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ABSTRACT. In this paper we investigate the regularity of global attractors and
of exponential attractors for two dimensional quasi-geostrophic equations with
fractional dissipation in H22+%(T2) with a > 1 and s > 1. We prove the exis-
tence of (H2®™ +3(T2), H22t5(T?))-global attractor .4, that is, A is compact in
H?2+$(T?) and attracts all bounded subsets of H2® +3(T?2) with respect to the
norm of H2%%3(T?2). The asymptotic compactness of solutions in H2%*5(T?)
is established by using commutator estimates for nonlinear terms, the spectral
decomposition of solutions and new estimates of higher order derivatives. Fur-
thermore, we show the existence of the exponential attractor in H2+$(T?),
whose compactness, boundedness of the fractional dimension and exponential
attractiveness for the bounded subset of H2® T5(T2) are all in the topology
of H2?a+s(T?).

1. Introduction. In this paper, we investigate the long-time behavior of solutions
of the following 2D (surface) quasi-geostrophic equation with fractional dissipation
defined on the 2D torus T? = [0, 1]? :

%wLu VO + k(—A)*0 = F(x,0),

(1.1)
9 = 90, / 90 d$ = 0

where F(z,0) is a given external forcing term in the form
F(z,0) = g1(x)f(0) + g2(x), (1.2)
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0 represents the potential temperature, x > 0 is a diffusivity coefficient, o € (%, 1}
is a fractional exponent, (—A)?® is the fractional Laplacian, and u = (u1,us) is the
velocity field determined by 6 through the relation:

o

- (69683:> where  (~A)¥4 = 6, (13)

or, in a more explicit way,

u = (—RQQ, ng), (14)
where R;,i = 1,2 are the Riesz transforms (see [25, p.299]). In the following, we
will restrict ourselves to flows which have zero average on the torus, i.e.,

O(t,x)de =0, Vt>D0.
’]1‘2
Equations (1.1)-(1.3) are important models in geophysical fluid dynamics, especially
for atmospheric and oceanic fluid. Indeed, the system describes the evolution of the
temperature on the 2D boundary of a rapidly rotating half-space with small Rossby
and Ekman numbers (see [28]).

Long time behavior of solutions to the 2D quasi-geostrophic equation with frac-
tional dissipation has been studied in [3, 11, 22, 26, 27]. Using the framework of
[31], the global weak attractor A in the space of weak solutions W( f) was proved by
Berselli for the sub-critical dissipative case « € ( %, 1). A attracts all bounded sets
in the space of the generalized weak solutions GW (f), see [3] for more details. With
an improvement of the positivity lemma of [10] and a generalized maximum prin-
ciple, Ju [22] established the existence of the global attractor A in H*(T?) for any
s> 2(1—a)and a € (3,1]. A attracts all bounded subsets of H*(T?) in the norm of
H"(T?) for any r > s > 2(1— ), and for the case a € (3, 1], A attracts all bounded
subsets of L?(T?) in the norm of H*(T?) for any s > 2(1 — ). More detailed results
on decay characterization of solutions to 2D dissipative quasi-geostrophic equations
were given by Niche and Schonbek [26, 27] for the homogeneous case (F=0). Wang
and Tang [36] proved the existence of the global attractor in LP(R?) for 2D quasi-
geostrophic equations with damping in the subcritical case o € (%, 1]. Dlotko, Kania

and Sun [12] studied the existence of the global attractor A in H*t2% (R?) for any
s>1and a € (%, 1]. Very recently, the existence of the global attractor in H*(R?)
for any s > 2(1 — ) and a € (3,1] was proved by Farwig and Qian [15] for 2D
quasi-geostrophic equations with a nonlocal damping. For the critical case a = %,
the existence of the global attractor in H3/2(T?) has been studied by Constantin,
Coti Zelati, Kalita, Vicol and Tarfulea, see [7, 9, 11] for more details. However,
to the best of our knowledge, there is no result available in the literature on the
regularity of global attractors for 2D quasi-geostrophic equations. The first purpose
of this work is to prove the regularity of global attractors of (1.1) in H2**$(T?2) for
any s > 1land o € (%, 1]. More precisely, we will show that the global attractor A in
H?* +5(T?) is actually an (H?® +5(T?), H?*%(T?))-global attractor in the sense
that A is compact in H?*7#(T?) and attracts all bounded subsets of H2® *5(T?)
with respect to the norm of H2*T%(T?) (see Theorem 5.3).

