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Abstract

This paper addresses the stability study for nonlinear neutral differ-
ential equations. Thanks to a new technique based on the fixed point
theory, we find some new sufficient conditions ensuring the global asymp-
totic stability of the solution. In this work we extend and improve some
related results presented in recent works of literature. Two examples are
exhibited to show the effectiveness and advantage of the proved results.
AMS Subject Classifications: 34K20, 34K13, 92B20
Keywords: Contraction mapping principle; Asymptotic stability; Neutral
differential equations.

1 Introduction

It is well-known that the theory of neutral functional differential equations has
attracted many types of research due to its wide and great applications in many
fields of mathematical science and engineering such as neural networks, popu-
lation dynamics, control theory, and many other phenomena. For appropriate
literature we can refer to the books [17]-[20]. A neutral delay differential equa-
tion is a kind of delay differential equation where the delay argument occurs in
the highest order derivative of the state, which can be used to describe many
real-world phenomena that arise in the areas for example, lossless transmission
lines, theory of automatic control and others, we refer the reader to references
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Brayton [10], Hale [18], Kuang [19], Kolmanovskii and Myshkis, [20], and the
sources related.

Up today, significant progress has been made in the qualitative theory (e.g.
oscillation theory, periodicity, stability, the existence of a periodic solution,
asymptotic behavior, boundedness, instability, and so on) of neutral delay differ-
ential equations. For more details, we can refer to ( [1]-[5] and [10]-[16],[23]-[31]
), and the references of these sources. One of the most qualitative concepts in
mathematic theory is determining the stability of a given model. The theory of
stability was created at the end of the 19th century by Lyapunov. This method
is now known as the Lyapunov’s direct method or Lyapunov function.

For decades, Lyapunov developed a method for determining stability in many
areas of differential equations without solving the equations themselves. This
theory has been proven significantly its effectiveness over a century and it has
been achieved wide applications in various fields of physics and mathematical
sciences. Unfortunately, when we try to carry over the principles of the Lya-
punov stability theory to special problems, we face a large number of difficulties
and it appears that new methods are needed to overcome those obstacles (see
[5]-[7]). Luckily, Burton and many authors have used fixed point theory as an al-
ternative to studying the stability of deterministic or stochastic systems, where
some of these problems in Lyapunov functions have been solved. In the current
study, we use this method to address a kind of nonlinear neutral differential
equations (see [8], [10], [15], [21]).

In [16], Jin and Luo studied the asymptotic stability in the space C0 of the
scalar nonlinear neutral differential equation of the form

u′ (t) = −a(t)u(t) + c(t)u′(t− τ (t))− b (t)u(t− τ (t)), t ≥ 0. (1.1)

The work of Jin and Luo in [16] requires that the delay τ is twice differentiable,
and τ ′ (t) 6= 1 for t ≥ 0 and c is differentiable. However, there are many
interesting examples where these conditions are not satisfied. It is our purpose in
this paper to remove these restrictive conditions by studying the global stability
in the space C1.

As it is known, there are a few papers [1]- [3] and [22],[28] have discussed
the global asymptotic stability of solutions of neutral differential equations in
C1. For example, Liu and Yang in [22] was the first to establish necessary and
sufficient conditions for the asymptotic stability in C1 for the equation

u′ (t) = −a(t)u(t) + c(t)u′(t− τ1 (t)) +Q (t, u (t) , u(t− τ2 (t))) , (1.2)

where Q is a Lipschitz continuous function in u. Liu and Yang have been able,
in their work, to avoid the derivative of the coefficient c and they also do not
need that the delay τ is twice differentiable, and τ ′ (t) 6= 1 for t ≥ 0. Otherwise,
a good contribution of their work was obtained to relax the conditions on the
coefficient c and the delay 3c4.
Recently, by the same method of Liu et Yang [22], Ardjouni and Djoudi [1] have
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adressed general form than (1.2) as follows

u′ (t) = −a(t)u(t) + g(t, u′(t− τ1 (t) , u′(t− τ2 (t) , ..., u′(t− τn (t))

+f(t, u(t− τ1 (t) , u(t− τ2 (t) , ..., u(t− τn (t)), (1.3)

where f(t, u1, ..., un),g(t, u1, ..., un) are continuous and satisfy Lipschitz condi-
tion in u1, ..., un, respectively. However, it still remains unexplored the case in
which one considers all terms of the equation (1.3) are nonlinear, what is the
main reason for the analysis we will perform in the current paper.

In 2020 Zaid et al. [31] obtained stability results in C0 about the zero
solution of the standard form of the totally nonlinear delay differential equation

u′(t) = −
N∑
i=1

ai (t, ut)u(t) + f (t, ut) , t ≥ t0. (1.4)

In the case N = 1, Eq. (1.4) reduces to the one in [13]. With the previous
motivation, in this paper, we extend the results in [31] to the totally nonlinear
neutral differential equation represented in (2.1), (see below). More precisely, we
will study the stability in the space C1 (as described in more details below) which
is a stronger concept of stability than the usual one in C0. The study of stability
in C1 is therefore much richer than the classical stability in C0. By applying
the fixed point theory, we will state new and more applicable stability criteria
in C1. The sufficient conditions obtained are quite practicable and we will no
longer need the delay to be twice differentiable or coefficients are differentiable,
which is required in some previous relevant works [3],[4],[12], [16],[30]. It is this
new feature that makes the asymptotic behavior in C1 more important and more
useful as well. Our work extends and improves the results in [1],[13],[16],[22],[31].
In addition, two examples are given to test the feasibility and advantage of the
proved results.

