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Abstract. In this paper we investigate the regularity of global attractors and
of exponential attractors for two dimensional quasi-geostrophic equations with

fractional dissipation in H2α+s(T2) with α > 1
2

and s > 1. We prove the exis-

tence of (H2α−+s(T2), H2α+s(T2))-global attractor A, that is, A is compact in

H2α+s(T2) and attracts all bounded subsets ofH2α−+s(T2) with respect to the
norm of H2α+s(T2). The asymptotic compactness of solutions in H2α+s(T2)

is established by using commutator estimates for nonlinear terms, the spectral

decomposition of solutions and new estimates of higher order derivatives. Fur-
thermore, we show the existence of the exponential attractor in H2α+s(T2),

whose compactness, boundedness of the fractional dimension and exponential

attractiveness for the bounded subset of H2α−+s(T2) are all in the topology

of H2α+s(T2).

1. Introduction. In this paper, we investigate the long-time behavior of solutions
of the following 2D (surface) quasi-geostrophic equation with fractional dissipation
defined on the 2D torus T2 = [0, 1]2 :

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = F (x, θ),

θ(0) = θ0,

∫
T2

θ0(x)dx = 0,
(1.1)

where F (x, θ) is a given external forcing term in the form

F (x, θ) = g1(x)f(θ) + g2(x), (1.2)
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θ represents the potential temperature, κ > 0 is a diffusivity coefficient, α ∈
(

1
2 , 1
]

is a fractional exponent, (−∆)α is the fractional Laplacian, and u = (u1, u2) is the
velocity field determined by θ through the relation:

u =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
, where (−∆)

1
2ψ = −θ, (1.3)

or, in a more explicit way,

u = (−R2θ,R1θ), (1.4)

where Ri, i = 1, 2 are the Riesz transforms (see [25, p.299]). In the following, we
will restrict ourselves to flows which have zero average on the torus, i.e.,∫

T2

θ(t, x)dx = 0, ∀t ≥ 0.

Equations (1.1)-(1.3) are important models in geophysical fluid dynamics, especially
for atmospheric and oceanic fluid. Indeed, the system describes the evolution of the
temperature on the 2D boundary of a rapidly rotating half-space with small Rossby
and Ekman numbers (see [28]).

Long time behavior of solutions to the 2D quasi-geostrophic equation with frac-
tional dissipation has been studied in [3, 11, 22, 26, 27]. Using the framework of
[31], the global weak attractor A in the space of weak solutions W (f) was proved by
Berselli for the sub-critical dissipative case α ∈ ( 1

2 , 1). A attracts all bounded sets
in the space of the generalized weak solutions GW (f), see [3] for more details. With
an improvement of the positivity lemma of [10] and a generalized maximum prin-
ciple, Ju [22] established the existence of the global attractor A in Hs(T2) for any
s > 2(1−α) and α ∈ ( 1

2 , 1]. A attracts all bounded subsets of Hs(T2) in the norm of

Hr(T2) for any r ≥ s > 2(1−α), and for the case α ∈ ( 2
3 , 1], A attracts all bounded

subsets of L2(T2) in the norm of Hs(T2) for any s > 2(1−α). More detailed results
on decay characterization of solutions to 2D dissipative quasi-geostrophic equations
were given by Niche and Schonbek [26, 27] for the homogeneous case (F=0). Wang
and Tang [36] proved the existence of the global attractor in Lp(R2) for 2D quasi-
geostrophic equations with damping in the subcritical case α ∈ ( 1

2 , 1]. Dlotko, Kania

and Sun [12] studied the existence of the global attractor A in Hs+2α−(R2) for any
s > 1 and α ∈ ( 1

2 , 1]. Very recently, the existence of the global attractor in Hs(R2)

for any s > 2(1 − α) and α ∈ ( 1
2 , 1] was proved by Farwig and Qian [15] for 2D

quasi-geostrophic equations with a nonlocal damping. For the critical case α = 1
2 ,

the existence of the global attractor in H3/2(T2) has been studied by Constantin,
Coti Zelati, Kalita, Vicol and Tarfulea, see [7, 9, 11] for more details. However,
to the best of our knowledge, there is no result available in the literature on the
regularity of global attractors for 2D quasi-geostrophic equations. The first purpose
of this work is to prove the regularity of global attractors of (1.1) in H2α+s(T2) for
any s > 1 and α ∈ ( 1

2 , 1]. More precisely, we will show that the global attractor A in

H2α−+s(T2) is actually an (H2α−+s(T2), H2α+s(T2))-global attractor in the sense

that A is compact in H2α+s(T2) and attracts all bounded subsets of H2α−+s(T2)
with respect to the norm of H2α+s(T2) (see Theorem 5.3).

The notion of exponential attractors, introduced by Eden, Foiaş, Nicolaenko and
Temam [13], has been shown to be one of the most important concepts of limit
sets in the theory of dynamical systems in infinite-dimensional spaces (see [2, 6,
30, 34]). The exponential attractor, as an intermediate object between the global
attractor and the inertial manifold, satisfies some nice properties like the inertial
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manifold (e.g., finite fractal dimension, exponential attracting, stable with respect
to some perturbations). However, contrarily to the global attractor, an exponential
attractor is not necessarily unique, so that the concrete choice of an exponential
attractor is in some sense artificial. The first technique to construct exponential
attractors was developed in Hilbert spaces. This technique is based on the use
of orthogonal projections (see [13]) and cannot be applied directly to dynamical
systems defined in Banach spaces. A new method for constructing exponential
attractors in Banach spaces was proposed by Efendiev, Miranville and Zelik in [14].
However, the existence of exponential attractors for 2D quasi-geostrophic equations
is unsolved. The second purpose of this paper is to present some sufficient conditions
for the construction of exponential attractors for autonomous dynamical systems
on Banach spaces, and furthermore we apply our results to consider the existence

of exponential attractors of (1.1) in H2α−+s(T2) and the regularity of exponential
attractors of (1.1) with g2(x) instead of F (x, θ) in H2α+s(T2) for any s > 1 and
α ∈

(
1
2 , 1
]
.

There are several results on estimation of the fractal and Hausdorff dimensions of
the global attractor for quasi-geostrophic equations. Wang [35] proved the existence
of a compact, connected global attractor to the 3D baroclinic quasi-geostrophic
equations of large scale atmosphere, and derived an upper bound of the Hausdorff
and fractal dimensions of the global attractor. A precise upper bound of the fractal
dimension of the global attractor for 2D quasi-geostrophic equations with fractional
dissipation in Hs(Ω) for any s ≥ 2α and α ∈

(
1
2 , 1
]

was obtained by Wang and
Tang [37]. By using the fractional Lieb-Thirring inequality, estimates of the finite
Hausdorff and fractal dimensions of the global attractor for 2D quasi-geostrophic
equations with fractional dissipation were established by Farwig and Qian [15].

The paper is organized as follows. In the next section, we present some nota-
tion and recall the theory of global attractors for infinite dimensional dissipative
dynamical systems and several preliminary results which will be used frequently.
In Section 3, the global existence, uniqueness and regularity of solutions for prob-
lem (1.1) are established by using the theory of semilinear parabolic equations with
sectorial operator. Section 4 is devote to a priori estimates which will yield the
existence of bounded absorbing sets in H2α+s(T2). In Section 5, we first establish

the existence of the global attractor A in H2α−+s(T2) and then prove that A is

indeed the (H2α−+s(T2), H2α+s(T2))-global attractor. In Section 6, we study the
existence of exponential attractors.

2. Preliminaries. We first recall some notations and basic results from harmonic
analysis. The fractional Laplacian (−∆)s, with s ∈ R may be defined in this context
as the Fourier multiplier with symbol |k|s, i.e.,

(−∆)sϕ(x) =
∑
k∈Z2

∗

|k|2sϕ̂(k) exp(ik · x),

where Z2
∗ = Z2 \ {0},

ϕ̂(k) =
1

(2π)2

∫
T2

ϕ(x)e−ik·xdx and ϕ(x) =
∑
k∈Z2

∗

ϕ̂(k) exp (ik · x).

Notice that the eigenvalues of Λ = (−∆)
1
2 are given by |k|. Then we relabel them

in increasing order as

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ,
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and denote the eigenfunction associated to λj by ej . It is clear that {ej}j≥1 is an
orthonormal basis of L2(T2), and the sets {λj}j≥1 and {|k|}k∈Z2

∗
are equal.

As a consequence of the mean-free setting, for s ∈ R we define

‖ϕ‖Hs(T2) = ‖Λsϕ‖L2(T2)

and Hs(T2) denotes the Sobolev space of all f for which ‖f‖Hs(T2) is finite. More-

over, for s ∈ R and p ∈ [1,+∞) we denote by Hs,p(T2) the space of mean-free
Lp(T2) functions ϕ, which can be written as ϕ = Λ−sψ, with ψ ∈ Lp(T2). The
Hs,p(T2) norm of ϕ is defined to be the Lp(T2) norm of ψ, i.e.,

‖ϕ‖Hs,p(T2) = ‖Λsϕ‖Lp(T2).

We recall the following important commutator and product estimates, cf. [23, 24].

Lemma 1 (Commutator and Product Estimates). Suppose that γ > 0 and p ∈
(1,+∞). If f, g ∈ S(T2), the Schwartz class, then

‖Λγ(fg)− fΛγg‖Lp(T2) ≤ C(γ, p)
(
‖∇f‖Lp1 (T2)‖Λγ−1g‖Lp2 (T2)

+‖Λγf‖Lp3 (T2)‖g‖Lp4 (T2)

) (2.1)

and

‖Λγ(fg)‖Lp(T2) ≤ C(γ, p)
(
‖f‖Lp1 (T2)‖Λγg‖Lp2 (T2) + ‖Λγf‖Lp3 (T2)‖g‖Lp4 (T2)

)
(2.2)

with p2, p3 ∈ (1,+∞) such that

1

p1
+

1

p2
=

1

p3
+

1

p4
=

1

p
.

The following result can be obtained by the fact that the Riesz transforms com-
mute with (−∆)l and the boundedness of the Riesz transforms in Lp(T2), see [32,
Chapter 3] for more details.

Lemma 2. Let 1 < p < ∞ and l ≥ 0. Then there exists a constant C(l, p) such
that

‖(−∆)lu‖Lp(T2) ≤ C(l, p)‖(−∆)lθ‖Lp(T2). (2.3)

If p = 2, the inequality (2.3) can be strengthened to

‖(−∆)lu‖L2(T2) = ‖(−∆)lθ‖L2(T2). (2.4)

Denote Aγ,κ = κ(−∆)γ where γ > 0 and κ > 0, and let

Xγ,κ =
{
u ∈ L2(T2) : Aγ,κu ∈ L2(T2)

}
with norm ‖u‖Xγ,κ = ‖Aγ,κu‖L2(T2). We recall the following well-known results for
the semigroup generated by the positive operator Aγ,κ (see [18, 38] for the similar
results).

Proposition 3. Let 0 < β1 ≤ β2 and u ∈ Xβ1,κ. Then there exists a constant
C1 = C1(β1, β2, γ, κ) such that

‖e−Aγ,κtu‖Xβ2,κ ≤ C1e
−κλ

2γ
1
2 tt−

β2−β1
γ ‖u‖Xβ1,κ , t > 0.

We recall the following improved positivity lemma, cf. [22, Lemma 3.3], which
we use in the proof of Lemma 11.
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Lemma 4 (Improve Positivity Lemma). Suppose s ∈ [0, 2] and θ, Λsθ ∈ Lp(T2),
where p ≥ 2. Then ∫

T2

|θ|p−2θΛsθdx ≥ 2

p

∫
T2

(
Λ
s
2 |θ|

p
2

)2

dx.

The following variant of the classical Gronwall Lemma is due to Foiaş and Prodi
[16]. See also [5, 8, 34].

Lemma 5 (Uniform Gronwall Lemma). Let g, h and y be non-negative locally
integrable functions on [t0,+∞) such that

dy

dt
≤ gy + h, ∀t ≥ t0,

and ∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3, ∀t ≥ t0,

where r > 0 and a1, a2, a3 are non-negative constants. Then

y(t+ r) ≤
(a3

r
+ a2

)
ea1 , ∀t ≥ t0.

In the sequel, C denotes an arbitrary positive constant, which may be different
from line to line and even in the same line. For r ∈ R, let r− denotes the number
strictly less than r but close to it.

2.1. Semigroup and attractor. In this subsection, we recapitulate basic concepts
and results on the bi-spaces global attractor and the exponential attractor. Let
(X, ‖ · ‖X) and (Y, ‖ · ‖) be two Banach spaces such that the injection Y ↪→ X is
continuous. The Hausdorff semidistance for nonempty subsets A and B of X is
written as distX(A, B) which is defined by

distX(A, B) = sup{d(a,B) : a ∈ A},
where d(a,B) = inf{‖a − b‖X : b ∈ B}, and the similar notation will be used for
subsets of Y.

Definition 6. Let X be a Banach space and {S(t)}t≥0 be a family of operators on
X. We say that {S(t)}t≥0 is a continuous semigroup on X, if for all t, s ∈ R+, the
following conditions are satisfied:

(i) S(0) = I (the identity);
(ii) S(t)S(s) = S(t+ s);
(iii) S(t)x is continuous in x and t.

Definition 7. Let {S(t)}t≥0 be a semigroup on X. Then {S(t)}t≥0 is said to be
asymptotically compact in X if for any bounded sequence {xn}∞n=1 ⊂ X and any
sequence tn → +∞, the sequence

{S(tn)xn}∞n=1 has a convergent subsequence in X.