The notion of exponential attractors, introduced by Eden, Foiag, Nicolaenko and
Temam [13], has been shown to be one of the most important concepts of limit
sets in the theory of dynamical systems in infinite-dimensional spaces (see [2, 6,
30, 34]). The exponential attractor, as an intermediate object between the global
attractor and the inertial manifold, satisfies some nice properties like the inertial
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manifold (e.g., finite fractal dimension, exponential attracting, stable with respect
to some perturbations). However, contrarily to the global attractor, an exponential
attractor is not necessarily unique, so that the concrete choice of an exponential
attractor is in some sense artificial. The first technique to construct exponential
attractors was developed in Hilbert spaces. This technique is based on the use
of orthogonal projections (see [13]) and cannot be applied directly to dynamical
systems defined in Banach spaces. A new method for constructing exponential
attractors in Banach spaces was proposed by Efendiev, Miranville and Zelik in [14].
However, the existence of exponential attractors for 2D quasi-geostrophic equations
is unsolved. The second purpose of this paper is to present some sufficient conditions
for the construction of exponential attractors for autonomous dynamical systems
on Banach spaces, and furthermore we apply our results to consider the existence
of exponential attractors of (1.1) in H?* $(T?) and the regularity of exponential
attractors of (1.1) with go(z) instead of F(z,6) in H?*T$(T?) for any s > 1 and
[eAS (%, 1] .

There are several results on estimation of the fractal and Hausdorff dimensions of
the global attractor for quasi-geostrophic equations. Wang [35] proved the existence
of a compact, connected global attractor to the 3D baroclinic quasi-geostrophic
equations of large scale atmosphere, and derived an upper bound of the Hausdorff
and fractal dimensions of the global attractor. A precise upper bound of the fractal
dimension of the global attractor for 2D quasi-geostrophic equations with fractional
dissipation in H*(Q) for any s > 2« and « € (%, 1] was obtained by Wang and
Tang [37]. By using the fractional Lieb-Thirring inequality, estimates of the finite
Hausdorff and fractal dimensions of the global attractor for 2D quasi-geostrophic
equations with fractional dissipation were established by Farwig and Qian [15].

The paper is organized as follows. In the next section, we present some nota-
tion and recall the theory of global attractors for infinite dimensional dissipative
dynamical systems and several preliminary results which will be used frequently.
In Section 3, the global existence, uniqueness and regularity of solutions for prob-
lem (1.1) are established by using the theory of semilinear parabolic equations with
sectorial operator. Section 4 is devote to a priori estimates which will yield the
existence of bounded absorbing sets in H2**%(T?). In Section 5, we first establish
the existence of the global attractor A in H?* *5(T?) and then prove that A is

indeed the (H2® +5(T?2), H?%$(T?))-global attractor. In Section 6, we study the
existence of exponential attractors.

2. Preliminaries. We first recall some notations and basic results from harmonic
analysis. The fractional Laplacian (—A)®, with s € R may be defined in this context
as the Fourier multiplier with symbol |k|*; i.e.,

(=2 p(@) = Y [k*G(k) exp(ik - z),

keZ?
where Z2 = 72\ {0},
~ 1 ik ~ .
plk) = @ /11‘2 o(x)e dr  and @(z) = Z o(k) exp (ik - x).

kez?