2 Notations and preliminaries

Let R, R+, and R− denote (−∞,+∞),[0,+∞) , (−∞, 0] respectively.
In the current paper, we aim to discuss the asympotic stabilty in C1 for

standard form of neutral differential equations as follows,

u′(t) = −
N∑
i=1

ai (t, ut)u(t) + g (t, u′t) + f (t, ut) , t ≥ t0, (2.1)

where f, g ∈ C (R+ ×B,R) and ai ∈ C (R+ ×B,R) ,
(
i = 1, N

)
, with,

B =
{
φ ∈ C

(
R−,R

)
: φ bounded

}
,

with the norm ‖φ‖◦ := sup
θ∈(−∞,0]

|φ (θ)| . Define also

CL = {ξ ∈ C : ‖ξ‖◦ ≤ L} and C1
L′ =

{
ξ ∈ C1 :

∥∥ξ′∥∥◦ ≤ L′} .
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If u ∈ C1 (R,R) is bounded and for t ≥ 0 is a fixed number, we let ut, u
′
t ∈ C

be defined by

ut (θ) = u (t+ θ) and u′t (θ) = u′ (t+ θ) for θ ∈ R−. (2.2)

We define
‖x‖[s,t] := sup

ξ∈[s,t]
|x (ξ)| ,

for a function x : R→ R.
Before starting the main result of this paper, we impose the following as-

sumptions:

(A1) there exists a constant L > 0 and a function b1 ∈ C (R,R+) such that,
for all φ, ψ ∈ CL and for all t ≥ 0,

|f (t, φ)− f (t, ψ)| ≤ |b1 (t)| ‖φ− ψ‖◦ . (2.3)

(A2) there exists a constant L′ > 0 and a function b2 ∈ C (R,R+) such that,
for all φ, ψ ∈ C1

L′ and for all t ≥ 0,∣∣g (t, φ′)− g (t, ψ′)∣∣ ≤ |b2 (t)|
∥∥φ′ − ψ′∥∥◦ (2.4)

(A3) ∀ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that [t ≥ t2, ut ∈ CL] , imply

|f (t, ut)| ≤ |b1 (t)|
(
ε+ ‖u‖[t1,t]

)
. (2.5)

(A4) ∀ε > 0 and t1 ≥ 0, there exists a t3 > t1 such that
[
t ≥ t3, u′ ∈ C1

L′

]
,

imply

|g (t, u′t)| ≤ |b2 (t)|
(
ε+ ‖u′‖[t1,t]

)
. (2.6)

(A5) there exists α1, α2 ∈ C (R,R) , (α2 is bounded) such that

α1 (t) ≤
N∑
i=1

ai (t, ut) ≤ α2 (t) .

(A6) Assume furthermore that,

f (t, 0) = g (t, 0) = 0 for all t ≥ t0 . (2.7)

which guarantees that (2.1) possesses a trivial solution u(t) = 0.
For each t0 ∈ [0,∞) , denote C1

t0
= C1 (]−∞, t0] ,R) with the norm defined

by
|u|t0 := max

t∈(−∞,t0]
{|u(t)| , |u′(t)|} ,

for u ∈ C1
t0

= C1 ((−∞, t0] ,R). In addition, denote Φt0 , where

Φt0 =

{
ϕ ∈ C1

t0
: ϕ′−(t0) = −

N∑
i=1

ai
(
t0, ϕt0

)
ϕ(t0) + g

(
t0, ϕ

′
t0

)
+ f

(
t0, ϕt0

)}
.
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For each t0 ∈ [0,∞), we choose initial functions for equation (2.1) of the type
ϕ ∈ Φt0 .

The definitions of stability in C1, as well as the necessary notation for our
study are borrowed from the paper [22], but the nonlinearities in our model and
the fact that we are considering a neutral term, make our study nontrivial and
meaningful.

We now recall some basic informations.
Definition 1.1. For each initial value (t0, ϕ) ∈ [0,∞) × Φt0 , u is called a
solution of (2.1) with (t0, ϕ) if u ∈ C1 ((−∞,+∞) ,R) satisfies equation (2.1)
for all most t ≥ t0 and u = ϕ for t ≤ t0. Such a solution will be denoted by
u (t) = u (t, t0, ϕ) .

We now prepare definitions in order to prove asymptotic stability in C1 for
(2.1).
Definition 1.2. i) The trivial solution of (2.1) is:

i) stable in C1, if for any ε > 0 and t ≥ t0, there is a scalar δ = δ (ε, t0) > 0,
such that for any initial function ϕ ∈ Φt0 satisfying |ϕ|t0 < δ, we have for the
corresponding solution that

max
s∈(−∞,t]

{|u (s, t0, ϕ)| , |u′ (s, t0, ϕ)|} < ε for t ≥ t0.

ii) asymptotically stable in C1, if u(t) is stable in C1, and for any initial
function ϕ ∈ Φt0 we have for the corresponding solution that

lim
t→∞

u (t, t0, ϕ) = lim
t→∞

u′ (t, t0, ϕ) = 0.

At the light in definition 1.1. For the problem of the initial value of the
equation (2.1), sensible conditions are imposed.

Since our model (2.1) involves nonlinear term

N∑
i=1

ai (t, ut)u(t), so that it is

more complex and different than those of the above literature [1], [13], [16],[22],
[31] which also implies some difficulties in mathematical analysis. That means
we study how the asymptotic behavior property in C1 will be when (1.4) is added
to the perturbed nonlinear neutral term g (t, u′t). Motivated by the previously
cited literature related to fixed point approch [5], [11], [12], [13], [15], [15]. As the
main tool, it used Banach’s fixed point to obtain some new sufficient conditions
ensuring the global asymptotic stability results in C1 to Eq. (2.1). Finally, two
examples are given to illustrate the real interest and importance of the proposed
results.