If, in addition, S(t) maps X to Y for every t ∈ R+, and the sequence

{S(tn)xn}∞n=1 has a convergent subsequence in Y

for any bounded sequence {xn}∞n=1 ⊂ X and any sequence tn → +∞, then {S(t)}t≥0

is said to be (X,Y )-asymptotically compact.

Definition 8. Let {S(t)}t≥0 be a semigroup on X. Then a set A ⊂ X is called a
global attractor of {S(t)}t≥0 in X if the following conditions (i)-(iii) are satisfied:
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(i) A is compact in X;
(ii) A is invariant, i.e., S(t)A = A for all t ≥ 0;

(iii) A attracts every bounded subset of X, that is, for any bounded set B ⊂ X,
lim

t→+∞
distX(S(t)B, A) = 0.

If, in addition, the following conditions are satisfied:

(iv) S(t) maps X to Y for every t ∈ R+;
(v) A is compact in Y ;

(vi) A attracts every bounded subset of X in Y, that is, for any bounded set
B ⊂ X,

lim
t→+∞

distY (S(t)B, A) = 0,

then A is called an (X,Y )-global attractor of {S(t)}t≥0.

The following existence result for a global attractor for a semigroup can be found
in [2, 5, 20, 29, 30, 33, 34, 40] (see also [19] for random case).

Proposition 9. Suppose X and Y are Banach spaces with continuous injection
Y ↪→ X such that all closed balls in Y are closed subsets of X. Let {S(t)}t≥0 be a
semigroup on X. If {S(t)}t≥0 is asymptotically compact in X and has a bounded
absorbing set in X, then {S(t)}t≥0 has a global attractor A in X.

If, in addition, S(t) maps X to Y for every t ∈ R+, and {S(t)}t≥0 is (X,Y )-
asymptotically compact, then A is also an (X,Y )-global attractor of {S(t)}t≥0.

3. Global existence and uniqueness of solutions. In this section, we consider
the global existence and uniqueness of solutions for problem (1.1) with initial data

θ0 ∈ H2α−+s(T2), and then define a continuous semigroup.

Let θ1, θ2 ∈ H2α−+s(T2) and u1 = (−R2θ1, R1θ1), u2 = (−R2θ2, R1θ2). Note
that Hs(T2) is a Banach Algebra provided that s > 1 (see, e.g., [1, p.115]). Since

Sobolev embeddingsH2α−+s(T2) ⊂ H1+s(T2) ⊂ Hs(T2) are valid for the subcritical
case, by (2.3) we have

‖u1 · ∇θ1 − u2 · ∇θ2‖Hs(T2) ≤
∥∥∥∥R2(θ1 − θ2)

∂θ1

∂x1
+R2θ2

∂(θ1 − θ2)

∂x1

∥∥∥∥
Hs(T2)

+

∥∥∥∥R1(θ1 − θ2)
∂θ1

∂x2
+R1θ2

∂(θ1 − θ2)

∂x2

∥∥∥∥
Hs(T2)

≤ C‖θ1 − θ2‖Hs(T2)‖θ1‖H1+s(T2) + C‖θ2‖Hs(T2)‖θ1 − θ2‖H1+s(T2)

≤ C
(
‖θ1‖H2α−+s(T2) + ‖θ2‖H2α−+s(T2)

)
‖θ1 − θ2‖H2α−+s(T2),

(3.1)

which is the required local Lipschitz condition.
Following a standard approach in [6, p.55] and [21, Theorem 3.3.3] to semilinear

parabolic equations, we obtain the local existence and uniqueness of solutions for

problem (1.1) with initial data θ0 ∈ H2α−+s(T2).

Theorem 10. Let α ∈ ( 1
2 , 1], κ > 0 and θ0 ∈ H2α−+s(T2) with s > 1. Suppose

further that g1, g2 ∈ Hs(T2), and f : H2α−+s(T2)→ Hs(T2) is Lipschitz continuous

on bounded subsets of H2α−+s(T2). Then there exists a unique solution θ to problem
(1.1) such that

θ ∈ C((0, τ);H2α+s(T2)) ∩ C([0, τ);H2α−+s(T2)), θt ∈ C((0, τ);H2γ+s(T2)),
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where γ < α is arbitrary and τ > 0 is the maximal time of existence. Moreover, θ
is given by the formula

θ(t) = e−Aα,κtθ0 +

∫ t

0

e−Aα,κ(t−s)(F (x, θ(s))− u(s) · ∇θ(s))ds, ∀t ∈ [0, τ), (3.2)

where e−Aα,κt denotes the linear semigroup corresponding to the operator Aα,κ :=
κ(−∆)α in Hs(T2), and F (x, θ) is given by (1.2).

Let θ ∈ H2α−+s(T2) and u = (−R2θ,R1θ). Similar to (3.1), we obtain

‖u · ∇θ‖Hs(T2) ≤ C‖θ‖Hs(T2)‖θ‖H2α−+s(T2). (3.3)

Further, we assume that f : H2α−+s(T2) → Hs(T2) satisfies the sublinear growth
restriction:

‖f(θ)‖Hs(T2) ≤ k1

(
1 + ‖θ‖H2α−+s(T2)

)
, θ ∈ H2α−+s(T2) (3.4)

for some k1 > 0. A priori estimate (4.47) below together with (3.3) and (3.4) will be
used to guarantee that the local solution to problem (1.1) can be globally extended
(see [6, p.71] for more details). On the other hand, following [21, Theorem 3.4.1],

one can show that θ(t, θ0) is continuous with respect to θ0 in H2α−+s(T2). Hence

we now define a semigroup S : R+ ×H2α−+s(T2)→ H2α−+s(T2) by

S(t)θ0 = θ(t, θ0) for all (t, θ0) ∈ R+ ×H2α−+s(T2). (3.5)

4. Uniform estimates of solutions. In this section, we derive uniform estimates
on the solution of (1.1). Such estimates imply the existence of a bounded absorbing
set, and also will be used to prove the asymptotic compactness of the semiflow
associated with the equation.

We begin with uniform estimates of the solutions in Lq(T2).

Lemma 11. Let the conditions in Theorem 10 hold. Assume further that (3.4)
holds and

f(v)v ≤ k2, ∀v ∈ R (4.1)

for some k2 > 0. Let q ∈ [2,∞). Then every solution θ(t, θ0) of (1.1) satisfies

‖θ(t, θ0)‖qLq(T2) ≤ ‖θ0‖qLq(T2)e
−κλ2α

1 t + C‖g1‖
q
2

L
q
2 (T2)

+ C‖g2‖qLq(T2). (4.2)

Proof. Multiplying (1.1) with |θ|q−2θ and then taking the inner product in L2(T2),
we have

1

q

d

dt

∫
T2

|θ|qdx+ κ

∫
T2

(−∆)αθ|θ|q−2θdx+

∫
T2

u · ∇θ|θ|q−2θdx

=

∫
T2

F (x, θ)|θ|q−2θdx.

(4.3)

For the second term, by Lemma 4 we obtain

κ

∫
T2

(−∆)αθ|θ|q−2θdx ≥ 2κ

q

∫
T2

(
Λα|θ|

q
2

)2

dx ≥ 2κ

q
λ2α

1

∫
T2

|θ|qdx. (4.4)

Due to ∇ · u = 0, by using integration by parts we have∫
T2

u · ∇θ|θ|q−2θdx = 0. (4.5)
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Since f(θ)θ ≤ k2, we deduce from Young’s inequality that for the case q > 2,∫
T2

F (x, θ)|θ|q−2θdx =

∫
T2

(g1(x)f(θ) + g2(x))|θ|q−2θdx

≤ k2

∫
T2

g1(x)|θ|q−2dx+

∫
T2

g2(x)|θ|q−2θdx

≤ κ

q
λ2α

1

∫
T2

|θ|qdx+ C

∫
T2

|g1(x)|
q
2 dx+ C

∫
T2

|g2(x)|qdx.

(4.6)

For the case q = 2,∫
T2

F (x, θ)θdx ≤ k2

∫
T2

g1(x)dx+

∫
T2

g2(x)θdx

≤ κ

q
λ2α

1

∫
T2

|θ|2dx+ k2

∫
T2

|g1(x)|dx+ C

∫
T2

|g2(x)|2dx.
(4.7)

Inserting the above estimates into (4.3) gives

d

dt

∫
T2

|θ|qdx+ κλ2α
1

∫
T2

|θ|qdx ≤ C
∫
T2

|g1(x)|
q
2 dx+ C

∫
T2

|g2(x)|qdx. (4.8)

Then the desired result (4.2) follows from the Gronwall inequality.

We next derive uniform estimates for θ in Hα+s(T2) and for ∂tθ in Hs(T2).

Lemma 12. Let the conditions in Lemma 11 hold. Then, every solution θ(·) of
problem (1.1) satisfies for all t ≥ 0,

‖θ(t)‖2Hα+s(T2) ≤ e
−κλ2α

1 t‖θ0‖2Hα+s(T2) + C‖g2‖2Hs(T2) + C‖g1‖2Hs(T2)

+ Cte−κλ
2α
1 t‖θ0‖2L2(T2)‖g1‖

2
1−η′

Hs(T2) + CG2‖g1‖
2

1−η′

Hs(T2)

+ Ce−κλ
2α
1 t‖θ0‖2L2(T2)‖θ0‖

2
1−η
Lp2 (T2) + CG1te

−κλ2α
1 t‖θ0‖2L2(T2)

+ CG2e
−κλ2α

1 t‖θ0‖
2

1−η
Lp2 (T2) + CG1G2,

(4.9)

κ

∫ t+1

t

‖θ(r)‖2H2α+s(T2)dr ≤ e
−κλ2α

1 t‖θ0‖2Hα+s(T2) + C‖g2‖2Hs(T2) + C‖g1‖2Hs(T2)

+ Cte−κλ
2α
1 t‖θ0‖2L2(T2)‖g1‖

2
1−η′

Hs(T2) + CG2‖g1‖
2

1−η′

Hs(T2)

+ Ce−κλ
2α
1 t‖θ0‖2L2(T2)‖θ0‖

2
1−η
Lp2 (T2) + CG1(t+ 1)e−κλ

2α
1 t‖θ0‖2L2(T2)

+ CG2e
−κλ2α

1 t‖θ0‖
2

1−η
Lp2 (T2) + CG1G2,

(4.10)

where p2 = 2
2α−−1 , η

′ = 2α−+s
2α+s , η ∈

[
s+1

2α+s , 1
)

is a constant,

G1 = ‖g1‖
1

1−η

L
p2
2 (T2)

+ ‖g2‖
2

1−η
Lp2 (T2) and G2 = ‖g1‖L1(T2) + ‖g2‖2L2(T2).

Proof. Multiplying (1.1) with (−∆)α+sθ and then integrating over T2, we find that

1

2

d

dt

∫
T2

[(−∆)
α+s
2 θ]2dx+ κ

∫
T2

[(−∆)
2α+s

2 θ]2dx

=

∫
T2

F (x, θ)(−∆)α+sθdx−
∫
T2

(u · ∇θ)(−∆)α+sθdx.

(4.11)
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We proceed to estimate the last two terms in (4.11). First, Hölder’s and Young’s
inequalities imply that∣∣∣∣∫

T2

g2(x)(−∆)α+sθdx

∣∣∣∣ ≤ ‖(−∆)
s
2 g2‖L2(T2)‖(−∆)

2α+s
2 θ‖L2(T2)

≤ κ

8
‖θ‖2H2α+s(T2) + C‖g2‖2Hs(T2).

(4.12)

By Lemma 1, Hölder’s and Young’s inequalities, g1 ∈ Hs(T2) and (3.4), we have∣∣∣∣∫
T2

g1(x)f(θ)(−∆)α+sθdx

∣∣∣∣
≤ ‖(−∆)

s
2 (g1f(θ))‖L2(T2)‖(−∆)

2α+s
2 θ‖L2(T2)

≤ C
(
‖g1‖L∞(T2)‖(−∆)

s
2 f(θ)‖L2(T2) + ‖(−∆)

s
2 g1‖L2(T2)‖f(θ)‖L∞(T2)

)
‖θ‖H2α+s(T2)

≤ C‖g1‖Hs(T2)

(
1 + ‖θ‖H2α−+s(T2)

)
‖θ‖H2α+s(T2)

≤ C‖g1‖Hs(T2)

(
1 + ‖θ‖η

′

H2α+s(T2)‖θ‖
1−η′
L2(T2)

)
‖θ‖H2α+s(T2)

≤ κ

8
‖θ‖2H2α+s(T2) + C‖g1‖2Hs(T2) + C‖g1‖

2
1−η′

Hs(T2)‖θ‖
2
L2(T2),

(4.13)

where we have used the Sobolev embedding Hs(T2) ⊂ L∞(T2) for s > 1 and the
following Gagliardo-Nirenberg inequality:

‖θ‖H2α−+s(T2) ≤ C‖θ‖
η′

H2α+s(T2)‖θ‖
1−η′
L2(T2),

where η′ := 2α−+s
2α+s . Next, we analyze the last term in (4.11). By Hölder’s inequality,

we have∣∣∣∣∫
T2

(u · ∇θ)(−∆)α+sθdx

∣∣∣∣ ≤ ‖(−∆)
2α+s

2 θ‖L2(T2)‖(−∆)
s
2 (u · ∇θ)‖L2(T2). (4.14)

Note that ∇ · u = 0. Then by making use of Lemmas 1 and 2, we obtain

‖(−∆)
s
2 (u · ∇θ)‖L2(T2) = ‖(−∆)

s+1
2 (uθ)‖L2(T2)

≤ C‖(−∆)
s+1
2 u‖Lp1 (T2)‖θ‖Lp2 (T2) + C‖u‖Lp2 (T2)‖(−∆)

s+1
2 θ‖Lp1 (T2)

≤ C‖(−∆)
s+1
2 θ‖Lp1 (T2)‖θ‖Lp2 (T2),

(4.15)

where

p1 :=
1

1− α−
, p2 :=

2

2α− − 1
.

