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A B S T R A C T

This paper addresses the customer-phase identification problem in three-phase distribution grids including
three-phase customers characterized by aggregated energy measurements. The proposed technique first solves
a relaxed problem, in which the binary nature of the variables is ignored, which leads to a constrained, least-
squares estimation, using as inputs the active and reactive energy readings provided by the smart meters, along
with the energy delivered by each phase at the head of the feeder. With the estimated values of the decision
variables, and their corresponding variances, a confidence-based selection technique is then applied for the
sequential assignment of the customer with the highest joint probability of being connected to one of the three
phases but not to the other two. The performance of the proposed procedure is assessed with five different
scenarios in terms of accuracy for increasing number of loads and measurement errors. The robustness of the
algorithm is additionally tested in the presence of model errors, and its performance is compared to that of
existing methods.
1. Introduction

The quality of the service provided to the customers is one of
the most important drivers related to the operation and control of
distribution networks. In this regard, it is essential to duly characterize
the phase which single-phase clients are connected to. In case this infor-
mation is missing (or inaccurate), feeder unbalance problems may arise,
with the associated difficulties, such as excessive voltage variations,
which can even violate the grid codes, or a premature deterioration of
the grid assets due to the overheating caused by the increased power
losses, etc. Moreover, having an accurate topology information benefits
the penetration of renewable energy sources, [1,2], in terms of a better
per-phase energy balance.

In this regard, despite the efforts undertaken by distribution com-
panies, they frequently lack enough information about the phase con-
nection of their single-phase customers, owing for instance to network
reconfiguration after faults, phase switching derived from improper
maintenance, or inaccurate tracking of the true load-to-phase connec-
tivity. In these circumstances, a method must be developed to estimate
as accurately as possible the actual phase to which a customer is con-
nected in LV feeders, which constitutes the so-called Customer-Phase
Identification (CPI) problem.

The relatively recent literature related to the CPI problem is com-
posed of a remarkable number of works, which can be divided into
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two main groups, [3]: hardware-based and software-based methods.
Regarding the first group, the proposed techniques are based on the
use of measuring devices designed for this particular purpose, usually
deployed at strategic places for a given period of time [4–7]. To
reduce the economical impact derived from the deployment of those
devices, several software-based methods have arisen. In this category,
voltage measurements are considered by some identification meth-
ods, in combination with a correlation-based technique [8], a spectral
clustering approach [9], or signal processing [10]. Based on voltage
observations, [11] presents a procedure to estimate the topology of
underground distribution cables. Regarding parameter identification
of signal models, new hierarchical (separable) multi-innovation algo-
rithms can be found, in [12] for multi-frequency signals based on
the sliding measurement window, and in [13] for signal modeling by
using the measurement information. Also on signal modeling, even an
optimal adaptive filtering algorithm is proposed in [14] by using the
fractional-order derivative technique.

The information provided by the smart meters has also been widely
used to address the CPI problem, [15,16]. A method considering
Least Absolute Shrinkage and Selection Operator (LASSO) is proposed
in [17]. In [18], a novel approach for phase identification using
graph theory and Principal Component Analysis (PCA) is tested. The
vailable online 5 July 2022
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possible missing information in smart meter data is dealt with in [19]
through a correlation analysis. Dynamic State Estimators (DSEs) based
on Kalman Filters (KFs) have been recently used in [20], where three
KF formulations are compared.

Since the variables to be determined in the CPI problem are not
time varying, some of the techniques traditionally used in parameter
identification can be applied in this context. These include the least-
squares parameter estimation proposed in [21], for multi-input and
multi-output systems, the recursive algorithm presented in [22] for
signal modeling, and the dynamical window data approach presented
in [23] to characterize the frequency response.

In this work, an equality-Constrained Least Squares (CLS) problem
is proposed to deal with the CPI problem, assuming that the avail-
able information comprises exclusively the hourly active and reactive
energy readings provided by individual smart meters, along with the
aggregated energy delivered by each phase at the head of the feeder
(secondary substation). The complexities arising from the involved vari-
ables being binary are circumvented by resorting to a confidence-based
sequential selection procedure, which uses the first and second-order
statistics of the estimated parameters to determine the single-phase
client with the highest probability of being connected to a certain phase
but not to the other two. The selected candidate is accordingly assigned,
and the same procedure is repeated as long as unassigned single-phase
loads remain. The proposed method conservatively assumes that other
electrical magnitudes which might be provided by smart meters, such
as voltage readings for each load, are not available. This calls for the
adoption of a simplified loss model, approximately relating the impact
of each load on the total losses. Moreover, such model can be easily
adapted for different informative scenarios (e.g. when the reactive
energy measurements are not provided, or the network topology is
not available). As the information considered in this paper for the CPI
problem is similar to that assumed in several previous works, such
as [17,18,20], the performance of all those techniques will be compared
for different noise scenarios and number of customers.