3 Stability by contraction mapping

It is well known that studying the stability of an equation by Banach’s fixed
point method based on three essential points: a complete metric space, a varia-
tion of parameters, and the formulation of an appropriate contraction mapping.
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The advantage of this method is that the fixed point argument leads, the exis-
tence, uniqueness, boundedness, and stability of the equation, all at once. Up
till now, no work has concerned the equation (2.1) to establish sufficient con-
ditions for the global asymptotic behavior in C1. Let us begin to explore this
world of stability.

In this section we shall discuss the asymptotic stability in C1 for equation
(2.1) .

Theorem 3.1. Assume hypotheses (A1)–(A6) hold, and for any t ≥ t0, if there

exists η ∈ (0,
1

2
) such that ,

lim inf
t→∞

∫ t

t0

α1 (s) ds > −∞, (3.1)

and ∫ t

t0

e−
∫ t
s
α1(z)dz (|b1(s)|+ |b2(s)|) ds ≤ η, (3.2)

|α2 (t)|
∫ t

t0

e−
∫ t
s
α1(z)dz (|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|) ≤ η, (3.3)

and ∫ t

0

α1(s)ds→∞ as t→∞. (3.4)

Then the equation (2.1) has a unique trivial solution. Moreover, it is asymptotic
stable in C1.

Proof. First, suppose that
∫ t
0
α1(s)ds→∞ as t→∞. For each t0 ∈ [0,∞) ,

let ϕ ∈ C((−∞, t0] ,R) be a fixed initial function. We define S as the following
space

S =
{
u ∈ C1 (R,R) : lim

t→∞
u (t) = lim

t→∞
u′ (t) = 0

}
,

with the metric defined by

‖u‖ := max
t∈R
{|u (t)| , |u′ (t)|} .

Then S is a complete metric space.
Next, we define for any ϕ ∈ Φt0 ,

Dl
ϕ =

{
u ∈ S : ut0 = ϕ and max

t≥t0
{‖ut‖◦ , ‖u

′
t‖◦} ≤ l

}
,

Obviously, we know Dl
ϕ is a closed convex and bounded subset of S, where

l = max {L,L′} .
We can use the variation of parameter formula for writing the equation

(2.1) as an integral equation suitable for Banach’s fixed point theorem. The
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application P is given in literature without details of the proof. It can be
deduced from [22]. Hence, we omit it.

Define the application P (u) : R→ R with (Pu) (t) = ϕ (t) for t ∈ (−∞, t0],
and

(Pu) (t) = e
−

∫ t
t0

N∑
i=1

ai(s,us)ds
ϕ(t0) +

∫ t

t0

e
−

∫ t
s

N∑
i=1

ai(z,uz)dz
[g (s, u′s) + f (s, us)] ds,

(3.5)
for t ≥ t0. It is not difficult to see that P (u) : R→ R is continuous.

Initially, we show that, P : Dl
ϕ → Dl

ϕ. In view of (3.5), we can derive,

(Pu)
′
(t) = −ϕ(t0)

N∑
i=1

ai (t, ut) e
−

∫ t
t0

N∑
i=1

ai(s,us)ds
+ g (t, u′t) + f (t, ut)

−
N∑
i=1

ai (t, ut)

∫ t

t0

e
−

∫ t
s

N∑
i=1

ai(z,uz)dz
[g (s, u′s) + f (s, us)] ds

= −
N∑
i=1

ai (t, ut) (Pu) (t) + g (t, u′t) + f (t, ut) , (3.6)

for t ≥ t0.
By the definition of Φt0 , (3.6) yields

(Pu)
′
+ (t0) = −

N∑
i=1

ai (t0, ut0)ϕ (t0) + g
(
t0, u

′
t0

)
+ f (t0, ut0) = ϕ′−(t0).

Hence, Pu ∈ C1 (R) for u ∈ Dl
ϕ.

Next, we verify that max
t≥t0

{∥∥(Pu)
′
t

∥∥
◦ , ‖(Pu)t‖◦

}
< l. Let

A = sup
t≥t0
{|α2 (t)|} and K = sup

t≥t0
e
−

∫ t
t0
α1(s)ds.

By conditions (3.4),(3.1), K,A ∈ [0,∞) . For a given small bounded initial
function ϕ with |ϕ|t0 < δ0, where δ0 > 0 satisfies

δ0 < lmin

{
1,

1− η
K

,
1− 2η

KA

}
. (3.7)

Let u ∈ Dl
ϕ, then max

t≥t0
{‖u′t‖◦ , ‖ut‖◦} ≤ l. Du the conditions (2.3) , (2.4) , (3.7),

and (3.2) , we can get

|(Pu) (t)| ≤ |ϕ(t0)| e−
∫ t
t0
α1(s)ds +

∫ t

t0

e−
∫ t
s
α1(z)dz |b2 (s)| ‖u′s‖◦ ds

+

∫ t

t0

e−
∫ t
s
α1(z)dz |b1 (s)| ‖us‖◦ ds

≤ Kδ0 + ηl < l.
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Now, (3.6) and (2.3) , (2.4) , (2.7) and (3.2) , (3.3) , (3.7) imply that