To deal with the term ‖(−∆)
s+1
2 θ‖Lp1 (T2), we use the following Gagliardo-Nirenberg

inequality:

‖(−∆)
s+1
2 θ‖Lp1 (T2) ≤ C‖(−∆)

2α+s
2 θ‖ηL2(T2)‖θ‖

1−η
L2(T2), (4.16)

where η ∈
[
s+1

2α+s , 1
)
. Then it follows from (4.14)-(4.16) and Young’s inequality that

−
∫
T2

(u · ∇θ)(−∆)α+sθdx ≤ C‖(−∆)
2α+s

2 θ‖η+1
L2(T2)‖θ‖

1−η
L2(T2)‖θ‖Lp2 (T2)

≤ κ

4
‖(−∆)

2α+s
2 θ‖2L2(T2) + C‖θ‖2L2(T2)‖θ‖

2
1−η
Lp2 (T2).

(4.17)
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Inserting (4.12)-(4.13) and (4.17) in (4.11), we obtain

d

dt
‖(−∆)

α+s
2 θ‖2L2(T2) + κ‖(−∆)

2α+s
2 θ‖2L2(T2)

≤ C‖θ‖2L2(T2)‖θ‖
2

1−η
Lp2 (T2) + C‖g2‖2Hs(T2) + C‖g1‖2Hs(T2) + C‖g1‖

2
1−η′

Hs(T2)‖θ‖
2
L2(T2).

(4.18)

Applying Gronwall’s inequality to (4.18) and using

κ‖(−∆)
2α+s

2 θ‖2L2(T2) ≥ κλ
2α
1 ‖(−∆)

α+s
2 θ‖2L2(T2),

we find that for all t ≥ 0,

‖θ(t)‖2Hα+s(T2) ≤ e
−κλ2α

1 t‖θ0‖2Hα+s(T2) + C‖g2‖2Hs(T2) + C‖g1‖2Hs(T2)

+ C‖g1‖
2

1−η′

Hs(T2)

∫ t

0

e−κλ
2α
1 (t−r)‖θ(r)‖2L2(T2)dr

+ C

∫ t

0

e−κλ
2α
1 (t−r)‖θ(r)‖2L2(T2)‖θ(r)‖

2
1−η
Lp2 (T2)dr.

(4.19)

Furthermore, integrating (4.18) from t to t + 1, we deduce from (4.19) that for all
t ≥ 0,

κ

∫ t+1

t

‖θ(r)‖2H2α+s(T2)dr ≤ e
−κλ2α

1 t‖θ0‖2Hα+s(T2) + C‖g2‖2Hs(T2) + C‖g1‖2Hs(T2)

+ C‖g1‖
2

1−η′

Hs(T2)

∫ t

0

e−κλ
2α
1 (t−r)‖θ(r)‖2L2(T2)dr

+ C

∫ t

0

e−κλ
2α
1 (t−r)‖θ(r)‖2L2(T2)‖θ(r)‖

2
1−η
Lp2 (T2)dr

+ C‖g1‖
2

1−η′

Hs(T2)

∫ t+1

t

‖θ(r)‖2L2(T2)dr

+ C

∫ t+1

t

‖θ(r)‖2L2(T2)‖θ(r)‖
2

1−η
Lp2 (T2)dr.

(4.20)

Inserting (4.2) with q = 2 or q = p2 into (4.19) and (4.20), the assertions of the
lemma follow.

Lemma 13. Let the conditions in Lemma 11 hold. Then for any bounded set

B ⊂ H2α−+s(T2), there exists T0 = T0(B) > 0 such that any solution θ(t, θ0) of
problem (1.1) with θ0 ∈ B satisfies

∫ t+1

t

‖∂tθ‖2Hs(T2)dτ ≤ C, ∀t ≥ T0. (4.21)
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Proof. Taking the inner product of (1.1) with (−∆)s∂tθ in L2(T2), we find that

‖(−∆)
s
2 (∂tθ)‖2L2(T2) +

κ

2

d

dt
‖(−∆)

s+α
2 θ‖2L2(T2)

=

∫
T2

F (x, θ)(−∆)s(∂tθ)dx−
∫
T2

(u · ∇θ)(−∆)s(∂tθ)dx

=

∫
T2

g1(x)f(θ)(−∆)s(∂tθ)dx+

∫
T2

g2(x)(−∆)s(∂tθ)dx

−
∫
T2

(u · ∇θ)(−∆)s(∂tθ)dx

:= I1 + I2 + I3.

(4.22)

By Lemma 1, Hölder’s and Young’s inequalities, g1 ∈ Hs(T2) and (3.4), I1 is
bounded by

I1 ≤ ‖(−∆)
s
2 (g1(x)f(θ))‖L2(T2)‖(−∆)

s
2 (∂tθ)‖L2(T2)

≤ C
(
‖g1‖L∞(T2)‖(−∆)

s
2 f(θ)‖L2(T2)

+‖(−∆)
s
2 g1‖L2(T2)‖f(θ)‖L∞(T2)

)
‖(−∆)

s
2 (∂tθ)‖L2(T2)

≤ C‖g1‖Hs(T2)

(
1 + ‖θ‖H2α−+s(T2)

)
‖∂tθ‖Hs(T2)

≤ 1

8
‖∂tθ‖2Hs(T2) + C‖g1‖2Hs(T2) + C‖g1‖2Hs(T2)‖θ‖

2
H2α+s(T2),

(4.23)

where we have used the Sobolev embedding H2α+s(T2) ⊂ H2α−+s(T2) in the last
inequality. For I2, applying Hölder’s and Young’s inequalities again, we have

I2 ≤ ‖(−∆)
s
2 g2‖L2(T2)‖(−∆)

s
2 (∂tθ)‖L2(T2) ≤

1

8
‖∂tθ‖2Hs(T2) + C‖g2‖2Hs(T2). (4.24)

Using (4.15), Hölder’s and Young’s inequalities, and the Sobolev embeddingH2α+s(T2) ⊂
Hs+1,p1(T2), we deduce that

I3 ≤ ‖(−∆)
s
2 (u · ∇θ)‖L2(T2)‖(−∆)

s
2 (∂tθ)‖L2(T2)

≤ C‖θ‖Hs+1,p1 (T2)‖θ‖Lp2 (T2)‖∂tθ‖Hs(T2)

≤ 1

4
‖∂tθ‖2Hs(T2) + C‖θ‖2H2α+s(T2)‖θ‖

2
Lp2 (T2),

(4.25)

where p1 = 1
1−α− and p2 = 2

2α−−1 are given in (4.15). Inserting (4.23)-(4.25) into

(4.22) yields

‖∂tθ‖2Hs(T2) + κ
d

dt
‖θ‖2Hα+s(T2)

≤ C‖g1‖2Hs(T2) + C‖g2‖2Hs(T2) + C
(
‖g1‖2Hs(T2) + ‖θ‖2Lp2 (T2)

)
‖θ‖2H2α+s(T2).

(4.26)

Integrating (4.26) on [t, t+ 1], in view of g1, g2 ∈ Hs(T2), (4.2) and (4.9)-(4.10), we

obtain that for any given bounded setB ⊂ H2α−+s(T2), there exists T0 = T0(B) > 0
such that any solution θ(t, θ0) of problem (1.1) with θ0 ∈ B satisfies∫ t+1

t

‖∂tθ‖2Hs(T2)dτ ≤ C, ∀t ≥ T0,

which implies the assertion of the lemma.
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Lemma 14. Let the conditions in Lemma 11 hold. Also, assume that

‖f(θ)‖L2(T2) ≤ k3

(
1 + ‖θ‖H2α(T2)

)
, θ ∈ H2α(T2), (4.27)

and f ∈ C1(R) satisfying

‖f ′(θ)‖Hs(T2) ≤ k4

(
1 + ‖θ‖Hα+s(T2)

)
, θ ∈ Hα+s(T2) (4.28)

for some k3, k4 > 0. Then, for any bounded set B ⊂ H2α−+s(T2), there exists
T1 = T1(B) > 0 such that any solution θ(t, θ0) of problem (1.1) with θ0 ∈ B
satisfies

‖∂tθ(t)‖2Hs(T2) ≤ C, ∀t ≥ T1. (4.29)

Proof. By differentiating (1.1) in time and writing w = ∂tθ, we have

∂tw + u · ∇w + κ(−∆)αw = −ut · ∇θ + g1(x)f ′(θ)w. (4.30)

Multiplying (4.30) by (−∆)sw and then integrating over T2, we obtain

1

2

d

dt

∫
T2

[(−∆)
s
2w]2dx+ κ

∫
T2

[(−∆)
s+α
2 w]2dx

=

∫
T2

g1(x)f ′(θ)w(−∆)swdx−
∫
T2

(u · ∇w)(−∆)swdx−
∫
T2

(ut · ∇θ)(−∆)swdx.

(4.31)

Now we estimate the last three terms in (4.31). First, by Hölder’s inequality and
Lemma 1, we deduce that for some 0 < 2

p3
< p4 < α,∣∣∣∣∫

T2

g1(x)f ′(θ)w(−∆)swdx

∣∣∣∣
≤ ‖(−∆)

s−α
2 (g1f

′(θ)w)‖L2(T2)‖(−∆)
s+α
2 w‖L2(T2)

≤ C‖g1f
′(θ)‖Lp3 (T2)‖w‖

H
s−α, 2p3

p3−2 (T2)
‖w‖Hs+α(T2)

+ C‖g1f
′(θ)‖

H
s−α, 2

1−α+p4 (T2)
‖w‖

L
2

α−p4 (T2)
‖w‖Hs+α(T2)

≤ C‖g1f
′(θ)‖Lp3 (T2)‖w‖η1+1

Hs+α(T2)‖w‖
1−η1
L2(T2)

+ C‖g1f
′(θ)‖

H
s−α, 2

1−α+p4 (T2)
‖w‖η2+1

Hs+α(T2)‖w‖
1−η2
L2(T2).

(4.32)

where we have used the following Gagliardo-Nirenberg inequalities:

‖w‖
H
s−α, 2p3

p3−2 (T2)
≤ C‖w‖η1Hs+α(T2)‖w‖

1−η1
L2(T2),

and

‖w‖
L

2
α−p4 (T2)

≤ C‖w‖η2Hs+α(T2)‖w‖
1−η2
L2(T2),

where η1 ∈
[
s−α
s+α , 1

)
and η2 ∈ (0, 1). Using Lemma 1 again, (4.28), g1 ∈ Hs(T2) and

the Sobolev embeddings Hs(T2) ⊂ Lp3(T2) and Hs(T2) ⊂ H
s−α, 2

1−α+p4−2/p3 (T2)
for s > 1, we have

‖g1f
′(θ)‖

H
s−α, 2

1−α+p4 (T2)
≤ C

(
‖f ′(θ)‖Lp3 (T2)‖g1‖

H
s−α, 2

1−α+p4−2/p3 (T2)

+‖g1‖Lp3 (T2)‖f ′(θ)‖
H
s−α, 2

1−α+p4−2/p3 (T2)

)
≤ C‖f ′(θ)‖Hs(T2)‖g1‖Hs(T2)
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≤ C
(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2). (4.33)

Noticing that Hs(T2) ⊂ L∞(T2) for s > 1 and g1 ∈ Hs(T2), hence

‖g1f
′(θ)‖Lp3 (T2) ≤ C‖g1‖L∞(T2)‖f ′(θ)‖Hs(T2) ≤ C

(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2),

(4.34)
where we have used the Sobolev embedding Hs(T2) ⊂ Lp3(T2) for s > 1. Inserting
(4.33) and (4.34) into (4.32), we obtain from Young’s inequality that∣∣∣∣∫

T2

g1(x)f ′(θ)w(−∆)swdx

∣∣∣∣
≤ C

(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2)

(
‖w‖η1+1

Hs+α(T2)‖w‖
1−η1
L2(T2) + ‖w‖η2+1

Hs+α(T2)‖w‖
1−η2
L2(T2)

)
≤ κ

4
‖w‖2Hs+α(T2) + C‖w‖2L2(T2)

(
1 + ‖θ‖Hs+α(T2)

) 2
1−η1 ‖g1‖

2
1−η1
Hs(T2)

+ C‖w‖2L2(T2)

(
1 + ‖θ‖Hs+α(T2)

) 2
1−η2 ‖g1‖

2
1−η2
Hs(T2).