Notice that the eigenvalues of A = (—A)2 are given by |k|. Then we relabel them
in increasing order as



4 LIN YANG, YEJUAN WANG AND TOMAS CARABALLO

and denote the eigenfunction associated to A; by e;. It is clear that {e;};>1 is an
orthonormal basis of L?(T?), and the sets {\;};>1 and {|k[}rez2 are equal.
As a consequence of the mean-free setting, for s € R we define

lell s (r2) = A%l L2 (12)

and H*(T?) denotes the Sobolev space of all f for which || f|| z+(t2) is finite. More-
over, for s € R and p € [1,+00) we denote by H*P(T?) the space of mean-free
LP(T?) functions ¢, which can be written as ¢ = A=%), with v € LP(T?). The
H*P?(T?) norm of ¢ is defined to be the LP(T?) norm of ¥, i.e.,

ol zrsn(r2) = |A% @l Lo (12).-

We recall the following important commutator and product estimates, cf. [23, 24].
Lemma 1 (Commutator and Product Estimates). Suppose that v > 0 and p €
(1,+00). If f,g € S(T?), the Schwartz class, then

IAY(£9) = fA gl o (r2y < C (v, p) (IVFlliws 02y [A ™ gl Loz (12 2.1)
+IAY f | os 22y g1l Los (12))

and

IAY(f9)llLe(r2) < C(r,p) (1f lLer (02) 1A gll o2 22y + 1A FllLos (02) 19l Lo (72))
(2.2)
with pa, ps € (1,+00) such that
1 1 1 1 1
b1 P2 Pp3 pPs P
The following result can be obtained by the fact that the Riesz transforms com-
mute with (—A)! and the boundedness of the Riesz transforms in LP(T?), see [32,
Chapter 3] for more details.

Lemma 2. Let 1 < p < o0 and | > 0. Then there exists a constant C(l,p) such
that

1(=A) ull Lo (r2) < CUP)I(=L)"0]| Lo (7). (2.3)
If p = 2, the inequality (2.3) can be strengthened to
H(*A)ZUHL?(T?) = H(*A)ZGHL?(W)- (2.4)

Denote A, , = k(—A)Y where v > 0 and x > 0, and let
X% ={ue L*(T?) : A, ue L*(T?)}

with norm ||ul|x~.~ = || Ay xul £2(r2). We recall the following well-known results for
the semigroup generated by the positive operator A, . (see [18, 38] for the similar
results).

Proposition 3. Let 0 < 1 < By and u € XPv%. Then there exists a constant
Cy = C1(B1, B2,7, k) such that

“ATY, gy-p
le= A mtu|| i < Cre” 2 7 |lullxprn, ¢ 0.

We recall the following improved positivity lemma, cf. [22, Lemma 3.3], which
we use in the proof of Lemma 11.
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Lemma 4 (Improve Positivity Lemma). Suppose s € [0,2] and 0, A*0 € LP(T?),
where p > 2. Then

2 E D 2
0[P~ 20A°0dz > 7/ <A§|9|5) dz.
T2 P Jr2

The following variant of the classical Gronwall Lemma is due to Foiag and Prodi
[16]. See also [5, 8, 34].

Lemma 5 (Uniform Gronwall Lemma). Let g, h and y be non-negative locally
integrable functions on [tg, +00) such that

dy
-~ < h, Vt>t
dt_gy+ ) = 0o,

and

t+r t4r t+r
/ g(s)ds < aq, / h(s)ds < aq, / y(s)ds < az, Vt>to,
¢ t ¢

where r > 0 and a1, as, as are non-negative constants. Then
a
y(t+r) < (—3 + (12) e, Vit >t.
r

In the sequel, C' denotes an arbitrary positive constant, which may be different
from line to line and even in the same line. For r € R, let »~ denotes the number
strictly less than r but close to it.

2.1. Semigroup and attractor. In this subsection, we recapitulate basic concepts
and results on the bi-spaces global attractor and the exponential attractor. Let
(X, - llx) and (Y] - ||) be two Banach spaces such that the injection ¥ < X is
continuous. The Hausdorff semidistance for nonempty subsets A and B of X is
written as distx (A, B) which is defined by

distx (A, B) = sup{d(a, B) : a € A},
where d(a, B) = inf{||la — b||x : b € B}, and the similar notation will be used for
subsets of Y.