∣∣(Pu)
′
(t)
∣∣ ≤ |ϕ(t0)|

N∑
i=1

|ai (t, ut)| e
−

∫ t
t0

N∑
i=1

ai(s,us)ds
+ |g (t, u′t)|+ |f (t, ut)|

+
N∑
i=1

|ai (t, ut)|
∫ t

t0

e
−

∫ t
s

N∑
i=1

ai(z,uz)dz
[|g (s, u′s)|+ |f (s, us)|] ds

≤ KAδ0 + |g (t, u′t)− g (t, 0)|+ |f (t, ut)− f (t, 0)|

+l

{
|α2 (t)|

∫ t

t0

e−
∫ t
s
α1(z)dz (|b1 (s)|+ |b2 (s)|) ds

}
≤ KAδ0 + l (|b1 (t)|+ |b2 (t)|) + ηl

≤ KAδ0 + 2ηl < l,

by the choice of δ0. This implies, max
t≥t0

{
|(Pu) (t)| ,

∣∣(Pu)
′
(t)
∣∣} < l. We will now

show (Pu) (t) approaches zero as t→∞.
Du the condition (3.4), we have

lim
t→∞

e
−

∫ t
t0
α1(z)dz = 0.

Therefore, it is obvious that the first term of (Pu) (t) tends to zero as t → ∞
because of condition (3.4). Next, we will show that the last term of (Pu) (t)
tends to zero too. Since lim

t→∞
u (t) = lim

t→∞
u′ (t) = 0, we can find T1 > t0 such that

∀t ≥ T1, max {|u (t)| , |u′ (t)|} < ε, and the fact u ∈ Dl
ϕ implies that ∀ t ≥ t0,

max {‖ut‖◦ , ‖u′t‖◦} < l. It is therefore follows from (2.5) and (2.6) that we can
find t2 > T1 such that

|f (t, ut)| ≤ |b1 (t)|
(
ε+ ‖u‖[T1,t]

)
,

and
|g (t, u′t)| ≤ |b2 (t)|

(
ε+ ‖u′‖[T1,t]

)
,

for t ≥ t2.
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Hence for t ≥ t2, we have∣∣∣∣∣∣
∫ t

t0

e
−

∫ t
s

N∑
i=1

ai(z,uz)dz

[g (s, u′s) + f (s, us)] ds

∣∣∣∣∣∣
≤

∫ t2

t0

e−
∫ t
s
α1(z)dz |g (s, u′s) + f (s, us)| ds

+

∫ t

t2

e−
∫ t
s
α1(z)dz |g (s, u′s) + f (s, us)| ds

≤
∫ t2

t0

e−
∫ t
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] max

s≥t0
{‖u′s‖◦ , ‖us‖◦} ds

+

∫ t

t2

e−
∫ t
s
α1(z)dz |b1 (s)|

(
ε+ ‖u′‖[T1,s]

)
ds

+

∫ t

t2

e−
∫ t
s
α1(z)dz |b2 (s)|

(
ε+ ‖u‖[T1,s]

)
ds,

since max
{
‖u‖[T1,t] , ‖u′‖[T1,t]

}
≤ ε for t ≥ t2. Then,

≤
∫ t2

t0

e−
∫ t
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] max

s≥t0
{|u′s| , |us|} ds

+2ε

∫ t

t2

e−
∫ t
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds

≤ l

∫ t2

t0

e−
∫ t2
s
α1(z)dze

−
∫ t
t2
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds+ 2ηε.

By using condition (3.4), we can find T ≥ t2 such that for t ≥ T , we get

le−
∫ t
T
α1(z)dz

∫ t2

t0

e−
∫ T
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds ≤ ε.

This yields lim
t→∞

(Pu) (t) = 0 for u ∈ Dl
ϕ.

Moreover, for each u ∈ Dl
ϕ, lim

t→∞
u (t) = lim

t→∞
u′ (t) = 0, given ε > 0 there

exists T2 > t0 such that ∀t ≥ T2, max {|u (t)| , |u′ (t)|} < ε . By conditions
(2.5),(2.6) we can find a T ′ > T2 such that, for t ≥ T ′, we have

|g (t, u′t)| ≤ |b1 (t)|
(
ε+ ‖u′‖[T2,t]

)
,

and
|f (t, ut)| ≤ |b2 (t)|

(
ε+ ‖u‖[T2,t]

)
.
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For t ≥ T ′, we have from (3.6) ,

∣∣(Pu)
′
(t)
∣∣ ≤ N∑

i=1

|ai (t, ut)| |(Pu) (t)|+ |g (t, u′t)|+ |f (t, ut)|

≤
N∑
i=1

|ai (t, ut)| |(Pu) (t)|+ |b1 (t)|
(
ε+ ‖u′‖[T2,t]

)
+ |b2 (t)|

(
ε+ ‖u‖[T2,t]

)
≤ |α2 (t)| |(Pu) (t)|+ 2ηε

This, together with (3.1)− (3.3), leads to lim
t→∞

(Pu)
′
(t) = 0 for u ∈ Dl

ϕ. There-

fore, Pu ∈ Dl
ϕ for u ∈ Dl

ϕ, i.e. P : Dl
ϕ → Dl

ϕ.