(4.35)

Next, we consider the nonlinear terms involving ut · ∇θ and u · ∇w on the right
hand side of (4.31). Indeed, it suffices to analyze the term involving ut · ∇θ, since
the other term satisfies similar estimates. Notice that ∇ · ut = 0. Then by Hölder’s
inequality and Lemmas 1-2, we deduce that∣∣∣∣∫

T2

(ut · ∇θ)(−∆)swdx

∣∣∣∣
≤ ‖(−∆)

s+α
2 w‖L2(T2)‖(−∆)

s−α
2 (ut · ∇θ)‖L2(T2)

≤ ‖(−∆)
s+α
2 w‖L2(T2)‖(−∆)

s−α+1
2 (utθ)‖L2(T2)

≤ C‖(−∆)
s+α
2 w‖L2(T2)‖(−∆)

s−α+1
2 ut‖Lp1 (T2)‖θ‖Lp2 (T2)

+ C‖(−∆)
s+α
2 w‖L2(T2)‖ut‖Lp2 (T2)‖(−∆)

s−α+1
2 θ‖Lp1 (T2)

≤ C‖(−∆)
s+α
2 w‖L2(T2)‖(−∆)

s−α+1
2 w‖Lp1 (T2)‖θ‖Lp2 (T2)

+ C‖(−∆)
s+α
2 w‖L2(T2)‖w‖Lp2 (T2)‖(−∆)

s−α+1
2 θ‖Lp1 (T2),

(4.36)

where p1 = 1
1−α− and p2 = 2

2α−−1 are given in (4.15). Using the following
Gagliardo-Nirenberg inequalities:

‖(−∆)
s−α+1

2 w‖Lp1 (T2) ≤ C‖(−∆)
s+α
2 w‖η3L2(T2)‖w‖

1−η3
L2(T2), (4.37)

and

‖w‖Lp2 (T2) ≤ C‖(−∆)
s+α
2 w‖η4L2(T2)‖w‖

1−η4
L2(T2), (4.38)

where η3 ∈
[
s−α+1
s+α , 1

)
and η4 ∈ (0, 1), and inserting (4.37) and (4.38) into (4.36),

we obtain from Young’s inequality that∣∣∣∣∫
T2

(ut · ∇θ)(−∆)swdx

∣∣∣∣
≤ C‖(−∆)

s+α
2 w‖1+η3

L2(T2)‖w‖
1−η3
L2(T2)‖θ‖Lp2 (T2)

+ C‖(−∆)
s+α
2 w‖1+η4

L2(T2)‖w‖
1−η4
L2(T2)‖(−∆)

s+α
2 θ‖η3L2(T2)‖θ‖

1−η3
L2(T2)

≤ κ

8
‖w‖2Hs+α(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η3
Lp2 (T2) + C‖w‖2L2(T2)‖θ‖

2
1−η4
Hs+α(T2),

(4.39)
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where we have used the Sobolev embedding Hs+α(T2) ⊂ L2(T2) in the last inequal-
ity. In a similar way as above, we have∣∣∣∣∫

T2

(u · ∇w)(−∆)swdx

∣∣∣∣ ≤ κ

8
‖w‖2Hs+α(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η3
Lp2 (T2)

+ C‖w‖2L2(T2)‖θ‖
2

1−η4
Hs+α(T2).

(4.40)

Inserting (4.35) and (4.39)-(4.40) into (4.31) gives

d

dt
‖w‖2Hs(T2) + κ‖w‖2Hs+α(T2)

≤ C‖w‖2L2(T2)

(
1 + ‖θ‖Hs+α(T2)

) 2
1−η1 ‖g1‖

2
1−η1
Hs(T2)

+ C‖w‖2L2(T2)

(
1 + ‖θ‖Hs+α(T2)

) 2
1−η2 ‖g1‖

2
1−η2
Hs(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η3
Lp2 (T2)

+ C‖w‖2L2(T2)‖θ‖
2

1−η4
Hs+α(T2).

(4.41)

On the other hand, arguing as in (4.13) and (4.15)-(4.16), in view of (4.27) and
the Sobolev embeddings Hs+α(T2) ⊂ H2α(T2), Hs+α(T2) ⊂ H1,p1(T2) for s > 1
and α ∈ ( 1

2 , 1], we obtain

‖g1f(θ)‖L2(T2) ≤ ‖g1‖L∞(T2)‖f(θ)‖L2(T2)

≤ C‖g1‖Hs(T2)

(
1 + ‖θ‖H2α(T2)

)
≤ C‖g1‖Hs(T2)

(
1 + ‖θ‖Hs+α(T2)

)
,

(4.42)

‖u · ∇θ‖L2(T2) = ‖(−∆)
1
2 (uθ)‖L2(T2)

≤ C‖(−∆)
1
2u‖Lp1 (T2)‖θ‖Lp2 (T2) + C‖u‖Lp2 (T2)‖(−∆)

1
2 θ‖Lp1 (T2)

≤ C‖(−∆)
1
2 θ‖Lp1 (T2)‖θ‖Lp2 (T2)

≤ C‖θ‖Hs+α(T2)‖θ‖Lp2 (T2),

(4.43)

where p1 = 1
1−α− and p2 = 2

2α−−1 are given in (4.15). By (4.42)-(4.43) and g1, g2 ∈
Hs(T2), it follows from (1.1) that

‖w‖2L2(T2) = ‖∂tθ‖2L2(T2)

≤ C‖u · ∇θ‖2L2(T2) + C‖(−∆)αθ‖2L2(T2) + ‖g1f(θ)‖2L2(T2) + C‖g2‖2L2(T2)

≤ C‖θ‖2Hs+α(T2)‖θ‖
2
Lp2 (T2) + C‖θ‖2Hs+α(T2)

+ C‖g1‖2Hs(T2)

(
1 + ‖θ‖2Hs+α(T2)

)
+ C‖g2‖2L2(T2).

This together with (4.2) and (4.9) implies that for any given bounded set B ⊂
Hs+2α−(T2), there exists a T ′1 = T ′1(B) > 0 such that any solution θ(t, θ0) of
problem (1.1) with θ0 ∈ B satisfies

‖θ(t)‖2Hα+s(T2) ≤ C, ∀t ≥ T ′1, (4.44)

‖∂tθ(t)‖2L2(T2) ≤ C, ∀t ≥ T ′1. (4.45)

Combining (4.44)-(4.45) and g1, g2 ∈ Hs(T2), we obtain from (4.41) that

d

dt
‖w‖2Hs(T2) + κ‖w‖2Hs+α(T2) ≤ C, ∀t ≥ T ′1. (4.46)
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Finally, applying the uniform Gronwall lemma and (4.21), the assertion of the
lemma follows.

Finally, we establish uniform estimates for θ in H2α+s(T2).

Lemma 15. Let conditions in Lemma 14 hold. Then for any bounded set B ⊂
H2α−+s(T2), there exists T2 = T2(B) > 0 such that any solution θ(t, θ0) of problem
(1.1) with θ0 ∈ B satisfies

‖θ(t)‖2H2α+s(T2) ≤ C, ∀t ≥ T2. (4.47)

Proof. Applying the operator (−∆)
s
2 to (1.1), in view of (1.2), we find that

‖(−∆)
2α+s

2 θ‖2L2(T2) ≤ C‖(−∆)
s
2 (∂tθ)‖2L2(T2) + C‖(−∆)

s
2 g2‖2L2(T2)

+ C‖(−∆)
s
2 (u · ∇θ)‖2L2(T2) + C‖(−∆)

s
2 (g1f(θ))‖2L2(T2)

:= C‖(−∆)
s
2 (∂tθ)‖2L2(T2) + C‖g2‖2Hs(T2) + I4 + I5.

(4.48)

By (4.15)-(4.16) and Young’s inequality, I4 is bounded by

I4 ≤ C‖(−∆)
s+1
2 θ‖2Lp1 (T2)‖θ‖

2
Lp2 (T2)

≤ C‖(−∆)
2α+s

2 θ‖2ηL2(T2)‖θ‖
2−2η
L2(T2)‖θ‖

2
Lp2 (T2)

≤ 1

4
‖(−∆)

2α+s
2 θ‖2L2(T2) + C‖θ‖2L2(T2)‖θ‖

2
1−η
Lp2 (T2),

(4.49)

where η ∈
[
s+1

2α+s , 1
)
, p1 = 1

1−α− and p2 = 2
2α−−1 are given in (4.15) and (4.16).

Arguing as in (4.13), we have

I5 ≤ C‖g1‖2Hs(T2)

(
1 + ‖θ‖2

H2α−+s(T2)

)
≤ C‖g1‖2Hs(T2)

(
1 + ‖θ‖2η

′

H2α+s(T2)‖θ‖
2−2η′

L2(T2)

)
≤ 1

4
‖(−∆)

2α+s
2 θ‖2L2(T2) + C‖g1‖

2
1−η′

Hs(T2)‖θ‖
2
L2(T2) + C‖g1‖2Hs(T2).

(4.50)

Inserting (4.49) and (4.50) into (4.48) gives

‖θ‖2H2α+s(T2) ≤ C‖∂tθ‖
2
Hs(T2) + C‖θ‖2L2(T2)‖θ‖

2
1−η
Lp2 (T2) + C‖g1‖

2
1−η′

Hs(T2)‖θ‖
2
L2(T2)

+ C‖g1‖2Hs(T2) + C‖g2‖2Hs(T2).

(4.51)

Using g1, g2 ∈ Hs(T2), (4.2) and (4.29), the assertion of the lemma follows from
(4.51).

5. Existence and regularity of global attractors. In this section, we prove the

existence of an (H2α−+s(T2), H2α−+s(T2))-global attractor and an (H2α−+s(T2),
H2α+s(T2))-global attractor for the semigroup associated with the 2D quasi-geostrophic
equation (1.1).

Theorem 16. Assume that the conditions of Lemma 14 hold. Then the semigroup

{S(t)}t≥0 associated with problem (1.1) has an (H2α−+s(T2), H2α−+s(T2))-global
attractor.
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Proof. Lemma 15 implies that {S(t)}t≥0 has a bounded absorbing set in H2α+s(T2),

and is asymptotically compact in H2α−+s(T2). Hence the existence of an (H2α−+s

(T2), H2α−+s(T2))-global attractor for {S(t)}t≥0 follows from Proposition 9.

In order to obtain the existence of the (H2α−+s(T2), H2α+s(T2))-global attractor,
we need the following auxiliary lemma.

Lemma 17. Assume that the conditions of Lemma 14 hold. Then for any bounded

set B ⊂ H2α−+s(T2), there exist T3 = T3(B) > 0 and N0 ≥ 1 such that any solution
θ(t, θ0) of problem (1.1) with θ0 ∈ B satisfies

‖(I − Pm)∂tθ(t)‖2Hs(T2) ≤ ε, ∀t ≥ T3, m ≥ N0, (5.1)

where Pm : L2(T2) → Hm is the projection operator and Hm is the space spanned
by {ej}mj=1.

Proof. Let w2 = (I − Pm)w. Multiplying (4.30) by (∆)sw2 and then integrating
over T2, we have

1

2

d

dt

∫
T2

[(−∆)
s
2w2]2dx+ κ

∫
T2

[(−∆)
s+α
2 w2]2dx

=

∫
T2

g1(x)f ′(θ)w(−∆)sw2dx−
∫
T2

(u · ∇w)(−∆)sw2dx−
∫
T2

(ut · ∇θ)(−∆)sw2dx.

(5.2)

For the first term on the right-hand side of (5.2), by similar arguments as in (4.32)-
(4.34) we obtain

∣∣∣∣∫
T2

g1(x)f ′(θ)w(−∆)sw2dx

∣∣∣∣
≤ ‖(−∆)

s−α
2 (g1f

′(θ)w)‖L2(T2)‖(−∆)
s+α
2 w2‖L2(T2)

≤ C‖g1f
′(θ)‖Lp3 (T2)‖w‖

H
s−α, 2p3

p3−2 (T2)
‖w2‖Hs+α(T2)

+ C‖g1f
′(θ)‖

H
s−α, 2

1−α+p4 (T2)
‖w‖

L
2

α−p4 (T2)
‖w2‖Hs+α(T2)

≤ C
(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2)‖w‖Hs(T2)‖w2‖Hs+α(T2)

≤ κ

4
‖w2‖2Hs+α(T2) + C

(
1 + ‖θ‖2Hs+α(T2)

)
‖g1‖2Hs(T2)‖w‖

2
Hs(T2),

(5.3)

where p3 and p4 are given in (4.32), and we have used Young’s inequality and the

Sobolev embeddings Hs(T2) ⊂ Hs−α, 2p3
p3−2 (T2) and Hs(T2) ⊂ L

2
α−p4 (T2) for s > 1.