The main contribution of the proposed methodology, compared to
the identification techniques proposed elsewhere, is that single-phase
customers are sequentially assigned to one electrical phase on the basis
of key statistical information associated with the variables involved in
the problem. Through this approach, the explicit enforcement of binary
constraints, inherent to the CPI problem, is avoided. Compared to the
previous authors’ work [20], the main differences lie in the capabil-
ity of directly handling three-phase clients, for which only a single
aggregate energy measurement is assumed (rather than three separate
measurements), as well as the use of CLS rather than a nonlinear KF.

The paper is organized as follows: Section 2 presents the proposed
technique to approach the CPI problem; Section 3 provides a brief
description of the case study used for testing; in Section 4, the results
obtained in five different scenarios are presented and discussed, while
the proposed assignment procedure is compared in Section 5 with
other published works dealing with this problem; the conclusions are
presented in Section 6.

2. Proposed phase-identification technique

In this section, the methodology proposed for the phase identifica-
tion problem is described (see the flowchart of the whole process in
Fig. 1).

2.1. Input data

The information gathered and processed throughout the phase iden-
tification procedure is as follows:

• Active and reactive energy measurements at the secondary sub-
station during the sampling interval 𝑘, for each phase 𝑝, 𝐸𝑃 𝑝

𝑆𝑘 and
𝐸𝑄𝑝 , with 𝑝 = 𝑎, 𝑏, 𝑐.
2

𝑆𝑘
• Active and reactive energy readings from the smart meter 𝑖 during
the sampling interval 𝑘, 𝐸𝑃𝑖𝑘 and 𝐸𝑄𝑖𝑘.

• Identification of the connection type for each customer (single-
phase or three-phase), 𝑁𝑠 being the number of single-phase con-
sumers and 𝑁𝑡 the amount of three-phase loads, yielding a total
number of consumption readings 𝑁𝑐 = 𝑁𝑠 + 𝑁𝑡, given that only
aggregate readings are considered for the three-phase clients.
Note the difference in this regard with respect to the previous
work [20].

• Topological information, if available, of the electrical distance
between each customer and the secondary substation.

Although, in this work, hourly intervals are assumed (according
o the current Spanish regulation for smart meters), the proposed
rocedure can work indistinctly with any scanning rate. In fact, the
ower the measurement latency, the more accurate the results obtained.

.2. Equality-constrained least-squares formulation

The following optimization problem with equality constraints is
onsidered in this paper to address the CPI problem:

in
𝑥

(𝑏 − 𝐴𝑥)𝑇𝑊 (𝑏 − 𝐴𝑥)

s.t. 𝐶𝑥 = 𝑑
(1)

here the objective function is the weighted sum of the squared com-
onents of the error vector 𝜖 = 𝑏 − 𝐴𝑥, with 𝜖 ∼ 𝑁(0, 𝑅) and 𝑊 = 𝑅−1.
s the elements of 𝜖 can be assumed to be independent and identically
istributed random variables, the covariance matrix will be of the form
= 𝜎2 ⋅ 𝐼 , where 𝐼 is the identity matrix. The elements involved in (1)

re described in the sequel:

• The matrix 𝐴, related to the consumption of the clients in the dis-
tribution grid, is composed in the general case of two submatrices,
as follows:

𝐴 =
⎡

⎢

⎢

⎣

𝐴𝑃

𝐴𝑄

⎤

⎥

⎥

⎦

where 𝐴𝑃 has the following structure:

𝐴𝑃 =
⎡

⎢

⎢

⎣

𝐸𝑃 0 0
0 𝐸𝑃 0
0 0 𝐸𝑃

⎤

⎥

⎥

⎦

The 𝐻×𝑁𝑐 matrix 𝐸𝑃 above comprises the active energy readings
𝐸𝑃𝑖𝑘, as described in Section 2.1.
The structure of 𝐴𝑄 is similar to that described for 𝐴𝑃 ,

𝐴𝑄 =
⎡

⎢

⎢

⎣

𝐸𝑄 0 0
0 𝐸𝑄 0
0 0 𝐸𝑄

⎤

⎥

⎥

⎦

but the entries of 𝐸𝑄 are the reactive energy readings.
Therefore, the dimension of 𝐴 is 6𝐻 × 3𝑁𝑐 , 𝐻 being the number
of samples (hours with information). In case only active energy
measurements are available, the matrix 𝐴𝑄 is not considered, so
that 𝐴 = 𝐴𝑃 (dimension 3𝐻 × 3𝑁𝑐).