We now show that P : Dl
ϕ → Dl

ϕ is contractive. To this end, suppose that

u, y ∈ Dl
ϕ, by the conditions (2.3) , (2.4) (3.2) , (3.3) , (3.6) , that for t ≥ t0,

|(Pu) (t)− (Py) (t)|

≤
∫ t

t0

e
−

∫ t
s

N∑
i=1

ai(z,uz)dz
[|g (s, u′s)− g (s, y′s)|+ |f (s, us)− f (s, ys)|] ds

≤
∫ t

t0

e−
∫ t
s
α1(z)dz |b1 (s)| ‖u′s − y′s‖◦ ds+

∫ t

t0

e−
∫ t
s
α1(z)dz |b2 (s)| ‖us − ys‖◦ ds

≤
∫ t

t0

e−
∫ t
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] max

s≥t0
{‖us − ys‖◦ , ‖u

′
s − y′s‖◦} ds

≤ η ‖u− y‖ . (3.8)

In addition,∣∣(Pu)
′
(t)− (Py)

′
(t)
∣∣

≤ |α2 (t)| |(Pu) (t)− (Py) (t)|+ |g (t, u′t)− g (t, y′t)|
+ |f (t, ut)− f (t, yt)|

≤ ‖u− y‖
{
|α2 (t)|

∫ t

t0

e−
∫ t
s
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds+ |b1 (t)|+ |b2 (t)|

}
≤ η ‖u− y‖ . (3.9)

From (3.8) and (3.9), as 0 < η <
1

2
, P : Dl

ϕ → Dl
ϕ is a contraction mapping

and hence there exists a unique fixed point u in Dl
ϕ which means u is a solution

of (2.1) through (t0, ϕ), bounded by l and lim
t→∞

u (t) = lim
t→∞

u′ (t) = 0 as t →∞.

The following step represents another way in which we can establish the
stability of (2.1) by using as the main tool Banach’s fixed point method. For
comprehensive works done on the stability of some particular cases of the equa-
tion mentioned, the readers can refer to the papers of Raffoul [5] and Burton
[11]. Let ε > 0 be given, by proceeding now a different way than before, that
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is, replacing l by ε in Dl
ϕ, ( we obtain the existence of a sufficiently small δ > 0

so that (3.7) satisfies with δ0 = δ ) such that for |ϕ| < δ leads that the unique
solution u of (2.1) with ut0 = ϕ on (−∞, t0] satisfies max

t≥t0
{|u (t)| , |u′ (t)|} < ε.

Meanwhile, lim
t→∞

u (t, t0, ϕ) = lim
t→∞

u′ (t, t0, ϕ) = 0. We can therefore conclude

that the trivial solution of (2.1) is asymptotic stable in C1.
In the end, we proceed to show the asymptotic stability in C1 of the trivial

solution to equation (2.1). For all ε > 0, let δ > 0 such that

δ < εmin

{
1,

1− η
K

,
1− η
KA

}
.

If u (t) = u (t, t0, ϕ) is a solution of equation (2.1) with |ϕ|t0 < δ, then u (t) =
(Pu) (t) on [t0,∞). We claim that ‖u‖ < ε. Otherwise, there would exist t∗ > t0
such that

max {|u(t∗, t0, ϕ)| , |u′(t∗, t0, ϕ)|} = ε,

and
max {|u(t, t0, ϕ)| , |u′(t, t0, ϕ)|} < ε,

for t ≤ t∗, if |u(t∗, t0, ϕ)| = ε, then it follows from (3.5) and (2.3) , (2.4) , (3.2)
that

|u(t∗, t0, ϕ)|

=

∣∣∣∣∣∣ϕ(t0)e
−

∫ t∗
t0

N∑
i=1

ai(s,us)ds

+

∫ t∗

t0

e
−

∫ t∗
t0

N∑
i=1

ai(z,uz)dz

[g (s, u′s) + f (s, us)] ds

∣∣∣∣∣∣
≤ |ϕ(t0)| e−

∫ t∗
t0
α1(z)dz

+

∫ t∗

t0

e−
∫ t∗
s
α1(z)dz [|g (s, u′s)− g (s, 0)|+ |f (s, us)− f (s, 0)|] ds

≤ δ0e
−

∫ t∗
t0
α1(z)dz +

∫ t∗

t0

e−
∫ t∗
s
α1(z)dz [|b1 (s)| ‖u′s‖◦ + |b2 (s)| ‖us‖◦] ds

≤ Kδ + ηε < ε,

which contradicts |u(t∗, t0, ϕ)| = ε.
If |u′(t∗, t0, ϕ)| = ε, it then follows from (3.6),(2.3) , (2.4) , (3.3) that

|u′(t∗, t0, ϕ)| ≤ |ϕ(t0)| |α2 (t∗)| e
−

∫ t∗
t0

N∑
i=1

ai(s,us)ds

+ |g (t∗, u′t∗)|+ |f (t∗, ut∗)|

+ |α2 (t∗)|
∫ t∗

t0

e−
∫ t∗
s
α1(z)dz (|g (s, u′s)|+ |f (s, us)|) ds

≤ KAδ + ε |α2 (t∗)|
∫ t∗

t0

e−
∫ t∗
s
α1(z)dz (|b1 (s)|+ |b2 (s)|) ds

+ |b1 (t∗)|+ |b2 (t∗)|
≤ KAδ + ηε < ε,
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which contradicts |u′(t∗, t0, ϕ)| = ε too. Thus, max {|u (t)| , |u′ (t)|} < ε for all
t ≥ t0, and the zero solution of equation (2.1) is stable in C1. Combining with
the fact that

lim
t→∞

u (t) = lim
t→∞

u′ (t) = 0.

Thus, the zero solution of (2.1) is asymptotic stable in C1 if (3.4) holds.

Theorem 3.2. Suppose that conditions (2.3)− (2.7) and (3.1)− (3.3) hold for
(2.1). If the trivial solution of (2.1) is globally asymptotic stable in C1, then

lim
t→∞

∫ t

0

α2 (s) ds = +∞. (3.10)

Proof. Conversely, suppose the condition (3.10) fails. Then (3.1) implies

that lim inf
t→∞

∫ t

0

α2 (s) ds > −∞, and we find a sequence {tn} ⊂ [0,∞), tn →∞
as n→∞ such that

lim
n→∞

∫ tn

0

α2 (s) ds = F, for each F ∈ R+.