Definition 6. Let X be a Banach space and {S(¢)};>0 be a family of operators on
X. We say that {S(¢)}+>0 is a continuous semigroup on X, if for all ¢,s € R*, the
following conditions are satisfied:
(i) S(0) = I (the identity);

(i) S(t)S(s) = S(t+s);

(iii) S(t)z is continuous in x and t.
Definition 7. Let {S(¢)}:>0 be a semigroup on X. Then {S(t)}:>o is said to be
asymptotically compact in X if for any bounded sequence {z,}>°; C X and any
sequence t,, — +00, the sequence

{S(tn)xn}2, has a convergent subsequence in X.
If, in addition, S(¢) maps X to Y for every ¢ € R, and the sequence
{S(tn)xn}2q has a convergent subsequence in Y
for any bounded sequence {z,, }>2; C X and any sequence t,, — 400, then {S(t)}1>0
is said to be (X, Y)-asymptotically compact.

Definition 8. Let {S(¢)}+>0 be a semigroup on X. Then a set A C X is called a
global attractor of {S(¢)}:>0 in X if the following conditions (i)-(iii) are satisfied:
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(i) A is compact in X;
(ii) A is invariant, i.e., S(¢)A = A for all t > 0;
(iii) A attracts every bounded subset of X, that is, for any bounded set B C X

tiigrnoo distx(S(t)B, A) = 0.

If, in addition, the following conditions are satisfied:
(iv) S(t) maps X to Y for every t € Rt;
(v) Ais compact in Y;
(vi) A attracts every bounded subset of X in Y, that is, for any bounded set
BcCX,
lim disty (S(t)B, A) =0,
t——+o0

then A is called an (X,Y)-global attractor of {S(¢)}:>o.

The following existence result for a global attractor for a semigroup can be found
in [2, 5, 20, 29, 30, 33, 34, 40] (see also [19] for random case).

Proposition 9. Suppose X and Y are Banach spaces with continuous injection
Y — X such that all closed balls in'Y are closed subsets of X. Let {S(t)}i>0 be a
semigroup on X. If {S(t)}i>0 is asymptotically compact in X and has a bounded
absorbing set in X, then {S(t)}t>0 has a global attractor A in X.

If, in addition, S(t) maps X to'Y for every t € RT, and {S(t)}+>0 is (X,Y)-
asymptotically compact, then A is also an (X,Y)-global attractor of {S(t)}i>0.

3. Global existence and uniqueness of solutions. In this section, we consider
the global existence and uniqueness of solutions for problem (1.1) with initial data
0p € H?> *5(T?), and then define a continuous semigroup.

Let 91, 0, € H2”‘7+S(’]1‘2) and u; = (7R291,R101), Uy = (7R202,R102). Note
that H*(T?) is a Banach Algebra provided that s > 1 (see, e.g.,[l, p.115]). Since
Sobolev embeddings H2* +5(T?) C H'*$(T?) C H*(T?) are valid for the subcritical
case, by (2.3) we have

00 o6, — 0
||U1 . V91 — Uz - v02||Hs(T2) S HR2(91 — 92)871 + RQQQM ‘
T 0z, Hs(T2)
891 8(91 - 92)
R1(07 — 02) — + R10—————
+ H 1(6h 2)8x2 + R102 9 |l pgoen (3.1)

< Cl01 = O2l = (v2) |01 2+ (12) + CllO2]| 2 (22 01 — Ol 11+ (72)

< C (181l g2 sz + 1821l g2 sogr ) 162 = B2l g v gy

which is the required local Lipschitz condition.

Following a standard approach in [6, p.55] and [21, Theorem 3.3.3] to semilinear
parabolic equations, we obtain the local existence and uniqueness of solutions for
problem (1.1) with initial data 6y € H?* +5(T?).