• The vector 𝑏 is composed of the energy measurements at the
secondary substation, including the three phases, as follows:

𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐸𝑃 𝑎
𝑆

𝐸𝑃 𝑏
𝑆

𝐸𝑃 𝑐
𝑆

𝐸𝑄𝑎
𝑆

𝐸𝑄𝑏
𝑆
𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣
𝐸𝑄𝑆⎦
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Fig. 1. Flowchart of the proposed methodology.
when active and reactive measurements are considered, or

𝑏 =

⎡

⎢

⎢

⎢

⎣

𝐸𝑃 𝑎
𝑆

𝐸𝑃 𝑏
𝑆

𝐸𝑃 𝑐
𝑆

⎤

⎥

⎥

⎥

⎦

if reactive energy measurements are not provided. It can be
noticed that 𝑏 is a column vector, of size 6𝐻 (or 3𝐻).

• The vector 𝑥 (dimension 3𝑁𝑐), to be estimated, also embraces the
information of the three phases:

𝑥 =
⎡

⎢

⎢

⎣

𝑥𝑎

𝑥𝑏

𝑥𝑐

⎤

⎥

⎥

⎦

The interpretation of each element 𝑥𝑝𝑖 (with 𝑝 = 𝑎, 𝑏 or 𝑐) depends
on the type of customer. For single-phase clients, this value
should be 1 if the corresponding customer 𝑖 is connected to the
phase 𝑝, and 0 otherwise. However, in the proposed method, the
binary constraint is initially relaxed so that the conventional CLS
technique can be applied, and subsequently enforced through a
set of confidence coefficients, as discussed later in Section 2.4.
Regarding the three-phase loads, 𝑥𝑝𝑖 represents the fraction of
energy consumption associated to phase 𝑝 throughout the 𝐻
hourly intervals, with 𝑥𝑝𝑖 ∈ [0, 1].

• Finally, for both single-phase and three-phase clients, the equality
constraint 𝑥𝑎𝑖 + 𝑥𝑏𝑖 + 𝑥𝑐𝑖 = 1 should be satisfied, which can be
expressed in compact form as 𝐶𝑥 = 𝑑, with

𝐶 =
[

𝐼𝑁𝑐
𝐼𝑁𝑐

𝐼𝑁𝑐

]

where 𝐼𝑁𝑐
is the identity matrix of size 𝑁𝑐 and 𝑑 is a column

vector of size 𝑁 composed of ones.
3

𝑐

The above matrix 𝐴 fully ignores the network losses. In order to
enhance the performance of the identification technique, an estimation
of the energy losses is added to the corresponding consumption of each
client. For the simplified loss model considered, an average hourly
current 𝐼𝑖,𝑘 is calculated for each consumer 𝑖 over the interval 𝑘:

𝐼𝑖,𝑘 =

√

𝐸𝑃 2
𝑖,𝑘 + 𝐸𝑄2

𝑖,𝑘

𝑇 ⋅ 𝑉𝑛
(2)

where 𝑉𝑛 is the network rated voltage, and 𝑇 is the integration or
sampling period.

Based on the average current, the active and reactive energy losses
attributable to each consumer are accordingly obtained as:

𝐸𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑘 = 𝐼2𝑖,𝑘 ⋅ 𝑇 ⋅ 𝑟𝑐 ⋅ 𝑙𝑖 (3)

𝐸𝑄𝑙𝑜𝑠𝑠
𝑖,𝑘 = 𝐼2𝑖,𝑘 ⋅ 𝑇 ⋅ 𝑥𝑐 ⋅ 𝑙𝑖 (4)

where 𝑟𝑐 and 𝑥𝑐 are respectively the conductor resistance and induc-
tance per unit length, and 𝑙𝑖 is the estimated electrical distance from
load 𝑖 to the secondary substation.