For the last term in (5.2), by Lemmas 1-2, Hölder’s and Young’s inequalities, we
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find that ∣∣∣∣∫
T2

(ut · ∇θ)(−∆)sw2dx

∣∣∣∣
≤ ‖(−∆)

s+α
2 w2‖L2(T2)‖(−∆)

s−α
2 (ut · ∇θ)‖L2(T2)

≤ C‖(−∆)
s+α
2 w2‖L2(T2)‖(−∆)

s−α
2 ut‖Lp5 (T2)‖∇θ‖Lp6 (T2)

+ C‖(−∆)
s+α
2 w2‖L2(T2)‖ut‖Lp2 (T2)‖(−∆)

s−α+1
2 θ‖Lp1 (T2)

≤ C‖(−∆)
s+α
2 w2‖L2(T2)‖(−∆)

s−α
2 w‖Lp5 (T2)‖∇θ‖Lp6 (T2)

+ C‖(−∆)
s+α
2 w2‖L2(T2)‖w‖Lp2 (T2)‖(−∆)

s−α+1
2 θ‖Lp1 (T2)

≤ C‖w2‖Hs+α(T2)‖w‖Hs(T2)‖θ‖Hs+α(T2)

≤ κ

8
‖w2‖2Hα+s(T2) + C‖w‖2Hs(T2)‖θ‖

2
Hs+α(T2),

(5.4)

where

p1 =
1

1− α−
, p2 =

2

2α− − 1
, p5 =

2

1− α−
, p6 =

2

α−
,

and we have used the Sobolev embeddings Hs(T2) ⊂ Hs−α,p5(T2), Hs(T2) ⊂
Lp2(T2), Hs+α(T2) ⊂ H1,p6(T2) and Hs+α(T2) ⊂ Hs−α+1,p1(T2) in the last in-
equality. For the second term on the right-hand side of (5.2), noticing that (−∆)

s
2

and ∇ are commutable, and

〈u · ∇((−∆)
s
2w2), (−∆)

s
2w2〉 = 0,

hence we have

−
∫
T2

(u · ∇w)(−∆)sw2dx = −〈(−∆)
s
2 (u · ∇w2)− u · ∇((−∆)

s
2w2), (−∆)

s
2w2〉

− 〈(−∆)
s
2 (u · ∇w1), (−∆)

s
2w2〉

= −〈(−∆)
s
2 (u · ∇w2)− u · ((−∆)

s
2∇w2), (−∆)

s
2w2〉

− 〈(−∆)
s
2 (u · ∇w1), (−∆)

s
2w2〉

:= I6 + I7,

(5.5)

where 〈·, ·〉 denotes the inner product in L2(T2) and w1 = Pmw. Then using Lemmas
1-2 and Hölder’s inequality, we obtain

|I6| ≤ C‖w2‖Hs(T2)

(
‖∇u‖Lp6 (T2)‖(−∆)

s−1
2 ∇w2‖Lp5 (T2)

+ ‖(−∆)
s
2u‖Lp6 (T2)‖∇w2‖Lp5 (T2)

)
≤ C‖w2‖Hs(T2)

(
‖∇θ‖Lp6 (T2)‖w2‖Hs,p5 (T2) + ‖θ‖Hs,p6 (T2)‖∇w2‖Lp5 (T2)

)
≤ C‖w‖Hs(T2)‖θ‖Hs+α(T2)‖w2‖Hs+α(T2),

(5.6)

where p5 = 2
1−α− , p6 = 2

α− , and we have used the Sobolev embeddings Hs+α(T2) ⊂
Hs,p6(T2) and Hs+α(T2) ⊂ Hs,p5(T2). By similar arguments as in (4.36), using the
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equivalence property of norm in the finite dimensional case, I7 is bounded by

|I7| ≤ ‖(−∆)
s
2w2‖L2(T2)‖(−∆)

s
2 (u · ∇w1)‖L2(T2)

≤ C‖(−∆)
s
2w2‖L2(T2)‖(−∆)

s+1
2 (uw1)‖L2(T2)

≤ C‖(−∆)
s
2w2‖L2(T2)‖(−∆)

s+1
2 u‖Lp1 (T2)‖w1‖Lp2 (T2)

+ C‖(−∆)
s
2w2‖L2(T2)‖u‖Lp2 (T2)‖(−∆)

s+1
2 w1‖Lp1 (T2)

≤ C‖(−∆)
s
2w2‖L2(T2)‖(−∆)

s+1
2 θ‖Lp1 (T2)‖w1‖Lp2 (T2)

+ C‖(−∆)
s
2w2‖L2(T2)‖θ‖Lp2 (T2)‖(−∆)

s+1
2 w1‖Lp1 (T2)

≤ C‖w2‖Hs+α(T2)‖θ‖H2α+s(T2)‖w‖Hs(T2),

(5.7)

where p1 = 1
1−α− and p2 = 2

2α−−1 are given in (4.15), and we have used the Sobolev

embeddings Hα+s(T2) ⊂ Hs(T2), H2α+s(T2) ⊂ Hs+1,p1(T2) and H2α+s(T2) ⊂
Lp2(T2). Inserting (5.6) and (5.7) into (5.5) gives∣∣∣∣∫

T2

(u · ∇w)(−∆)sw2dx

∣∣∣∣ ≤ C‖w2‖Hs+α(T2)‖θ‖H2α+s(T2)‖w‖Hs(T2)

≤ κ

8
‖w2‖2Hs+α(T2) + C‖w‖2Hs(T2)‖θ‖

2
H2α+s(T2),

(5.8)

due to Young’s inequality and the Sobolev embedding H2α+s(T2) ⊂ Hs+α(T2).
Combining (5.2)-(5.4) and (5.8), we have

d

dt
‖w2‖2Hs(T2) + κ‖w2‖2Hs+α(T2)

≤ C
(

1 + ‖θ‖2Hs+α(T2)

)
‖g1‖2Hs(T2)‖w‖

2
Hs(T2) + C‖w‖2Hs(T2)‖θ‖

2
H2α+s(T2).

(5.9)

From (4.9), (4.29) and (4.47) we see that for any given bounded setB ⊂ Hs+2α−(T2),
there exists a T ′3 = T ′3(B) > 0 such that any solution θ(t, θ0) of problem (1.1) with
θ0 ∈ B satisfies

‖θ(t)‖2Hs+α(T2) ≤ C, ∀t ≥ T ′3, (5.10)

‖θ(t)‖2H2α+s(T2) ≤ C, ∀t ≥ T ′3, (5.11)

‖∂tθ(t)‖2Hs(T2) ≤ C, ∀t ≥ T ′3. (5.12)

Then (5.9)-(5.12) and g1 ∈ Hs(T2) imply that

d

dt
‖w2‖2Hs(T2) + κλ2α

m+1‖w2‖2Hs(T2) ≤ C, ∀t ≥ T ′3.

Finally, by Gronwall’s inequality we obtain (5.1), and thus the proof of this lemma
is completed.

We are now ready to prove the main result of this section.

Theorem 18. Assume that the conditions of Lemma 14 hold. Then the semigroup

{S(t)}t≥0 associated with problem (1.1) has an (H2α−+s(T2), H2α+s(T2))-global at-
tractor A.

Proof. Thanks to Theorem 16 and Proposition 9, now it only remains to show that

the semigroup {S(t)}t≥0 is (H2α−+s(T2), H2α+s(T2))-asymptotically compact.

Let a bounded set B ⊂ H2α−+s(T2), sequences {tn}∞n=1 with tn → +∞ and
{θn0 }∞n=1 ⊂ B are given arbitrarily. We will show that the sequence {S(tn)θn0 }∞n=1

has a convergent subsequence in H2α+s(T2). Notice that Lemma 15 implies that
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{S(tn)θn0 }∞n=1 is bounded inH2α+s(T2). By the compactness of embeddingH2α+s(T2) ⊂
H2α−+s(T2), it follows that there is ξ ∈ H2α−+s(T2) such that, up to a subsequence,

S(tn)θn0 → ξ strongly in H2α−+s(T2). (5.13)

This together with (3.1) implies that

{un(tn) · ∇θn(tn)}∞n=1 is a Cauchy sequence in Hs(T2). (5.14)

Since f : H2α−+s(T2) → Hs(T2) is Lipschitz continuous on bounded subset of

H2α−+s(T2), in view of (1.2) and (5.13), we have that

{F (x, θn(tn))}∞n=1 is a Cauchy sequence in Hs(T2). (5.15)

Observe that

∂θn(tn)

∂tn
− ∂θn

′
(tn′)

∂tn′
+ un(tn) · ∇θn(tn)− un

′
(tn′) · ∇θn

′
(tn′)

+ κ(−∆)α(θn(tn)− θn
′
(tn′)) = F (x, θn(tn))− F (x, θn

′
(tn′)).

(5.16)

Taking the inner product of (5.16) with (−∆)α+s(θn(tn)− θn′(tn′)), we obtain

κ‖θn(tn)− θn
′
(tn′)‖2H2α+s(T2)

= −

〈
(−∆)

s
2

(
∂θn(tn)

∂tn
− ∂θn

′
(tn′)

∂tn′

)
, (−∆)

2α+s
2

(
θn(tn)− θn

′
(tn′)

)〉
−
〈

(−∆)
s
2

(
un(tn) · ∇θn(tn)− un

′
(tn′) · ∇θn

′
(tn′)

)
,

(−∆)
2α+s

2

(
θn(tn)− θn

′
(tn′)

)〉
+
〈

(−∆)
s
2

(
F (x, θn(tn))− F (x, θn

′
(tn′))

)
, (−∆)

2α+s
2

(
θn(tn)− θn

′
(tn′)

)〉
≤ κ

2
‖θn(tn)− θn

′
(tn′)‖2H2α+s(T2) + C

∥∥∥∥∥∂θn(tn)

∂tn
− ∂θn

′
(tn′)

∂tn′

∥∥∥∥∥
2

Hs(T2)

+ C‖un(tn) · ∇θn(tn)− un
′
(tn′) · ∇θn

′
(tn′)‖2Hs(T2)

+ ‖F (x, θn(tn))− F (x, θn
′
(tn′))‖2Hs(T2),

(5.17)

thanks to Young’s and Hölder’s inequalities. Lemma 17 implies that for every ε > 0,
there exist N ′0 > 0 and m0 ≥ 1 such that∥∥∥∥(I − Pm0)

∂θn(tn)

∂tn

∥∥∥∥
Hs(T2)

+

∥∥∥∥∥(I − Pm0
)
∂θn

′
(tn′)

∂tn′

∥∥∥∥∥
Hs(T2)

≤ ε, ∀n, n′ ≥ N ′0.

(5.18)

On the other hand, by (4.29) we find that the sequence
{
Pm0

∂θn(tn)
∂tn

}∞
n=1

is bounded

in Hs(T2), and thus
{
Pm0

∂θn(tn)
∂tn

}∞
n=1

is precompact in Hs(T2). This together with

(5.18) shows that
{
∂θn(tn)
∂tn

}∞
n=1

has a finite open covering of balls with radii less

than ε in Hs(T2). This implies that, up to a subsequence,{
∂θn(tn)

∂tn

}∞
n=1

is a Cauchy sequence in Hs(T2). (5.19)
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Combining (5.14)-(5.15), (5.17) and (5.19), we have that, up to a subsequence,

{θn(tn)}∞n=1 is a Cauchy sequence in H2α+s(T2),

and thus {S(t)}t≥0 is (H2α−+s(T2), H2α+s(T2))-asymptotically compact. The proof
of this theorem is completed.

6. Exponential attractors. In this section, we are concerned with the construc-
tion of exponential attractors. First, we recall the definition of exponential attrac-
tors and the fractal dimension for a general set.

Definition 19. Let A be a compact subset of a Banach space X. Then the fractal

dimension dimf
X(A) of A is defined by

dimf
X(A) = lim sup

ε→0

log N̂(A, ε)

log 1
ε

,

where ε > 0 and N̂(A, ε) is the minimal number of closed balls in X having a radius
ε which cover the set A.

In particular, when dimf
X(A) <∞, A is said to have a finite fractal dimension.

Definition 20. Let {S(t)}t≥0 be a semigroup on a Banach space X, and let A ⊂ X
be a global attractor of {S(t)}t≥0 in X. Then a setM⊂ X is called an exponential
attractor for {S(t)}t≥0 in X if the following properties hold:

(i) M is a compact subset of X such that A ⊂M ⊂ X;
(ii) M is positively invariant, i.e., S(t)M⊂M for all t ≥ 0;

(iii) M has finite fractal dimension in X;
(iv) M attracts exponentially every bounded subset of X, i.e., there exists an

exponent σ > 0 such that for any bounded set B ⊂ X,
distX(S(t)B,M) ≤ CBe−σt, t ≥ t̂B

with two positive constants CB and t̂B depending on B.

For the convenience of applications, we reformulate the abstract result on the
construction of exponential attractors [4, 14, 17, 39] for {S(t)}t≥0 under slightly
modified conditions.

Theorem 21. Let {S(t)}t≥0 be a semigroup on a Banach space X, and let A ⊂ X
be a global attractor of {S(t)}t≥0 in X. Assume that there exists a closed bounded
set X ⊂ X satisfying:

(i) it is positively invariant, i.e., S(t)X ⊂ X for all t ≥ 0;
(ii) it is an absorbing set of {S(t)}t≥0, i.e., for any bounded set B ⊂ X, there

exists a time tB > 0 such that S(t)B ⊂ X for all t ≥ tB ;
(iii) there exist 0 < γ1 ≤ 1, 0 < γ2 ≤ 1, t∗ > 0 and L = L(t∗) > 0 such that for

any t1, t2 ∈ [t∗, 2t∗] and u, v ∈ X,

‖S(t1)u− S(t2)v‖X ≤ L (|t1 − t2|γ1 + ‖u− v‖γ2X ) ;

(iv) there exist a positive constant δ ∈
[
0, 1

2

)
and a N -dimensional subspace XN

of X such that the bounded projection PN : X → XN satisfies that for any
u, v ∈ X,

‖(I − PN )(S(t∗)u− S(t∗)v)‖X ≤ δ‖u− v‖γ2X .
Then the semigroup {S(t)}t≥0 has an exponential attractor E satisfying the following
properties:
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(1) E contains a global attractor A of {S(t)}t≥0;
(2) E is a compact subset of X with finite fractal dimension

dimf
X(E) ≤ 1

γ0

(
− log N̂µ

log aµ
+ 1

)
;

(3) E is positively invariant, i.e., S(t)E ⊂ E for all t ≥ 0;

(4) distX(S(t)X, E) ≤ L(Rγ2)γ2a−2γ2
µ e−( γ2t∗ log a−1

µ )t for every t ≥ t∗.
Here γ0 = min{γ1, γ2}, R is the diameter of X, 0 < aµ < 1 is the exponent given by

aµ = 2(δ + µL) with 0 < µ < 1−2δ
2L , and N̂µ is the minimal number of closed balls

of X with radius µ which cover the closed unit ball of XN , BN (0; 1) = {x ∈ XN :
‖x‖X ≤ 1} centered at 0.