We may also select a constant q ∈ R+ such that

−q ≤
∫ tn

0

α2 (s) ds ≤ +q, n = 1, 2, ...

Set

0

K = sup
t≥t0

e
−

∫ t
t0
α1(s)ds and

0

A = sup
t≥t0
{|α2 (t)|} , J = lim inf

t→∞

∫ t

0

α1 (s) ds, .

Hence, it therfore follows from (3.1) that J ∈ R,
0

K,
0

A ∈ R+.

Since (3.10) fails, then
∫ t
0
α1 (s) ds tends +∞ as t → ∞ fails too. By (3.1),

for the sequence {tn} defined above, one can select a constant J ∈ R+ such that

−J ≤
∫ tn

0

α1 (s) ds ≤ +J, n = 1, 2, ... (3.11)

Denote

In =

∫ tn

0

e
∫ s
0
α1(z)dz (|b1(s)|+ |b2(s)|) ds, n = 1, 2, ...

But, in view of condition (3.2) we have

In =

∫ tn

0

e
∫ s
0
α1(z)dz (|b1(s)|+ |b2(s)|) ds ≤ η

From (3.11), it then follows that

In = e
∫ tn
0

α1(z)dz

∫ tn

0

e
∫ s
0
α1(z)dz (|b1(s)|+ |b2(s)|) ds

≤ ηe
∫ tn
0

α1(z)dz < eJ .

12



Therefore the sequence {In} is bounded. Thus, the sequence {In} has a conver-
gent subsequence. Without loss of generality, we can assume that

lim
n→∞

∫ tn

0

e
∫ s
0
α1(z)dz (|b1(s)|+ |b2(s)|) ds = µ, for some µ ∈ R+.

Let m be an integer such that

∫ tn

tm

e
∫ s
0
α1(z)dz (|b1(s)|+ |b2(s)|) ds < 1− η

4Be2q (e−J + 1)
, (3.12)

and

e−
∫ tn
tm

α1(z)dz >
1

2
, e−

∫ tn
0

α1(z)dz < e−J + 1, e
∫ tm
0

α1(z)dz < eJ + 1, (3.13)

for all n > m, where

B = max

{
0

K
(
eJ + 1

)
,

0

K
0

A
(
eJ + 1

)
, 1

}
.

For any δ0 > 0, we consider u(t) = u(t, tm, ϕ) the solution of (2.1) with

|ϕ|tm < δ0 and |ϕ (tm)| > δ0
2

for t < tm. It therfore follows from (3.5) , (3.6) , (3.13)

and (3.1)− (3.3) , that for t ∈ [tm,∞) ,

|u (t)| ≤ δ0e
−

∫ t
tm

α1(s)ds +

∫ t

tm

e−
∫ t
s
α1(z)dz [|g (s, u′s)|+ |f (s, us)|] ds

≤
0

K
(
eJ + 1

)
δ0 + ‖u‖tm

∫ t

tm

e−
∫ t
s
α1(z)dz [|b1(s)|+ |b2(s)|] ds

≤ Bδ0 + η ‖u‖tm ,

and

|u′ (t)| ≤ |u(tm)| |α2 (t)| e−
∫ t
tm

α1(s)ds + |g (t, u′t)|+ |f (t, ut)|

+ |α2 (t)|
∫ t

tm

e−
∫ t
s
α1(z)dz (|g (s, u′s)|+ |f (s, us)|) ds

≤
0

K
0

A
(
eJ + 1

)
δ0

+ ‖u‖tm

{
|α2 (t)|

∫ t

tm

e−
∫ t
s
α1(z)dz [|b1(s)|+ |b2(s)|] ds+ [|b1(t)|+ |b2(t)|]

}
≤ Bδ0 + η ‖u‖tm .

Hence, ‖u‖tm ≤ Bδ0 + η ‖u‖tm , thus we have

‖u‖tm ≤
B

1− η
δ0, for all t ≥ tm. (3.14)
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It then follows from (3.5) , (3.12) − (3.14) and (2.3) , (2.4) , (2.7) that for any
n > m.

|u (tn)| ≥ |ϕ(tm)| e−
∫ tn
tm

α2(s)ds −

∣∣∣∣∣∣
∫ tn

tm

e
−

∫ tn
s

N∑
i=1

ai(z,uz)dz
[g (s, u′s) + f (s, us)] ds

∣∣∣∣∣∣
≥ δ0e

−
∫ tn
tm

α2(s)ds −
∫ tn

tm

e
−

∫ tn
s

N∑
i=1

ai(z,uz)dz
|g (s, u′s) + f (s, us)| ds

≥ δ0e
−

∫ tn
tm

α2(s)ds − ‖u‖tm e−
∫ tn
0

α1(z)dz

∫ tn

tm

e
∫ s
0
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds

≥ δ0e
−

∫ tn
tm

α2(s)ds − ‖u‖tm e−
∫ tn
0

α1(z)dz

∫ tn

tm

e
∫ s
0
α1(z)dz [|b1 (s)|+ |b2 (s)|] ds.