Those loss terms lead to additional loss matrices 𝐴𝑙𝑜𝑠𝑠
𝑃 and 𝐴𝑙𝑜𝑠𝑠

𝑄 ,
featuring the same structure as that presented previously for 𝐴𝑃 and
𝐴𝑄. Therefore, in the approximate lossy model, the coefficient matrix
𝐴 becomes,

𝐴 =
⎡

⎢

⎢

⎣

𝐴𝑃 + 𝐴𝑙𝑜𝑠𝑠
𝑃

𝐴𝑄 + 𝐴𝑙𝑜𝑠𝑠
𝑄

⎤

⎥

⎥

⎦

2.3. Solution of the constrained least-squares problem

The solution to the optimization problem posed above is provided

by the method of Lagrange multipliers. In case all elements of matrix
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𝑅 are identical to 𝜎2, as in our problem, the equality constrained
formulation reduces to the following system, [24]:
[

𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [

𝑥̂
𝜎2𝜆

]

= 𝐺
[

𝑥̂
𝜎2𝜆

]

=
[

𝐴𝑇 𝑏
𝑑

]

(5)

here 𝜆 is the vector of Lagrange multipliers and 𝑥̂ is the estimate of
ector 𝑥. Given that 𝐺 is a nonsingular square matrix, the value of 𝑥̂
an be obtained from:
[

𝑥̂
𝜎2𝜆

]

= 𝐺−1
[

𝐴𝑇 𝑏
𝑑

]

=
[

𝐸1 𝐸2𝑇

𝐸2 𝐸3

] [

𝐴𝑇 𝑏
𝑑

]

(6)

It can be noticed that, owing to the fact that 𝑅 = 𝜎2 ⋅𝐼 , the estimate
̂ is not actually affected by the value of 𝜎, unlike its covariance, which
s given by:

ov (𝑥̂) = 𝜎2𝐸1 (7)

.4. Confidence-based selection and assignment

Under the CLS customary assumptions, each component of vector
̂ is considered as a random variable with a normal distribution, 𝑥̂𝑖 ∼
(𝑥𝑖, 𝑞𝑖), where 𝑞2𝑖 is the respective diagonal of cov (𝑥̂), [24]. In turn,

he scalar 𝜎2, representing the covariance of 𝜖, which is required to
btain 𝑞𝑖, can be estimated from the following expression:

𝜎̂2 =
(𝐴𝑥̂ − 𝑏)𝑇 (𝐴𝑥̂ − 𝑏)

𝑓
(8)

where 𝑓 is the number of degrees of freedom, given by:

𝑓 = 6𝐻 − 3𝑁𝑐 +𝑁𝑐

if active and reactive energy readings are provided, or

𝑓 = 3𝐻 − 3𝑁𝑐 +𝑁𝑐

if only active energy measurements are available.
It is worth noting that the real values of the parameters 𝑥𝑖 related

o three-phase clients might be time-variant, because of the different
oad distribution of these customers over time for the three phases.
owever, given that the purpose of the proposed methodology is the

dentification of the phase connectivity for single-phase loads, only the
arameters linked to those consumers will be considered in the sequel
or the assignment process.

For the selection method proposed in this paper, the elements of 𝑥̂
re divided into three 𝑁𝑐 -dimension vectors, 𝑥̂𝑎, 𝑥̂𝑏 and 𝑥̂𝑐 , with the
stimated parameters related to each of the three phases. In the same
ay, the covariance vector 𝑞 is split into 𝑞𝑎, 𝑞𝑏 and 𝑞𝑐 .

Based on the above considerations and assumptions, the normal
istribution of 𝑥̂𝑝 can be used to quantify the confidence level for
certain single-phase load to be associated with the corresponding

lectrical phase 𝑝 and not to the others. Following [20], the cumulative
ensity function over 0.5, denoted as phase discretization factor, 𝑀𝑝

𝑖 ,
rovides information about how close a variable 𝑥̂𝑝𝑖 is to the discrete
alue 1. For this particular case, 𝑀𝑝

𝑖 is calculated as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑀𝑝
𝑖 = 1

√

2⋅𝜋⋅𝑞𝑝𝑖
∫ ∞
0.5 𝑒

−
(𝑥−𝑥̂𝑝𝑖 )

2

2⋅𝑞𝑝𝑖 𝑑𝑥

𝑝 = 𝑎, 𝑏, 𝑐
𝑖 = 1,… , 𝑁𝑠

(9)

Fig. 2 illustrates the meaning of this coefficient (shaded area in the
density function), for a certain parameter 𝑥̂𝑝𝑖 .