Proof. Following a similar procedure to the method given in [17, 39], we can con-
struct the exponential attractor E for {S(t)}t≥0.

(1) Let Sn = S(nt∗) for n ∈ N. We will first construct an exponential attractor
E∗ for the discrete dynamical system {Sn}n≥0.

Let µ be any exponent such that 0 < µ < 1−2δ
2L , and let aµ = 2(δ + µL). Then

it is clear that 0 < aµ < 1. The closed unit ball, BN (0; 1) = {x ∈ XN : ‖x‖X ≤ 1}
centered at 0, is a finite N -dimensional compact ball in X. Therefore, BN (0; 1) can

be covered by finite closed balls of X with radius µ. Denote by N̂µ the minimal
number of balls of X with radius µ which cover BN (0; 1). Following the arguments
in [39, Theorem 6.12] step by step, we obtain that for n = 0, 1, 2, · · · , there exists
a finite covering of SnX such that

SnX ⊂
N̂nµ⋃
i=1

B(Wn,i;R
γ2anµ),

with centers Wn,i ∈ SnX, 1 ≤ i ≤ N̂n
µ , where R is the diameter of X.

Let P = {Wn,i : 0 ≤ n <∞, 1 ≤ i ≤ N̂n
µ } and E∗ =

⋃∞
n=0 S

nP. Then E∗ is an
exponential attractor for the discrete dynamical system {Sn}n≥0. More precisely,
E∗ contains a global attractor A∗ of {Sn}n≥0, the fractal dimension of E∗ is

dimf
X(E∗) ≤ − log N̂µ

log aµ
, (6.1)

SnE∗ ⊂ E∗ for each n and

distX(SnX, E∗) ≤ Rγ2anµ for all n ≥ 0. (6.2)

(2) Now we consider the continuous case. To this aim, we define

E =
⋃

t∈[t∗,2t∗]

S(t)E∗.

Thanks to the condition (iii), it is obvious that E is compact. Then it follows from
(6.1) and the condition (iii) that

dimf
X(E) ≤ 1

γ0

(
1 + dimf

X(E∗)
)
≤ 1

γ0

(
1− log N̂µ

log aµ

)
,

where γ0 = min{γ1, γ2}. Moreover, by the positive invariance for the discrete expo-
nential attractor, we have S(t)E ⊂ E for any t ≥ 0.
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For t ≥ t∗, writing t = nt∗ + τ with n ≥ 1 and τ ∈ [0, t∗], by the condition (iii)
we obtain that

distX(S(t)X, E) ≤ distX(S(t)X, S(t∗)E∗) ≤ L(distX(S(t− t∗)X, E∗))γ2 . (6.3)

Furthermore, using the condition (i) and (6.2), we have

distX(S(t− t∗)X, E∗) ≤ distX(S((n− 1)t∗)S(τ)X, E∗)
≤ distX(Sn−1X, E∗)

≤ Rγ2an−1
µ = Rγ2a−1

µ a
t−τ
t∗
µ

≤ Rγ2a−2
µ e−( 1

t∗ log a−1
µ )t.

This and (6.3) imply that for all t ≥ t∗,

distX(S(t)X, E) ≤ L(Rγ2)γ2a−2γ2
µ e−( γ2t∗ log a−1

µ )t. (6.4)

By the condition (ii), we conclude that for the global attractor A of {S(t)}t≥0,
there exists a time tA > 0 such that S(t)A ⊂ X for all t ≥ tA. This and the
invariance of A ensure that

distX(A, E) = distX(S(t)A, E) ≤ distX(S((t− tA)X, E)).

Thanks to (6.4), we see that A ⊂ E .
The proof is complete.

In order to construct an exponential attractor E for the semigroup {S(t)}t≥0

associated with (1.1) in H2α+s(T2) with α > 1
2 and s > 1, now it suffices to show

that there exists a closed bounded set X ⊂ H2α+s(T2) having the properties (i)-(iv)
in Theorem 21.

Lemma 15 implies that {S(t)}t≥0 has a closed bounded absorbing set B in
H2α+s(T2), and there exists a time tB > 0 such that S(t)B ⊂ B for every t ≥ tB.
We define

X =
⋃
t≥tB

S(t)B. (6.5)

Then it follows that X is a closed bounded set in H2α+s(T2), and the conditions (i)
and (ii) in Theorem 21 are fulfilled.

In order to verify the Hölder continuity property, we need the following lemma
on estimates of ∂tθ.

Lemma 22. Assume that the conditions of Lemma 14 hold. Then for any fixed η̃
with 0 < η̃ ≤ 2α− 2α−, there exists T ∗0 = T ∗0 (X) > 0 such that any solution θ(t, θ0)
of problem (1.1) with θ0 ∈ X satisfies for any t1, t2 ≥ T ∗0 ,∫ t2

t1

‖∂tθ‖2H2α+s−η̃(T2)dτ ≤ C|t2 − t1|+ C. (6.6)

Proof. Multiplying (4.30) by (−∆)α+s−η̃w and then integrating over T2, we obtain

1

2

d

dt

∫
T2

[(−∆)
α+s−η̃

2 w]2dx+ κ

∫
T2

[(−∆)
s−η̃+2α

2 w]2dx

=

∫
T2

g1(x)f ′(θ)w(−∆)α+s−η̃wdx−
∫
T2

(u · ∇w)(−∆)α+s−η̃wdx

−
∫
T2

(ut · ∇θ)(−∆)α+s−η̃wdx.

(6.7)
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For the first term on the right-hand side of (6.7), by similar arguments as in (4.32)-
(4.34) we have∣∣∣∣∫

T2

g1(x)f ′(θ)w(−∆)α+s−η̃wdx

∣∣∣∣
≤ ‖(−∆)

s−η̃
2 (g1f

′(θ)w)‖L2(T2)‖(−∆)
s−η̃+2α

2 w‖L2(T2)

≤ C‖g1f
′(θ)‖

Lp
′
3 (T2)
‖w‖

H
s−η̃,

2p′3
p′3−2 (T2)

‖w‖Hs−η̃+2α(T2)

+ C‖g1f
′(θ)‖

H
s−η̃, 2

1−η̃+p′4 (T2)
‖w‖

L

2
η̃−p′4 (T2)

‖w‖Hs−η̃+2α(T2)

≤ C
(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2)‖w‖Hs(T2)‖w‖Hs−η̃+2α(T2)

+ C

(
‖f ′(θ)‖

Lp
′
3 (T2)
‖g1‖

H
s−η̃, 2

1−η̃+p′4−2/p′3 (T2)

+ ‖g1‖Lp′3 (T2)
‖f ′(θ)‖

H
s−η̃, 2

1−η̃+p′4−2/p′3 (T2)

)
‖w‖Hs(T2)‖w‖Hs−η̃+2α(T2)

≤ C
(
1 + ‖θ‖Hs+α(T2)

)
‖g1‖Hs(T2)‖w‖Hs(T2)‖w‖Hs−η̃+2α(T2)

≤ κ

4
‖w‖2Hs−η̃+2α(T2) + C

(
1 + ‖θ‖2Hs+α(T2)

)
‖g1‖2Hs(T2)‖w‖

2
Hs(T2)

(6.8)

for some 0 < 2
p′3

< p′4 < η̃, and we have used Lemma 1, Young’s inequality and

the Sobolev embeddings Hs(T2) ⊂ H
s−η̃, 2p′3

p′3−2 (T2), Hs(T2) ⊂ L∞(T2), Hs(T2) ⊂
L

2
η̃−p′4 (T2), Hs(T2) ⊂ Lp′3(T2) and Hs(T2) ⊂

H
s−η̃, 2

1−η̃+p′4−2/p′3 (T2) for s > 1. For the last term in (6.7), using Lemmas 1-2,
Hölder’s and Young’s inequalities, we deduce that∣∣∣∣∫

T2

(ut · ∇θ)(−∆)α+s−η̃wdx

∣∣∣∣
≤ ‖(−∆)

s−η̃+2α
2 w‖L2(T2)‖(−∆)

s−η̃
2 (ut · ∇θ)‖L2(T2)

≤ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖(−∆)
s−η̃
2 ut‖Lp′5 (T2)

‖∇θ‖
Lp
′
6 (T2)

+ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖ut‖Lp′2 (T2)
‖(−∆)

s−η̃+1
2 θ‖

Lp
′
1 (T2)

≤ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖(−∆)
s−η̃
2 w‖

Lp
′
5 (T2)
‖∇θ‖

Lp
′
6 (T2)

+ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖w‖Lp′2 (T2)
‖(−∆)

s−η̃+1
2 θ‖

Lp
′
1 (T2)

≤ C‖w‖Hs−η̃+2α(T2)‖w‖Hs(T2)‖θ‖Hs+2α(T2)

≤ κ

8
‖w‖2Hs−η̃+2α(T2) + C‖w‖2Hs(T2)‖θ‖

2
Hs+2α(T2),

(6.9)

where

p′1 =
1

1− α
, p′2 =

2

2α− 1
, p′5 =

2

1− η̃
, p′6 =

2

η̃
,

and we have used the Sobolev embeddings Hs(T2) ⊂ Hs−η̃,p′5(T2), Hs+2α(T2) ⊂
H1,p′6(T2), Hs(T2) ⊂ Lp

′
2(T2), Hs+2α(T2) ⊂ Hs−η̃+1,p′1(T2) in the last inequality.

Arguing as in (4.36)-(4.39), the second term on the right-hand side of (6.7) is
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bounded by∣∣∣∣∫
T2

(u · ∇w)(−∆)α+s−η̃wdx

∣∣∣∣
≤ ‖(−∆)

s−η̃+2α
2 w‖L2(T2)‖(−∆)

s−η̃
2 (u · ∇w)‖L2(T2)

≤ ‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖(−∆)
s−η̃+1

2 (uw)‖L2(T2)

≤ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖(−∆)
s−η̃+1

2 u‖Lp1 (T2)‖w‖Lp2 (T2)

+ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖u‖Lp2 (T2)‖(−∆)
s−η̃+1

2 w‖Lp1 (T2)

≤ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖(−∆)
s−η̃+1

2 θ‖Lp1 (T2)‖w‖Lp2 (T2)

+ C‖(−∆)
s−η̃+2α

2 w‖L2(T2)‖θ‖Lp2 (T2)‖(−∆)
s−η̃+1

2 w‖Lp1 (T2)

≤ C‖(−∆)
s−η̃+2α

2 w‖1+η′4
L2(T2)‖w‖

1−η′4
L2(T2)‖(−∆)

s−η̃+1
2 θ‖Lp1 (T2)

+ C‖(−∆)
s−η̃+2α

2 w‖1+η′3
L2(T2)‖w‖

1−η′3
L2(T2)‖θ‖Lp2 (T2)

≤ κ

8
‖w‖2Hs−η̃+2α(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η′4
Hs+2α(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η′3
Hs+2α(T2).

(6.10)

Here p1 = 1
1−α− , p2 = 2

2α−−1 , and we have used the Sobolev embeddingsHs+2α(T2) ⊂
Hs−η̃+1,p1(T2), Hs+2α(T2) ⊂ Lp2(T2), and the following Gagliardo-Nirenberg in-
equalities:

‖(−∆)
s−η̃+1

2 w‖Lp1 (T2) ≤ C‖(−∆)
s−η̃+2α

2 w‖η
′
3

L2(T2)‖w‖
1−η′3
L2(T2),

‖w‖Lp2 (T2) ≤ C‖(−∆)
s−η̃+2α

2 w‖η
′
4

L2(T2)‖w‖
1−η′4
L2(T2),

where η′3 ∈
[
s−η̃+1
s−η̃+2α , 1

)
and η′4 ∈ (0, 1).

Inserting (6.8)-(6.10) into (6.7) gives

d

dt
‖w‖2Hα+s−η̃(T2) + κ‖w‖2Hs−η̃+2α(T2)

≤ C
(

1 + ‖θ‖2Hs+α(T2)

)
‖g1‖2Hs(T2)‖w‖

2
Hs(T2) + C‖w‖2Hs(T2)‖θ‖

2
Hs+2α(T2)

+ C‖w‖2L2(T2)‖θ‖
2

1−η′4
Hs+2α(T2) + C‖w‖2L2(T2)‖θ‖

2
1−η′3
Hs+2α(T2).

(6.11)

Recall that θ0 ∈ X and X is a closed bounded set in H2α+s(T2) having the pos-
itively invariant property. In view of Lemma 14, we deduce that there exists
T ∗∗0 = T ∗∗0 (X) > 0 such that any solution θ(t, θ0) of problem (1.1) with θ0 ∈ X
satisfies

‖∂tθ(t)‖2Hs(T2) ≤ C, ∀t ≥ T ∗∗0 ,

‖∂tθ(t)‖2L2(T2) ≤ C, ∀t ≥ T ∗∗0 ,

and by (4.46), we have that for any t1, t2 ≥ T ∗∗0 ,∫ t2

t1

‖∂tθ‖2Hs+α(T2)dτ ≤ C|t2 − t1|+ C.
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Using g1 ∈ Hs(T2) and the Sobolev embedding Hs+2α(T2) ⊂ Hs+α(T2), it follows
from (6.11) that

d

dt
‖w‖2Hα+s−η̃(T2) + κ‖w‖2Hs−η̃+2α(T2) ≤ C, ∀t ≥ T ∗∗0 . (6.12)

Applying the uniform Gronwall lemma to (6.12) results in

‖∂tθ(t)‖2Hα+s−η̃(T2) ≤ C, ∀t ≥ T ∗∗0 + 1. (6.13)

Integrating the differential inequality (6.12), then the assertion of the lemma follows
immediately from (6.13).