But

e−
∫ tn
tm

α2(z)ds = e
∫ 0
tn
α2(z)dze

∫ tm
0

α2(z)dz

= e−
∫ tn
0

α2(z)dze
∫ tm
0

α2(z)dz ≥ e−2q,

and e−
∫ tn
0

α1(z)dz ≤ e−J + 1, which implies

|u (tn)| ≥ 1

2
δ0e
−2q − δ0B

1− η
(
e−J + 1

) 1− η
4Be2q (e−J + 1)

=
1

2
δ0e
−2q. (3.15)

The facts that lim
n→∞

tn =∞ and the trivial solution of (2.1) is asymptotic stable

in C1 implies lim
n→∞

u (t, tn, ϕ) = lim
n→∞

u′ (t, tn, ϕ) = 0, which is in contradiction

with (3.15) . The proof of Theorem 3.1 is completed.

Corollary 3.1. Assume that (A1)–(A6) hold, and for any t ≥ t0, if there is an

η ∈ (0,
1

2
) such that

lim inf
t→∞

∫ t

t0

α1 (s) ds > −∞,

and ∫ t

t0

e−
∫ t
s
α1(z)dz (|b1(s)|+ |b2(s)|) ds ≤ η,

Then zero the solution equation (2.1) shows asymptotic stable in C0 if∫ t

t0

α1 (s) ds→∞ as t→∞.

For equation (2.1), we also have

Corollary 3.2. Suppose that (A1)–(A6) and (3.1) , (3.2) hold. If the trivial
solution of (2.1) is asymptotic stable in C0, then we get∫ t

t0

α2 (s) ds→∞ as t→∞.
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Remark 3.1. According to Ziad et al. [31]. Corollary 3.1 and Corollary 3.2
are natural generalizations of Theorem 3.1 and Theorem 3 2, respectively. In
fact, when g(t, u′t) = 0 our conditions reduce to those of Ziad et al. [31].

Now we consider the standard form of tottaly nonlinear neutral differential
equations

u′(t) = −h (t, u(t)) + g (t, u′t) + f (t, ut) , t ≥ t0. (3.16)

Similar to equation (2.1), if we assume that
(A7) h (t, 0) and there exist α1, α2 ∈ C (R,R) such that

α1 (t) ≤ ∂h (t, u)

∂u
≤ α2 (t) ,

then we can get the following theorem.

Theorem 3.3. Suppose that (A1)-(A7), and (3.1)− (3.4) hold, then the trivial
solution of (3.16) is asymptotic stable in C1 .

Proof. For any h ∈ C1, since h(t, 0) = 0, it is clear to see that

h(t, u) =

[∫ 1

0

∂h (t, su)

∂u
ds

]
u.

If we set
N∑
i=1

ai (t, ut) =
∫ 1

0

∂h (t, su)

∂u
ds, then we can rewrite (2.1) as (3.16) with

α1 (t) ≤
N∑
i=1

ai (t, ut) ≤ α2 (t) .

Then the claim is true thanks to Theorem 3.1.

In addition, we get another result for equation (3.16) as follows.

Theorem 3.4. If conditions (A1)-(A6), and (3.1)− (3.3) are satisied, then the
zero solution of (3.16) with a small initial function is asymptotic stable in C1 .
If the zero solution of (3.16) is globally asymptotic stable in C1 , then∫ t

0

α2 (t)→∞ as t→∞,

holds.

Choosing N = 1 and a1 (t, ut) = a(t) in Theorem 3.1, we have the following
result.

Corollary 3.3. Assume that (A1)–(A6) hold, and for any t ≥ t0, and there

exists a constant η ∈ (0,
1

2
) such that ,

lim inf
t→∞

∫ t

t0

a (s) ds > −∞, (3.17)
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and ∫ t

t0

e−
∫ t
s
a(z)dz (|b1(s)|+ |b2(s)|) ds ≤ η, (3.18)

|a (t)|
∫ t

t0

e−
∫ t
s
a(z)dz (|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|) ≤ η. (3.19)

Then equation (2.1) has a unique trivial solution and, it is an asymptotic stable
in C1 if only if ∫ t

t0

a (s) ds→∞ as t→∞.

Remark 3.2. Theorem 3.1 remains true if the conditions (3.2), (3.3) are fulfilled
for all t ≥ tσ for some tσ ∈ R+.

4 Remarks and illustrative Examples

Let us discuss two examples for ullistration.

Example 4.1. Given a nonlinear neutral differential equation

u′(t) = −a (t, u(t− τ (t)))u(t) + f (t, u(t− τ (t))) + g (t, u′(t− τ (t))) , (4.1)

t ≥ 0, where

a (t, u(t− τ (t))) =
1

1 + t

(
1 +

|sin t|
1 + u2 (t− τ (t))

)
,

and

g (t, u′(t− τ (t))) =
0.1

1 + t
sin

u′(t− τ (t))

10
,

f (t, u(t− τ (t))) = 0.4 ln

(
1 +
|u (t− τ (t))|

10 (1 + t)

)
.

One can take α1(t) =
1

1 + t
and α2(t) =

2 |sin t|
1 + t

, then

α1(t) ≤ a (t, ut) ≤ α2(t).

It is easy to check

|α2 (t)| < 2, ∀t ∈ [0,∞) ,

∫ t

0

α1(s)ds→∞ as t→∞.

By straightforward computations, we can check that conditions (2.2) and (2.3)
in Theorem 3.1 hold true, where τ ∈ C(R+,R+), and δ ∈ C(R+,R+) with

t− τ (t)→∞ and t− δ (t)→∞ as t→∞. (4.2)
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Assume that b1(t) =
0.1

2 (1 + t)
and b2(t) =

0.5

10 (1 + t)
. Then (2.3), (2.4) hold.