For each single-phase client 𝑖, the information provided by the three
coefficients 𝑀𝑎

𝑖 , 𝑀𝑏
𝑖 and 𝑀𝑐

𝑖 is combined to calculate the so-called
phase confidence factors, 𝐶𝑝

𝑖 (confidence in being connected to phase
𝑝 and not to the others), using the expressions below:

⎧

⎪

⎪

⎨

⎪

⎪

𝐶𝑎
𝑖 = 𝑀𝑎

𝑖 ⋅ (1 −𝑀𝑏
𝑖 ) ⋅ (1 −𝑀𝑐

𝑖 )
𝐶𝑏
𝑖 = 𝑀𝑏

𝑖 ⋅ (1 −𝑀𝑐
𝑖 ) ⋅ (1 −𝑀𝑎

𝑖 )
𝐶𝑐
𝑖 = 𝑀𝑐

𝑖 ⋅ (1 −𝑀𝑎
𝑖 ) ⋅ (1 −𝑀𝑏

𝑖 )
𝑖 = 1,… , 𝑁𝑠

(10)
4

⎩

Fig. 2. Graphic representation of 𝑀𝑝
𝑖 .

The customer 𝑖 with the highest likelihood of being connected to
the phase 𝑝 is given by the maximum value of the factors 𝐶𝑝

𝑖 . Finally,
for the selected client 𝑖, the corresponding parameters 𝑥̂𝑎𝑖 , 𝑥̂𝑏𝑖 , 𝑥̂𝑐𝑖 are
assigned integer values (0 or 1).

2.5. Update results

In case all the single-phase clients have been assigned, the process
ends and the results are shown. Otherwise, the assigned consumption
and its corresponding energy losses are removed from matrix 𝐴 and
introduced as an additional term in vector 𝑏, reducing accordingly the
number of single-phase loads to be assigned, 𝑁𝑠. Then, the process is
repeated with the remaining loads until 𝑁𝑠 = 0.

3. Case study

For the results that will be presented in Section 4, a set of synthetic
distribution grids with a typical European configuration are considered,
including 𝑁𝑠 single-phase and 𝑁𝑡 three-phase customers, which are not
necessarily balanced. A particular example of a distribution network is
depicted in Fig. 3, with 𝑁𝑠 = 40 single-phase loads (in blue) and 𝑁𝑡 = 10
three-phase customers (in red). As illustrated with the small red circles,
the information used for the phase assignment is just obtained from the
secondary substation and the smart meters installed for all clients in the
grid under study.

For our experiments, the active and reactive individual energy
consumptions are obtained from [25], where real hourly data from
a European distribution company, comprising smart meters readings
for 20 days, are provided, leading to a total of 480 energy measure-
ments for each customer. As customers with null consumption provide
no information, the corresponding curves are removed from the raw
data. For the single-phase customers, the resulting hourly curves are
randomly associated to a certain phase (a, b or c), while a random
time-varying load distribution is considered for the three-phase clients.

Regarding the resistance per unit length, the value 𝑟𝑐 = 0.223 Ω/km
has been taken in this work, with a ratio 𝑟𝑐∕𝑥𝑐 = 1 in all cases. Finally,
a load flow is computed at each hour 𝑘 in order to obtain the energy
delivered by each phase of the MV/LV secondary substation. This
information fully characterizes the distribution grid model involved in

the estimation process.
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Fig. 3. Single-line diagram of one of the test networks.

Table 1
Estimation results. Scenario I.

Total number Single-phase Correct Success
of loads clients assignments rate

50 40 40 100%
100 80 80 100%
200 160 160 100%
300 240 231 96.25%
400 320 292 91.25%
500 400 343 85.75%
600 480 386 80.42%

4. Numerical results

In this section, the proposed sequential assignment technique is
tested with several scenarios, which can be grouped into five different
categories.

4.1. Scenario I. Original measurements

In the first scenario, the actual active and reactive energy consump-
tions are considered for the proposed sequential assignment methodol-
ogy, with no additional errors in the measured values.

The performance of the identification technique is summarized in
Table 1 for increasing number of clients in the distribution grid. In all
cases, 20% of customers are three-phase.

