenhouse gases

(GHG) methane and carbon dioxide are the main “culprits”

of global warming, their efficient use has always been a research

focus (Wang et al., 2016; Wu et al., 2020).

CO2 reforming of CH4 is also called dry reforming of CH4

(DRM) due to not involving water in reactants, and it is an

extremely endothermic reaction (Eq. (3)) (Abdullah et al., 2017).

Therefore, it needs exceedingly high temperatures to achieve high

equilibrium conversion of syngas at which supported metal

catalysts are easily deactivated by sintering (le Saché and

Reina 2022). Although the DRM produces H2/CO ratio with

one theoretically, the simultaneous occurrence of side reactions

of RWGS, CH4 decomposition (MD: Eq. 4), and the Boudouard

reaction (BR: Eq. 5) causes the H2/CO ratio not close to one

(Pakhare and Spivey 2014). Apart from affecting the ratio of

synthesis gas, the occurrence of side reactions of the MD or BR

can also lead to carbon deposition. Therefore, it is necessary to

build up a thermally stable catalyst to suppress carbon deposition

and sintering (Liu Y et al., 2020).

CO2 + CH4 → 2CO + 2H2,ΔΗ � +247 kJmol−1 (3)
CH4 → C(s)+2H2,ΔΗ � +75 kJmol−1 (4)
2CO → C(s)+CO2,ΔΗ � −171 kJmol−1 (5)

Typically, CH4 is activated onmetals such as Rh, Pt, andNi to

produce carbon, CHx, or formyl intermediates, while CO2 is

activated at the support or interface of the catalyst to form

carbonate precursors (Wang et al., 2016; Li et al., 2021).

During the DRM reaction, the reduction of CO2 to CO is

accompanied by the generation of oxygen-containing species

(or oxygen vacancies) and the enhancement of oxygen mobility,

which is beneficial to the oxidation of surface carbon formed by

CH4 activation, thereby eliminating carbon deposition (Monteiro

et al., 2019). Based on this, the high oxygen mobility exhibited by

perovskite-like materials makes them promissory candidates

applied in DRM reactions (Bian et al., 2020; Bhattar et al.,

2021). Besides, the high-temperature stability of perovskite-

like materials further exacerbates their exploitation in DRM

reactions (Shi et al., 2021). In general, LaNiO3 with

perovskite’s structure is widely studied, which is usually

decomposed to the Ni/La2O3 catalyst after H2 activation or

DRM reaction. Over the LaNiO3 perovskites, the presumed

mechanism is the adsorption of methane on metallic nickel

particles and the subsequent cracking to form carbon deposits,

which is recognized as the rate-determining step. At the same

time, CO2 reacts with La2O3 to generate La2O2CO3 intermediate,

which then reacts with carbon to form CO at the Ni0-La2O2CO3

interface accompanied by the recovery of Ni metal surface

(Gallego et al., 2008; Moradi et al., 2010; Sadykov et al., 2013).

The use of hydrogen for pretreatment to obtain catalytically

active metal oxide materials before DRM catalysis is still the

preferred preparation method for promising perovskite-based

DRM catalysts (Gallego et al., 2006). For example, the Rh

substituted-La2Zr2O7 (pyrochlore-type) and La2Ti2O7

(perovskite-type) performed different DRM catalytic

performances (Wu et al., 2018). Under reducing conditions,
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almost all Rh species substituted Zr made reactive oxygen species

difficult to transfer, leading to the depositing of intermediate

carbon on Rh-La2Zr2O7. On the contrast, part of Rh substituted

Ti on Rh-La2Ti2O7 obtained coexistence of Rh
0 and Rhδ+ after H2

was reduced, which accelerates the mobility of active O* and

leading excellent activity and long-term stability for DRM

(Figure 9). Therefore, the morphology and structural stability

of perovskite-type mixed oxides-based materials also have a great

impact on the DRM performance (Ho et al., 2020). Batiot-

Dupeyrat et al. compared the La2NiO4 and LaNiO3 perovskite

to be a precursor to exploring the performance of DRM. They

found that after reduction treatment, La2NiO4 has the smallest

nickel particles, making its catalytic activity higher than that of

Ni/La2O3 or LaNiO3 (Gallego et al., 2006; Nezhad et al., 2021).