Also assume that η = 1/3, then for t ∈ [0,∞)∫ t

0

e−
∫ t
s
α1(z)dz (|b1(s)|+ |b2(s)|) ds

≤
∫ t

0

e
−

∫ t
s

1

1 + z
dz
(

1

10 (1 + s)

)
ds =

1

10
≤ η, (4.3)

and

|α2 (t)|
∫ t

0

e−
∫ t
s
α1(z)dz (|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|)

≤ 2

∫ t

0

e
−

∫ t
s

1

1 + z
dz
(

1

10 (1 + s)

)
ds+

1

10 (1 + t)

=
3

10
≤ η. (4.4)

Hence, all the conditions in Theorem 3.1 are verified. Therefore, the zero solu-
tion of equation (4.1) is asymptotic stable in C1.

Example 4.2. Consider the following equation in the form of (2.1),

u′(t) = −
2∑
i=1

ai (t, u(t− τ (t)))u(t) + f (t, u(t− τ1 (t)), u(t− τ2 (t)))

+g (t, u′(t− τ1 (t)), u′(t− τ2 (t))) . (4.5)

By taking a1 (t, u) =
0.5et

1 + et

(
1 +

|cos t|(
1 + e−u2

)) , a2 (t, u)) =
0.5et

1 + et

(
1 +
|sin (u)|

2

)
,

τ ∈ C(R+,R+), and τ i ∈ C(R+,R+) satisfy

t− τ i (t)→∞ as t→∞, i = 1, 2. (4.6)

By calculation, we have

α1 (t) :=
et

1 + et
≤

2∑
i=1

ai (t, u(t− τ (t))) ≤ 1.75et

1 + et
=: α2 (t) ,

and it is straightforward to check that

|α2 (t)| < 1.75, ∀t ∈ [0,∞) , and

∫ t

0

α1(s)ds→∞ as t→∞.

Let f (t, u1, u2) = ln

(
1 +

5 (|u1|+ |u2|)
100 (1 + e−t)

)
, g (t, u1, u2) = 0.1 sin

(
u1

5 (1 + e−t)

)
+

0.12 sin

(
u2

4 (1 + e−t)

)
, then we obtain

|f (t, u1, u2)− f (t, v1, v2)| ≤ |b1 (t)| |u1 − v1|+ |b2 (t)| |u2 − v2| ,
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|g (t, u1, u2)− g (t, v1, v2)| ≤ |c1 (t)| |u1 − v1|+ |c2 (t)| |u2 − v2| ,

where

b1 (t) = b2 (t) =
5

100 (1 + e−t)
,

and

c1 (t) =
0.02

1 + e−t
, c2 (t) =

0.03

1 + e−t
.

Then (A1)-(A6) hold. In addition, let η = 4/9, then for t ∈ [0,∞) ,∫ t

0

e−
∫ t
s
α1(z)dz

2∑
j=1

|bj(s)|+ |cj(s)| ds

<

∫ t

0

e
−

∫ t
s

ez

1 + ez
dz
[

es

10 (1 + es)
+

0.05es

(1 + es)

]
ds < 0.15 < η, (4.7)

and

|α2 (t)|
∫ t

0

e−
∫ t
s
α1(z)dz

2∑
j=1

(|bj(s)|+ |cj(s)|) ds+

2∑
j=1

(|bj(t)|+ |cj(t)|)

< 1.75×
∫ t

0

e
−

∫ t
s

ez

1 + ez
dz
[

es

10 (1 + es)
+

0.05es

(1 + es)

]
ds

+
et

10 (1 + et)
+

0.05et

(1 + et)

< 1.75× 0.15 +
et

10 (1 + et)
+

0.05et

(1 + et)

< 1.75× 0.15 + 0.15 = 0.413 ≤ η. (4.8)

Hence, (3.2) and (3.3) hold. According to Theorem 3.1, the zero solution of Eq.
(4.5) is globally asymptotically stable in C1.

Remark 4.1. Theorem 3.1 includes and generalizes the result of Ardjouni
and Djoudi [1]. In fact, when we chose N = 1 and a1 (t, ut) = a (t) (a is
bounded), g(t, u

′

t) = g(t, u′(t−τ1 (t) , u′(t−τ2 (t) , ..., u′(t−τn (t)) and f(t, ut) =
f(t, u(t − τ1 (t) , u(t − τ2 (t) , ..., u(t − τn (t)), our conditions reduce to that of
Ardjouni and Djoudi [1, Theorem 2.1].

Remark 4.2. It has been noted in [27] that a fading memory condition such as
(2.5) , (2.6) or (4.6) is necessary for the asymptotic behavior of a general neutral
differential equation. This means that the equation representing a physical
system must remember its past, but the memory must fade over time.

Conclusion 1 Conclusion: In this work, a standard tottally nonlinear neu-
tral differential equations have been studied. Based on Banach’s fixed point
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theorem, some new sufficient conditions to guarantee that the trivial solution
of equation (2.1) is globally asymptotic stable in C1 have been achieved. The
main contribution of this paper is confirming the importance and advantage of
using the fixed point theory. The derived stability criteria are easily to apply in
practice and do not need the differentiability of the delays or coefficients, which
are required in [16]. Moreover, we can easily see Theorem 3.1 and Corollaries
cited above are independent of some restrictive conditions in reference [16]. Up
now, the results derived here have not been published in the corresponding liter-
ature. An illustrative examples were given to show the efficiency of the results
introduced. Hence, in futur, we would like to extend the application of this pre-
cious approach to more complex delay models such as the equations with damped
stochastic perturbations and so on. We will leave this open problem for future
research subjects.
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