As expected, the fraction of correct assignments slightly deteriorates
as the number of client increases. However, acceptable results have
been obtained even for large distribution grids (with 600 loads), with
a success rate exceeding 80%.

The good performance of the proposed technique is not only deter-
mined by the number of correct assignments, but also by the values
of the confidence factors, 𝐶𝑝

𝑖 , after each iteration. For a case with
80 single-phase loads (a total of 240 𝐶𝑝

𝑖 factors), Fig. 4 represents
the maximum value of those coefficients at each stage of the process,
corresponding with the selected single-phase client in each case.

Virtually in all iterations, the maximum value of 𝐶𝑝
𝑖 is higher than

0.95, reflecting high confidence in the corresponding assignment.
As an illustrative example, Fig. 5 shows the PDFs obtained for the

three estimated parameters, 𝑥̂𝑎𝑖 , 𝑥̂𝑏𝑖 and 𝑥̂𝑐𝑖 , of a certain single-phase
client 𝑖. The numeric values of the phase discretization factors, 𝑀𝑝

𝑖 ,
corresponding to the shaded areas, are also provided in the legends. In
this particular case, the resulting confidence factors are 𝐶𝑎

𝑖 = 0.024,
𝐶𝑏
𝑖 = 0.674 and 𝐶𝑐

𝑖 = 0.003, implying a higher probability for the
5

customer 𝑖 to be associated with phase 𝑏.
Fig. 4. Evolution of the maximum value of 𝐶𝑝
𝑖 .

Table 2
Success rates, in percentage. Scenario II.

Total number Percentage of three-phase clients

of loads 10% 20% 30% 40% 50%

50 100 100 100 100 92
100 100 100 100 100 88
150 100 100 100 95.55 85.33
200 100 100 94.28 82.5 74
300 100 96.25 91.90 79.44 68

4.2. Scenario II. Varying number of three-phase clients

The objective of the proposed technique is to provide an accurate
estimation of the electrical phase connectivity of the single-phase loads
in a distribution network. However, the presence of three-phase loads
in the grid, for which only aggregate energy readings are available,
might difficult the identification process, given the temporal variabil-
ity of the load balance in three-phase customers, causing changes in
the corresponding regression parameters (note that, in [20], it was
assumed that individual phase readings were available for three-phase
customers). In this scenario, the performance of the proposed technique
is evaluated for increasing shares of three-phase consumers. The success
rates for the different cases are summarized in Table 2.

Also as expected, for a given number of loads, the success rate
deteriorates with the share of three-phase clients, as their presence
is somehow equivalent to increasing ‘‘noise’’ in the available informa-
tion. Such deterioration might lead to poor results in large grids with
high shares of three-phase clients, as in the rightmost bottom case:
68% success rate for 300 loads with an unrealistically share (50%) of
three-phase consumers.

4.3. Scenario III. Lack of data

In this scenario, the rate of correct assignments is assessed assuming
two less-informative situations, which will be presented separately.

4.3.1. Unavailability of reactive energy readings
In the previous sections, the information used for the identification

technique corresponds to 480 hourly readings (20 days), both for the
active and reactive energy consumption of each client in the grid. In
this case, the performance of the proposed method is assessed when
only active energy measurements are available. Accordingly, for the
simplified loss model presented in (2)–(4), only the active energy losses
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Fig. 5. PDFs for a sample single-phase consumer.
Table 3
Estimation results with only active energy measurements.

Total number Single-phase Correct Success
of loads clients assignments rate

50 40 40 100%
100 80 80 100%
200 160 160 100%
300 240 226 94.16%
400 320 279 87.19%
500 400 324 81%
600 480 355 73.96%

are calculated assuming unity power factor (𝑐𝑜𝑠(𝜑) = 1), yielding the
following expression:

⎧

⎪

⎨

⎪

⎩

𝐼𝑖,𝑘 = 𝐸𝑃𝑖,𝑘
𝑇 ⋅𝑈𝑛

𝐸𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑘 = 𝐼2𝑖,𝑘 ⋅ 𝑇 ⋅ 𝑟𝑐 ⋅ 𝑙𝑖

(11)

The remaining assumptions for this case study are similar to those
in the first scenario, the corresponding results being summarized in
Table 3.

Clearly, the relevance of using both active and reactive energy
measurements increases with the number of clients. Nevertheless, the
success rates obtained with the proposed technique remain within
acceptable values, especially for 𝑁𝑐 < 300.