The Lipschitz continuity of the solutions with respect to the initial data is pre-
sented in the following lemma.

Lemma 23. Assume that the conditions of Lemma 14 hold. Let θ and ξ be the
solutions of problem (1.1) with the initial data θ0 and ξ0 ∈ X, respectively. Then,
for any fixed η̃ with 0 < η̃ < 2α− 2α−,

‖θ(t)− ξ(t)‖H2α−+s(T2) ≤ C‖θ0 − ξ0‖H2α−+s(T2)e
C
ν te−

κλ2α1
4 t,

‖θ(t)− ξ(t)‖H2α+s−η̃(T2) ≤ Ce−
κλ2α1

2 tt−
α−α−− η̃

2
α ‖θ0 − ξ0‖H2α−+s(T2)

+ Ce−
κλ2α1

4 te
C
ν t‖θ0 − ξ0‖H2α−+s(T2),

(6.14)

where ν is a constant with ν > α
α−α− .

Proof. Thanks to (3.2), we have

θ(t)− ξ(t) = e−Aα,κt(θ0 − ξ0) +

∫ t

0

e−Aα,κ(t−r)
(

(F (x, θ(r))− F (x, ξ(r)))

− (u(r) · ∇θ(r)− v(r) · ∇ξ(r))
)
dr,

(6.15)

where u = (−R2θ,R1θ) and v = (−R2ξ,R1ξ). Denote

Aα−+ s
2 ,κ

= κ(−∆)α
−+ s

2 , A s
2 ,κ

= κ(−∆)
s
2 .

By Proposition 3 and (6.15), we deduce that∥∥∥Aα−+ s
2 ,κ

(θ(t)− ξ(t))
∥∥∥
L2(T2)

≤
∥∥∥Aα−+ s

2 ,κ
e−Aα,κt(θ0 − ξ0))

∥∥∥
L2(T2)

+

∫ t

0

∥∥∥Aα−+ s
2 ,κ
e−Aα,κ(t−r)(g1(x)(f(θ(r))− f(ξ(r))))

∥∥∥
L2(T2)

dr

+

∫ t

0

∥∥∥Aα−+ s
2 ,κ
e−Aα,κ(t−r)(u(r) · ∇θ(r)− v(r) · ∇ξ(r))

∥∥∥
L2(T2)

dr

≤ Ce−
κλ2α1

2 t
∥∥∥Aα−+ s

2 ,κ
(θ0 − ξ0)

∥∥∥
L2(T2)

+ C

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

∥∥A s
2 ,κ

(g1(x)(f(θ(r))− f(ξ(r))))
∥∥
L2(T2)

dr

+ C

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

∥∥A s
2 ,κ

(u(r) · ∇θ(r)− v(r) · ∇ξ(r))
∥∥
L2(T2)

dr.

(6.16)
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Since g1 ∈ Hs(T2) and f : H2α−+s(T2) → Hs(T2) is Lipschitz continuous on

bounded subsets of H2α−+s(T2), by using Lemma 1 and the Sobolev embedding
Hs(T2) ⊂ L∞(T2) for s > 1, we have

C

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

∥∥A s
2 ,κ

(g1(x)(f(θ(r))− f(ξ(r))))
∥∥
L2(T2)

dr

≤ C
∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

(
‖g1‖L∞(T2)‖(−∆)

s
2 (f(θ(r))− f(ξ(r)))‖L2(T2)

+ ‖(−∆)
s
2 g1‖L2(T2)‖(f(θ(r))− f(ξ(r)))‖L∞(T2)

)
dr

≤ C‖g1‖Hs(T2)

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α ‖(f(θ(r))− f(ξ(r)))‖Hs(T2)dr

≤ C
∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α ‖θ(r)− ξ(r)‖H2α−+s(T2)dr.

(6.17)

In view of (3.1) and θ(r), ξ(r) ∈ X for all r ≥ 0, we find that

C

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

∥∥A s
2 ,κ

(u(r) · ∇θ(r)− v(r) · ∇ξ(r))
∥∥
L2(T2)

dr

≤ C
∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α

(
‖θ(r)‖H2α−+s(T2)

+‖ξ(r)‖H2α−+s(T2)

)
‖θ(r)− ξ(r)‖H2α−+s(T2)dr

≤ C
∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α ‖θ(r)− ξ(r)‖H2α−+s(T2)dr.

(6.18)

Inserting (6.17)-(6.18) into (6.16) result in

‖θ(t)− ξ(t)‖H2α−+s(T2) ≤ Ce
−κλ

2α
1
2 t‖θ0 − ξ0‖H2α−+s(T2)

+ C

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−α
−
α ‖θ(r)− ξ(r)‖H2α−+s(T2)dr

≤ Ce−
κλ2α1

2 t‖θ0 − ξ0‖H2α−+s(T2)

+ C

(∫ t

0

e−
κλ2α1 ν

4(ν−1)
(t−r)(t− r)−

α−ν
α(ν−1) dr

) ν−1
ν

×
(∫ t

0

e−
κλ2α1 ν

4 (t−r)‖θ(r)− ξ(r)‖ν
H2α−+s(T2)

dr

) 1
ν

≤ Ce−
κλ2α1

2 t‖θ0 − ξ0‖H2α−+s(T2)

+ C

(∫ t

0

e−
κλ2α1 ν

4 (t−r)‖θ(r)− ξ(r)‖ν
H2α−+s(T2)

dr

) 1
ν

,

(6.19)
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where ν > α
α−α− and we have used the property of Gamma function in the last

inequality. Therefore,

e
κλ2α1 ν

4 t‖θ(t)− ξ(t)‖ν
H2α−+s(T2)

≤ C‖θ0 − ξ0‖νH2α−+s(T2)
+ C

∫ t

0

e
κλ2α1 ν

4 r‖θ(r)− ξ(r)‖ν
H2α−+s(T2)

dr.

Applying Gronwall’s lemma,

‖θ(t)− ξ(t)‖H2α−+s(T2) ≤ C‖θ0 − ξ0‖H2α−+s(T2)e
C
ν te−

κλ2α1
4 t. (6.20)

For any fixed η̃ with 0 < η̃ < 2α − 2α−, denote Aα+ s−η̃
2 ,κ = κ(−∆)α+ s−η̃

2 , by

similar arguments as in (6.16)-(6.18), we have

t
α−α−− η̃

2
α

∥∥∥Aα+ s−η̃
2 ,κ(θ(t)− ξ(t))

∥∥∥
L2(T2)

≤ Ce−
κλ2α1

2 t
∥∥∥Aα−+ s

2 ,κ
(θ0 − ξ0))

∥∥∥
L2(T2)

+ Ct
α−α−− η̃

2
α

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−
α− η̃

2
α

×
∥∥A s

2 ,κ
(g1(x)(f(θ(r))− f(ξ(r))))

∥∥
L2(T2)

dr

+ Ct
α−α−− η̃

2
α

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−
α− η̃

2
α

×
∥∥A s

2 ,κ
(u(r) · ∇θ(r)− v(r) · ∇ξ(r))

∥∥
L2(T2)

dr

≤ Ce−
κλ2α1

2 t‖θ0 − ξ0‖H2α−+s(T2)

+ Ct
α−α−− η̃

2
α

∫ t

0

e−
κλ2α1

2 (t−r)(t− r)−
α− η̃

2
α ‖θ(r)− ξ(r))‖H2α−+s(T2)dr.

(6.21)

Inserting (6.20) into (6.21) gives

t
α−α−− η̃

2
α ‖θ(t)− ξ(t)‖H2α+s−η̃(T2)

≤ Ce−
κλ2α1

2 t‖θ0 − ξ0‖H2α−+s(T2) + Ct
α−α−− η̃

2
α e−

κλ2α1
4 te

C
ν t‖θ0 − ξ0‖H2α−+s(T2),

(6.22)

where the property of Gamma function is also used. Thus the assertion of the
lemma follows immediately from (6.20) and (6.22).

Now we are ready to state and prove the main results of this section.

Theorem 24. Assume that the conditions of Lemma 14 hold. Then the semi-
group {S(t)}t≥0 associated with problem (1.1) possesses an exponential attractor E
in H2α−+s(T2), which is bounded in H2α+s(T2).

Proof. Recall that X given in (6.5) is a closed bounded positively invariant set in

H2α+s(T2), and for any bounded set B ⊂ H2α−+s(T2), there exists tB > 0 such
that

S(t)B ⊂ X, ∀t ≥ tB . (6.23)
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In order to apply Theorem 21, now it only remains to verify the conditions (iii) and
(iv) in Theorem 21. For any θ0, ξ0 ∈ X, let θ(t) = S(t)θ0 and ξ(t) = S(t)ξ0. Notice
that

∂θ

∂t
− ∂ξ

∂t
+ u · ∇θ − v · ∇ξ + κ(−∆)α(θ − ξ) = F (x, θ)− F (x, ξ), (6.24)

where u = (−R2θ,R1θ) and v = (−R2ξ,R1ξ). Taking the inner product of (6.24)
with (−∆)α+s(θ−ξ), we find that for any fixed η̃ with 0 < η̃ < min

{
2α− 2α−, α2

}
,

κ‖θ − ξ‖2H2α+s(T2)

= −
〈

(−∆)
s+η̃
2

(
∂θ

∂t
− ∂ξ

∂t

)
, (−∆)

2α+s−η̃
2 (θ − ξ)

〉
−
〈

(−∆)
s+η̃
2 (u · ∇θ − v · ∇ξ) , (−∆)

2α+s−η̃
2 (θ − ξ)

〉
+
〈

(−∆)
s
2 (F (x, θ)− F (x, ξ)) , (−∆)

2α+s
2 (θ − ξ)

〉
≤ ‖θ − ξ‖H2α+s−η̃(T2)

(∥∥∥∥∂θ∂t − ∂ξ

∂t

∥∥∥∥
Hs+η̃(T2)

+ ‖u · ∇θ − v · ∇ξ‖Hs+η̃(T2)

)
+ ‖θ − ξ‖H2α+s(T2)‖F (x, θ)− F (x, ξ)‖Hs(T2),

(6.25)

thanks to Hölder’s inequality. Arguing as in (3.1), in view of the Sobolev embeddings
H2α+s(T2) ⊂ H1+s+η̃(T2) and H2α+s(T2) ⊂ Hs+η̃(T2) and θ(t), ξ(t) ∈ X for all
t ≥ 0, we have

‖u · ∇θ − v · ∇ξ‖Hs+η̃(T2)

≤ C‖θ − ξ‖Hs+η̃(T2)‖θ‖H1+s+η̃(T2) + C‖ξ‖Hs+η̃(T2)‖θ − ξ‖H1+s+η̃(T2)

≤ C‖θ − ξ‖H2α+s(T2)

(
‖θ‖H2α+s(T2) + ‖ξ‖H2α+s(T2)

)
≤ C

(
‖θ‖H2α+s(T2) + ‖ξ‖H2α+s(T2)

)
≤ C.

(6.26)

Since f : H2α−+s(T2) → Hs(T2) is Lipschitz continuous on bounded subsets of

H2α−+s(T2), by using Lemma 1, (1.2), g1 ∈ Hs(T2) and the Sobolev embedding
Hs(T2) ⊂ L∞(T2) for s > 1, we obtain that

‖F (x, θ)− F (x, ξ)‖Hs(T2)

= ‖g1(x)(f(θ)− f(ξ))‖Hs(T2)

≤ C
(
‖g1‖L∞(T2)‖f(θ)− f(ξ)‖Hs(T2) + ‖g1‖Hs(T2)‖f(θ)− f(ξ)‖L∞(T2)

)
≤ C‖g1‖Hs(T2)‖f(θ)− f(ξ)‖Hs(T2)

≤ C‖θ − ξ‖H2α−+s(T2).

(6.27)

Inserting (6.26) and (6.27) into (6.25), in view of (6.13), the Sobolev embedding
Hα+s−η̃(T2) ⊂ Hs+η̃(T2) and θ(t), ξ(t) ∈ X for all t ≥ 0, we conclude that there
exists t∗0 > 0 such that for any t ≥ t∗0,

‖θ(t)− ξ(t)‖2H2α+s(T2)

≤ C‖θ(t)− ξ(t)‖H2α+s−η̃(T2) + C‖θ(t)− ξ(t)‖H2α−+s(T2)

≤ Ce−
κλ2α1

2 tt−
α−α−− η̃

2
α ‖θ0 − ξ0‖H2α−+s(T2) + Ce−

κλ2α1
4 te

C
ν t‖θ0 − ξ0‖H2α−+s(T2),

(6.28)
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thanks to Lemma 23. Hence, it follows from Lemma 22 that there exists t∗ ≥ t∗0
such that for all t1, t2 ∈ [t∗, 2t∗] with t1 ≤ t2,

‖S(t1)θ0 − S(t2)ξ0‖H2α−+s(T2)

≤ ‖S(t1)θ0 − S(t2)θ0‖H2α−+s(T2) + ‖S(t2)θ0 − S(t2)ξ0‖H2α−+s(T2)

≤
∫ t2

t1

‖∂tθ‖H2α−+s(T2)dτ + ‖θ(t2)− ξ(t2)‖H2α−+s(T2)

≤ |t1 − t2|
1
2

(∫ t2

t1

‖∂tθ‖2H2α−+s(T2)
dτ

) 1
2

+ C‖θ(t2)− ξ(t2)‖H2α+s(T2)

≤ C|t1 − t2|
1
2 + C‖θ0 − ξ0‖

1
2

H2α−+s(T2)
,

(6.29)

where we have used Hölder’s inequality and (6.28). This implies that the condition
(iii) in Theorem 21 holds true. Finally, by (6.28) we obtain that there exists N ≥ 1
such that

‖(I − PN )(S(t∗)θ0 − S(t∗)ξ0)‖H2α−+s(T2)

≤ 1

λ
2(α−α−)
N+1

‖(I − PN )(S(t∗)θ0 − S(t∗)ξ0)‖H2α+s(T2)

≤ 1

λ
2(α−α−)
N+1

‖θ(t∗)− ξ(t∗)‖H2α+s(T2)

≤ C

λ
2(α−α−)
N+1

‖θ0 − ξ0‖
1
2

H2α−+s(T2)
<

1

4
‖θ0 − ξ0‖

1
2

H2α−+s(T2)
,

(6.30)

where PN : L2(T2)→ HN is the projection operator and HN is the space spanned
by {ej}Nj=1. Therefore, the condition (iv) in Theorem 21 holds true and consequently
the assertion of this theorem follows immediately from Theorem 21.