In order to elevate the DRM activity and stability of

perovskite structure materials, the most popular method is to

do a part substitution. The most common substitution metals can

be divided into alkaline earth metals (Mg, Ca, Sr, Ba et al.) (Dama

et al., 2018; Bekheet et al., 2021), rare earth and variable valence

metals (Sm, Ce, Nd, Gd, Cu, Mn, Cr et al.) (Moradi et al., 2012;

Bhavani et al., 2013; Wang et al., 2018), VIII group (Fe, Co., Ni,

Ru, Rh, Pd, Ir) (Wang H et al., 2019; Das et al., 2020; Managutti

et al., 2021), and others (Moradi et al., 2014). The alkaline earth

metals substitution perovskite always increases the basicity, the

strong exsolved Ni particle/support interfacial interaction

thereby the DRM catalytic activity (Yang et al., 2015; Wei

et al., 2020). In the DRM redox reaction system, we usually

replace a proper amount of site A/B with Ce (or Mn, Cu, etc.

variable valence metal) in the mixed-oxide. Then the Ce3+/Ce4+

(or Mn2+/Mn3+/Mn4+, etc.) cations can reversibly shuttle between

mixed-oxide and CeO2, which enhanced the oxygen vacancies or

oxygen mobility and thereby improved the catalytic activity

(Wang et al., 2018). The VIII group metals are usually an

active site for CH4 decomposition. Thus, an appropriate

substitution amount not only enhances the active metal

exsolution but also improves the dispersion of active metal

(Goldwasser et al., 2005; Oh et al., 2019). Furthermore, it is

found that the use of silica materials (SBA-15, SiO2, etc.) (Rivas

et al., 2010; Wang et al., 2013), SiC (Zhang Z et al., 2021), CeSiO2

(Rabelo-Neto et al., 2018), MgAl2O4 (Messaoudi et al., 2018), and

Al2O3 (Moradi et al., 2013) as supports plays a role as promoters

in the physicochemical and catalytic properties of the perovskite

catalyst, especially the relatively high surface area of support

promotes a highly dispersed and catalytic activity.

In addition to the commonly used Pechini sol-gel method to

prepare perovskite structural materials, co-precipitation and

impregnation method have also been widely studied, but their

development is limited due to obtained smaller specific surface

area of the catalyst and unsatisfactory activity on DRM (Rivas

et al., 2008; Yadav and Das 2019; Yafarova et al., 2019).

Therefore, new synthetic methods have emerged. For example,

Joo et al. used atomic layer deposition (ALD)-combined

topotactic exsolution method to obtain Ni-Fe alloy (Joo et al.,

2020), in which raw materials are La0.6Sr0.2Ti0.85Ni0.15O3-δ and

Fe2O3. The lower Ni-Fe alloy formation energy (-0.43 eV)

enhanced the catalytic activity of DRM, prolonging its stability

to 410 h (Joo et al., 2020; Ma et al., 2022). Figure 10 shows the

process of conventional and topotactic exsolution via ALD.

Other novel synthesis methods like the template method using

SBA-15 as templating agent (Nair et al., 2014; Duan et al., 2017),

ultrasonic spray pyrolysis method (Pereñíguez et al., 2010;

Shahnazi and Firoozi 2021), microwave-assisted (Figueredo

et al., 2018; Gangurde et al., 2018; Marin et al., 2021),

magnetic distilled water-assisted (Mousavi and Nakhaei Pour,

2019; Mousavi et al., 2020), auto-combustion methods (Caprariis

et al., 2015; Ruocco et al., 2019), one-step polymerization method

(Silva et al., 2019) have also been performed in the preparation of

efficient DRM catalysts. These newly developed synthesis

FIGURE 9
Schematic diagram of the DRM reaction (A) and the lifetime test on Rh substituted-La2B2O7 (B = Zr or Ti) (B). Reproduced fromWu et al. (2018);
Copyright © 2018 (American Chemical Society).
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methods could serve as a general powerhouse in other fields of

energy utilization. In addition to improving the DRM activity

from the perspective of catalysts, researchers have also tried to

improve the performance of the reaction equipment and reaction

conditions, such as using a plasma-assisted replaced heat source

(Zheng et al., 2015), coupling chemical looping reforming, or

autothermal reforming (Sastre et al., 2019).