4.3.2. Amount of hourly snapshots
The quality of the phase identification is also analyzed when the

number of available measurements decreases. For a fixed number of
loads, 𝑁𝑐 = 200, with 20% of three-phase clients, Table 4 presents
the estimation results obtained when the number of active and reactive
energy snapshots decreases.

The results in Table 4 show the expected deterioration of the success
rate for a reduced number of energy readings. The observed impact
is less pronounced when both active and reactive energy readings are
6

gathered.
Table 4
Estimation results with decreasing amount of data.

Available Success rates with Success rates with
data EP and EQ only EP
(h) measurements measurements

480 100% 100%
400 100% 100%
300 100% 97.5%
200 100% 90.63%

Table 5
Estimation results for increasing noise levels. Scenario IV.
Noise Success rate
level (%)

2% 100
3% 100
5% 95
7% 91.25
10% 85

A similar study was repeated for different number of clients in the
grid. Fig. 6 represents the required number of snapshots to obtain
the maximum success rate in each case, with a maximum number of
available measurements equal to 480. A roughly linear trend can be
noticed for both cases (P&Q or only Q readings), suggesting that more
and more snapshots would be needed to assure acceptable results when
the number of customers increases, particularly when only 𝑃 readings
are available.

4.4. Scenario IV. Noisy measurements

In this case study, the performance of the proposed technique is
tested in the presence of a wide range of measurement errors. In this
experiment, a relatively low number of loads is considered: 𝑁𝑐 = 100,
with 20% of three-phase clients. Increasing levels of Gaussian noise are
artificially added to the energy measurements after the load flow is
computed. Table 5 gathers the success rates for each noise level.
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Fig. 6. Required amount of data for the best performance.

Table 6
Estimation results for increasing errors in 𝑟𝑐 . Scenario V.
Relative error Success
in 𝑟𝑐 rate (%)

5% 100
10% 100
15% 100
20% 97.5
30% 96.25

From Table 5, it can be concluded that the proposed methodology
till features acceptable success rates even with measurement errors of
p to 10%.

.5. Scenario V. Model errors

In the simplified loss model considered in the proposed technique,
escribed by Eqs. (2)–(4), there are two main sources of uncertainty:
he values of the conductor electrical parameters per unit length, 𝑟𝑐 and
𝑥𝑐 , and the electrical distance 𝑙𝑖 of each client in the distribution grid
with respect to the secondary substation.

In this scenario, the robustness of the identification method is
evaluated against errors in these parameters. Table 6 summarizes, for
the same number of customers as in Scenario IV, the success rates
obtained for errors in 𝑟 ranging from 5 to 30% (assuming 𝑥𝑐 = 𝑟𝑐).

As can be seen, the proposed technique is not significantly affected
by this parameter, yielding success rates over 96% even with 30%
errors in 𝑟.

When the electrical distance of the customers is not available, an
alternative loss model is considered, in which the energy losses associ-
ated to each client are proportional to the corresponding consumption
[18]:

𝐸𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑘 =

𝐸𝑃𝑖,𝑘
∑𝑁𝑐

𝑖=1 𝐸𝑃𝑖,𝑘

⋅ (
∑

𝑝
𝐸𝑃 𝑝

𝑆,𝑘 −
𝑁𝑐
∑

𝑖=1
𝐸𝑃𝑖,𝑘) (12)

𝐸𝑄𝑙𝑜𝑠𝑠
𝑖,𝑘 =

𝐸𝑄𝑖,𝑘
∑𝑁𝑐

𝑖=1 𝐸𝑄𝑖,𝑘

⋅ (
∑

𝑝
𝐸𝑄𝑝

𝑆,𝑘 −
𝑁𝑐
∑

𝑖=1
𝐸𝑄𝑖,𝑘) (13)

here the term (
∑

𝑝 𝐸𝑃 𝑝
𝑆,𝑘 −

∑𝑁𝑐
𝑖=1 𝐸𝑃𝑖,𝑘) refers to the difference, at

nstant 𝑘, between the energy delivered by the three phases of the
econdary substation (∑𝑝 𝐸𝑃 𝑝

𝑆,𝑘), and the total consumption from all
ustomers (∑𝑁𝑐

𝑖=1 𝐸𝑃𝑖,𝑘), and the same meaning for the counterpart terms
7

n (13). In case reactive energy readings are not available, only Eq. (12)
Table 7
Results with no information on the electrical distances.