Theorem 25. Let α ∈
[

1
2 , 1
)
, κ > 0 and g2 ∈ Hs(T2) with s > 1. Then the

semigroup {S(t)}t≥0 associated with problem (1.1) with g2(x) instead of F (x, θ)
has an exponential attractor E , whose compactness, boundedness of the fractional

dimension and exponential attractiveness for the bounded subset B of H2α−+s(T2)
are all in the topology of H2α+s(T2).

Proof. By similar arguments as in (6.25), in view of (6.26), (6.13), the Sobolev
embedding Hα+s−η̃(T2) ⊂ Hs+η̃(T2) and θ(t) ∈ X for all t ≥ 0, we deduce that for
any fixed η̃ with 0 < η̃ < min

{
2α− 2α−, α2

}
, there exists t∗1 > t∗0 such that for any

t1, t2 ≥ t∗1 with t1 ≤ t2,

κ‖θ(t1)− θ(t2)‖2H2α+s(T2)

= −
〈

(−∆)
s+η̃
2

(
∂θ(t1)

∂t1
− ∂θ(t2)

∂t2

)
, (−∆)

2α+s−η̃
2 (θ(t1)− θ(t2))

〉
−
〈

(−∆)
s+η̃
2 (u(t1) · ∇θ(t1)− u(t2) · ∇θ(t2)) , (−∆)

2α+s−η̃
2 (θ(t1)− θ(t2))

〉
≤ C‖θ(t1)− θ(t2)‖H2α+s−η̃(T2).

(6.31)
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Combining (6.6), (6.28) and (6.31) together, we find that there exists t∗2 > t∗1 such
that for any t1, t2 ∈ [t∗2, 2t

∗
2] with t1 ≤ t2,

‖S(t1)θ0 − S(t2)ξ0‖H2α+s(T2)

≤ ‖S(t1)θ0 − S(t2)θ0‖H2α+s(T2) + ‖S(t2)θ0 − S(t2)ξ0‖H2α+s(T2)

≤ C‖S(t1)θ0 − S(t2)θ0‖
1
2

H2α+s−η̃(T2)
+ C‖θ0 − ξ0‖

1
2

H2α−+s(T2)

≤ C
(∫ t2

t1

‖∂tθ‖H2α+s−η̃(T2)dτ

) 1
2

+ C‖θ0 − ξ0‖
1
2

H2α−+s(T2)

≤ C|t1 − t2|
1
4

(∫ t2

t1

‖∂tθ‖2H2α+s−η̃(T2)dτ

) 1
4

+ C‖θ0 − ξ0‖
1
2

H2α−+s(T2)

≤ C|t1 − t2|
1
4 + C‖θ0 − ξ0‖

1
2

H2α+s(T2).

(6.32)

On the other hand, multiplying (6.24) by (∆)α+s(I−PN ′)(θ−ξ) and then integrating
over T2, in view of (6.26), (6.13), the Sobolev embedding Hα+s−η̃(T2) ⊂ Hs+η̃(T2)
and θ(t), ξ(t) ∈ X for all t ≥ 0, we obtain that

κ‖(I − PN ′) (θ(t∗2)− ξ(t∗2)) ‖2H2α+s(T2)

= −
〈

(−∆)
s+η̃
2

(
∂θ(t∗2)

∂t∗2
− ∂ξ(t∗2)

∂t∗2

)
, (−∆)

2α+s−η̃
2 (I − PN ′) (θ(t∗2)− ξ(t∗2))

〉
−
〈

(−∆)
s+η̃
2 (u(t∗2) · ∇θ(t∗2)− v(t∗2) · ∇ξ(t∗2)) ,

(−∆)
2α+s−η̃

2 (I − PN ′) (θ(t∗2)− ξ(t∗2))
〉

≤ C‖(I − PN ′) (θ(t∗2)− ξ(t∗2)) ‖H2α+s−η̃(T2),

(6.33)

where 0 < η̃ < min
{

2α− 2α−, α2
}

is given in (6.31), PN ′ : L2(T2) → HN ′ is the

projection operator and HN ′ is the space spanned by {ej}N
′

j=1. Hence (6.28) and
(6.33) ensure that for N ′ sufficiently large,

‖(I − PN ′)(S(t∗2)θ0 − S(t∗2)ξ0)‖H2α+s(T2)

≤ C‖(I − PN ′)(S(t∗2)θ0 − S(t∗2)ξ0)‖H2α+s−η̃(T2)

≤ C

λη̃N ′+1

‖(I − PN ′)(S(t∗2)θ0 − S(t∗2)ξ0)‖H2α+s(T2)

≤ C

λη̃N ′+1

‖θ(t∗2)− ξ(t∗2)‖H2α+s(T2)

≤ C

λη̃N ′+1

‖θ0 − ξ0‖
1
2

H2α−+s(T2)
<

1

4
‖θ0 − ξ0‖

1
2

H2α+s(T2).

(6.34)

Since X given in (6.5) is a closed bounded positively invariant set in H2α+s(T2),
and (6.23) holds true for X, by using (6.32) and (6.34), the assertion of this theorem
follows immediately from Theorem 21.

Remark 26. In fact, in addition to the hypotheses in Lemma 14, if we also assume

that for any fixed η̃ with 0 < η̃ < 2α−2α−, g1 ∈ Hs+η̃(T2) and f : H2α−+s+η̃(T2)→
Hs+η̃(T2) is Lipschitz continuous on bounded subsets of H2α−+s+η̃(T2), then by
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similar arguments as in (6.27), we deduce that

‖F (x, θ)− F (x, ξ)‖Hs+η̃(T2) ≤ C‖θ − ξ‖H2α−+s+η̃(T2). (6.35)

Arguing as in the proof of Theorem 25, by (6.35) we obtain that the semigroup
{S(t)}t≥0 associated with problem (1.1) has an exponential attractor E , whose com-
pactness, boundedness of the fractional dimension and exponential attractiveness

for the bounded subset B of H2α−+s(T2) are all in the topology of H2α+s(T2).

7. Summary. In this work we studied the regularity of global attractors for the
surface quasi-geostrophic equations with fractional dissipation in the subcritical
case. We proved the existence of the global attractor that is compact in H2α+s(T2)

and attracts all bounded subsets ofH2α−+s(T2) with respect to the norm ofH2α+s(T2).
It is worth mentioning that, similarly, the results in this work can be extended to
a bounded domain Ω ⊂ R2 with smooth boundary. Furthermore, if we can show
that the H2α+s-norm of solutions is arbitrary small uniformly on the exterior do-
mains R2 \ ΩK , where ΩK = {x ∈ R2 : |x| ≤ K} for K > 0, then we can also
obtain the regularity of global attractors in the unbounded domain case. Here we
mainly want to show how to study the regularity of global attractors for the surface
quasi-geostrophic equations with fractional dissipation, the basic idea can be more
easily obtained for readers by considering the periodic domain T2. When proving
the asymptotic compactness in H2α+s(T2) for problem (1.1), the dissipative term
(−∆)α, 1/2 < α ≤ 1, and the nonlinear term u ·∇θ give much more trouble than for
reaction-diffusion systems. In addition, the uniform estimates in H2α+s(T2) cannot
be obtained immediately, since problem (1.1) is treated in the base space Hs(T2).
For the external forcing term F (x, θ), it is necessary to use product estimates for
g1(x)f(θ) and composition estimates for f(θ). Another highlight of the work is that
we present some sufficient conditions for the construction of exponential attrac-
tors for autonomous dynamical systems on Banach space, which can be used to

establish the existence of exponential attractors of problem (1.1) in H2α−+s(T2)
and furthermore the regularity of the exponential attractor E of problem (1.1) with
g2(x) instead of F (x, θ) in H2α+s(T2) for s > 1 and α ∈

(
1
2 , 1
]
. More precisely, E

is compact in H2α+s(T2), an upper bound of the fractal dimension of E is given
in the topology of H2α+s(T2), and E attracts exponentially all bounded subsets of

H2α−+s(T2) with respect to the norm of H2α+s(T2).
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[16] Foiaş, C., Prodi, G., Sur le comportement global des solutions non-stationnaires des
équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967), 1-34.

[17] Gatti, S., Grasselli, M., Miranville, A., Pata, V., A construction of a robust family of expo-

nential attractors, Proc. Amer. Math. Soc. 134 (2006), 117-127.
[18] Giga, Y., Miyakawa, T., Solutions in Lr of the Navier-Stokes initial value problem, Arch.

Rational Mech. Anal. 89 (1985), 267-281.

[19] Gu, A., Li, D., Wang, B., Yang, H., Regularity of random attractors for fractional stochastic
reaction-diffusion equations on Rn, J. Differential Equations 264 (2018), 7094-7137.

[20] Hale, J.K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-

graphs, vol. 25, American Mathematical Society, Providence, RI, 1988.
[21] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathe-

matics, vol. 840, Springer-Verlag, Berlin-New York, 1981.

[22] Ju, N., The maximum principle and the global attractor for the dissipative 2D quasi-
geostrophic equations, Comm. Math. Phys. 255 (2005), 161-181.

[23] Kato, T., Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations,
Comm. Pure Appl. Math. 41 (1988), 891-907.

[24] Kenig, C.E., Ponce, G., Vega, L., Well-posedness of the initial value problem for the

Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347.
[25] Mart́ınez Carracedo, C., Sanz Alix, M., The Theory of Fractional Powers of Operators,

North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam,
2001.

[26] Niche, C.J., Schonbek, M.E., Decay of weak solutions to the 2D dissipative quasi-geostrophic

equation, Comm. Math. Phys. 276 (2007), 93-115.

[27] Niche, C.J., Schonbek, M.E., Decay characterization of solutions to dissipative equations, J.
Lond. Math. Soc. 91 (2015), 573-595.

[28] Pedlosky, J., Geophysical Fluid Dynamics, Springer, Berlin, 1982.
[29] Raugel, G., Global Attractors in Partial Differential Equations, Handbook of dynamical

systems, vol. 2, 885-982, North-Holland, Amsterdam, 2002.

[30] Robinson, J.C., Infinite-Dimensional Dynamical Systems, An introduction to dissipative par-
abolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics,

Cambridge University Press, Cambridge, 2001.

[31] Sell, G.R., Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam.
Differential Equations 8 (1996), 1-33.

[32] Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math-

ematical Series, Princeton University Press, Princeton, N.J., 1970.
[33] Sun, C., Zhong, C., Attractors for the semilinear reaction-diffusion equation with distribution

derivatives in unbounded domains, Nonlinear Anal. 63 (2005), 49-65.

[34] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied
Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.



EXPONENTIAL ATTRACTORS FOR QUASI-GEOSTROPHIC EQUATIONS 33

[35] Wang, S., Attractors for the 3D baroclinic quasi-geostrophic equations of large-scale atmo-
sphere, J. Math. Anal. Appl. 165 (1992), 266-283.

[36] Wang, M., Tang, Y., Long time dynamics of 2D quasi-geostrophic equations with damping

in Lp, J. Math. Anal. Appl. 412 (2014), 866-877.
[37] Wang, M., Tang, Y., On dimension of the global attractor for 2D quasi-geostrophic equations,

Nonlinear Anal. Real World Appl. 14 (2013), 1887-1895.
[38] Wu, J., Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equa-

tions 2001 (2001), 1-13.

[39] Yagi, A., Abstract Parabolic Evolution Equations and their Applications, Springer Mono-
graphs in Mathematics, Springer-Verlag, Berlin, 2010.

[40] Zhong, C., Yang, M., Sun, C., The existence of global attractors for the norm-to-weak contin-

uous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential
Equations 223 (2006), 367-399.

E-mail address: yangl17@lzu.edu.cn

E-mail address: wangyj@lzu.edu.cn

E-mail address: caraball@us.es

mailto:yangl17@lzu.edu.cn
mailto:wangyj@lzu.edu.cn
mailto:caraball@us.es

	1. Introduction
	2. Preliminaries
	2.1. Semigroup and attractor

	3. Global existence and uniqueness of solutions
	4. Uniform estimates of solutions
	5. Existence and regularity of global attractors
	6. Exponential attractors
	7. Summary
	REFERENCES