Conclusions and perspectives

The increased amount of CO2 in the atmosphere mainly due

to the excessive consumption of fossil fuels plays a major role in

climate changes on a global scale. Therefore, it is mandatory to

reduce CO2 emissions and develop CO2 capture as well as CO2

utilization technologies. The conversion and utilization of waste

CO2 emissions into value-added products, such as chemicals,

fuels, and other materials, while restraining climate change has

drawn attention, which is crucial for a sustainable future.

Considering the high oxidation and thermodynamic

stability of CO2, various strategies such as the catalyst

preparation method, preparation conditions, and the

component, as well the reaction conditions, technical

approaches have been exploited in the conversion of CO2. In

this review, we particularly elaborate on the perovskite-type

mixed oxides-based catalysts on DRM, CO2 methanation, and

RWGS reaction. All these gas-phase CO2 conversion processes

are considered direct routes for CO2 valorization. The

bottleneck for their implementation at the commercial scale

is the lack of a robust and selective catalyst that can deliver the

desired products satisfying the energy demands and favoring an

economically viable chemical process. Herein perovskite

catalysts emerge as fairly promising materials. given their

defects chemistry with a significant concentration of oxygen

vacancies and high-temperature stability characteristic of

perovskite structure. Furthermore, the improved

performance of the conversion of CO2 on perovskite-type

mixed oxides-based catalysts by site A/B substitution, novel

FIGURE 10
(A)Conventional exsolution for LSTN and (B) corresponding SEM image of LSTN. Scale bar, 500 nm. (C) Topotactic exsolution via ALD for LSTN-
20C-Fe and (D) corresponding SEM image of LSTN-20C-Fe after reduction. Scale bar, 500 nm. Reproduced from Joo et al. (2020); Copyright © 2020
(Science).
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preparation method, combined with supports, etc., have been

summarized. Apart from catalyst design, technical approaches

involving innovative reactors and new processes design such as

combined non-thermal plasma, light-drive, thermo-electric,

etc., are also applied to improve CO2 conversion. Although

it would take some time to bring these technologies up to the

levels of practical CO2 hydrogenation, society’s need for

effective measures is driving these rapid advances to reduce

the acceleration in global warming caused by growing CO2

emissions.

For the future research in this field, we have proposed

several perspectives as follows: 1) a more advanced

preparation method should be developed for the perovskite-

type mixed oxides based catalysts; 2) The relationship between

the structure and catalytic performance over perovskite-type

mixed oxides based catalysts for CO2 conversions should be

investigated by the in-situ/operando characterization and DFT

computational methods. The reaction mechanism of CO2

conversions is still challenging as the structure of perovskite-

type mixed oxides based materials is complicated and the

reaction pathway is diverse; 3) The combination of the

perovskite-type mixed oxides based catalysts with other

kinds of materials such as metal-organic frameworks, layered

double hydroxide, and carbon materials could also be

investigated to further enhance the catalytic performance for

CO2 conversions; 4) Taking advantage of the optoelectronic

properties of some perovskite-type mixed oxides based

materials, future research could introduce solar-energy to

drive catalysts for higher CO2 conversion efficiency; 5)

Considering the remarkable oxygen mobility and redox cycle

ability of perovskite-type mixed oxides based catalysts, the

future reaction system could combine multiple technologies

such as chemical looping or integrated reactor systems such as

membrane reactors favoring one-step reaction and separation

and leading to process intensification. All in all, these new

technologies shall pursue the sustainable synthesis of added

value products using CO2 as a carbon pool at high conversion

with minimal energy consumption paving the way toward a

net-zero modern society.
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