Total number Single-phase Correct Success
of loads clients assignments rate

50 40 40 100%
100 80 80 100%
200 160 160 100%
300 240 224 93.33%
400 320 278 86.87%
500 400 321 80.25%
600 480 350 72.92%

Table 8
Success rates (%) for the different methods considered.

Total number PCA LASSO EnKF Proposed
of loads technique

50 100 100 100 100
100 100 100 100 100
200 85 92.5 95 100
300 79.17 80.83 82.5 93.33
400 67.18 70 65.62 86.87
500 50.25 60.50 53.25 80.25
600 47.29 52.92 48.54 72.92

is used. Table 7 shows the results obtained for increasing number of
clients, using the simplified loss model provided by (12)–(13). In all
cases, 20% of three-phase loads is considered.

Compared to the more accurate loss model adopted for the first
scenario (Table 1), the performance deterioration is not significant. In
all cases, the success rates remain over 85%, giving evidence of the
robustness of the algorithm when the exact network electrical model is
not available.

5. Comparison with existing methods

Finally, a comparison is made in this section among the proposed
technique and three different methods, all of them making use of
similar input data for the phase-assignment process:

• A LASSO-based technique [17].
• The method presented in [18], where PCA is considered with

exclusively energy consumption curves from smart meters.
• The Ensemble Kalman Filter (EnKF) formulation proposed in [20],

which outperformed other KF schemes.

Different scenarios are used for the comparison, with increasing
number of clients. In all cases, 2% measurement errors are assumed,
with no information available about the electrical distances, which
means that Eqs. (12) and (13) are used to estimate the energy losses.

One every five customers is assumed to be three-phase, each with
a single energy reading. Given that all the techniques included in the
comparison are formulated exclusively with per-phase measurements,
the overall consumption for three-phase customers has been equally
divided into the three phases. The rates of correct assignments are
summarized in Table 8 for all the techniques.

For a reduced number of clients (𝑁𝑐 ≤ 100), all of the compared
methods achieve 100% success rate. As the grid size increases, the PCA,
the EnKF and the LASSO-based methods suffer a sharper deterioration
of their performance, when compared to that of the proposed tech-
nique, which exhibits over 16% better hit rate than the best competing
method for 𝑁𝑐 ≥ 400. Those results can be in part explained by the

eaker treatment of the three-phase clients with aggregate readings,
hich is the main advantage of the proposed CLS-based technique.
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6. Conclusions

In this paper, a methodology is proposed for the sequential phase
assignment of single-phase loads in distribution grids, using smart
meter information exclusively. The technique is based on a CLS model
and the corresponding statistical distributions of the estimated param-
eters. At each iteration of the procedure, the load with the highest
confidence in being connected to a certain phase is selected, so that
the binary equality restrictions are avoided as well as the associated
computational problems.

Five scenarios have been presented to assess the performance of the
proposed technique, in terms of accuracy and robustness against model
errors. The following conclusions can be highlighted from the obtained
results:

• The number of correct assignments decreases for increasing num-
ber of clients. Nevertheless, a success rate over 80% is still
obtained for distribution networks with 600 clients, of which 20%
are three-phase.

• For larger shares of three-phase consumers, the performance
of the identification process deteriorates, yielding poor results
(around 70% hit rate) for feeders with 300 clients and 50% of
three-phase loads.

• The sensitivity of the identification technique to the number of
customer is higher, as expected, if only active energy measure-
ments are available. The more loads in the same feeder, the more
measurement snapshots are needed to perform an acceptable
estimation of the phase connectivity.

• Even for measurement errors of up to 10%, the success rates
remain over 85% for distribution grids with 200 clients.

• Finally, the robustness of the method has been tested against
errors in the conductor resistance and reactance used for the
calculation of the energy losses. Additionally, a simplified loss
model is considered, with very good results, for the cases where
the electrical distances are not available.

The proposed technique has been compared to other published
ethods, based on PCA, LASSO and EnKF. While the results obtained

or a reduced number of clients are similar for all tested techniques, as
he network size increases, the proposed technique has shown remark-
bly higher success rates than the others. This is mainly a consequence
f the proposed CLS-based method being the only one to correctly
eal with three-phase clients, when only aggregate energy readings
re provided. Further research efforts will be devoted to redesigning
he proposed procedure, so that additional electrical quantities can be
onsidered, such as voltage magnitudes, which might be available in
uture distribution systems.
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