Theorem 10. Let a € (3,1], k > 0 and g € H** T5(T?) with s > 1. Suppose
further that g1, g2 € H*(T?), and f : H?** +5(T?) — H*(T?) is Lipschitz continuous
on bounded subsets of H?>* T5(T?). Then there exists a unique solution 0 to problem

(1.1) such that
0 € C(0,7); H**T5(T?)) N C([0,7); H** T5(T?)), 6, € C((0,7); H*+5(T?)),
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where v < « is arbitrary and T > 0 is the mazimal time of existence. Moreover, 6
s given by the formula

O(t) = e~ Aanthy + / t e~ A=) (F(2,0(s)) —u(s) - VO(s))ds, Vtel|0,7), (3.2)
0

where e~ At denotes the linear semigroup corresponding to the operator Ao =

k(=AY in H*(T?), and F(z,0) is given by (1.2).
Let 0 € H?>* +5(T?) and u = (—Ra26, R10). Similar to (3.1), we obtain
V8l < ClB (2 e (3.3

Further, we assume that f : H?* T$(T?) — H*(T?) satisfies the sublinear growth
restriction:

1FOllssrzy < Fa (14 10] 0 o)) 5 0 € H2F2(T2) (3.4)

for some k1 > 0. A priori estimate (4.47) below together with (3.3) and (3.4) will be
used to guarantee that the local solution to problem (1.1) can be globally extended
(see [6, p.71] for more details). On the other hand, following [21, Theorem 3.4.1],
one can show that 6(t, ) is continuous with respect to 6 in H?* +5(T?). Hence
we now define a semigroup S : Rt x H?* +5(T?) — H?* +5(T?) by

S(t)0p = 0(t,00) for all (t,0p) € RT x H** +5(T?). (3.5)

4. Uniform estimates of solutions. In this section, we derive uniform estimates
on the solution of (1.1). Such estimates imply the existence of a bounded absorbing
set, and also will be used to prove the asymptotic compactness of the semiflow
associated with the equation.

We begin with uniform estimates of the solutions in L?(T?).

Lemma 11. Let the conditions in Theorem 10 hold. Assume further that (3.4)
holds and

fov<ky, VYwveR (4.1)
for some ka > 0. Let q € [2,00). Then every solution 6(t,0y) of (1.1) satisfies

2o q
168,00 agrey < IB0lLagraye™ 8 +CllarlEy L +Clloallugrsy  (42)

Proof. Multiplying (1.1) with |#|9~26 and then taking the inner product in L?(T?),
we have
1d
qdt Jp

:/ F(x,0)|0|70dz.
T2
For the second term, by Lemma 4 we obtain
2 q\ 2 2
H/ (—A)*0|6|720dx > i/ (AO‘|9|§> dz > ﬁxf&/ 0]9dz. (4.4)
T2 q Jr2 q T2

Due to V - u = 0, by using integration by parts we have

|9|qu+m/ (—A)a9|0|q_20dx+/ u-V0|0|9%0dx
e ™ (4.3)

/ u - V0|0|9%0dz = 0. (4.5)
T2
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Since f(0)0 < ko, we deduce from Young’s inequality that for the case ¢ > 2,

/F($79)|9|q_29d$=/ (g1() f(0) + g2(2))[0]**0dx:
T2 T2
q—2 q—2
gkg/w 0 (2)[0] dm+/1r2gg(x)|9| Odz

< EA%Q/ |9|qu+c/ |gl(x)|%dx+c/ 19 (2)|1da.
q T2 T2 T2
(4.6)
For the case ¢ = 2,

/F(x,@)ﬂdzgl@/ gl(:c)dx+/ g2(x)0dx
T2 T2 T2
K\ 2a 2 2
<S [ Pde ks [ n@lde+C [ (P,

Inserting the above estimates into (4.3) gives

7/ |e|qu+m2a/ |e|qu<c/ e |dx—|—C/ lg2(2)[9dz. (4.8)

Then the desired result (4.2) follows from the Gronwall inequality. O

(4.7)

We next derive uniform estimates for 6 in H*+*(T?) and for 9,0 in H*(T?).

Lemma 12. Let the conditions in Lemma 11 hold. Then, every solution 0(-) of
problem (1.1) satisfies for all t > 0,

_ra2e
10 [3ass 2y < e M NOollFra+e(r2y + CllgallFrs (r2y + Cllgnll s (12

20 = Ieu
+ Cte™ ™ 1001 72 (12 ||91||111_?1r2) +CG2lg1l ey

(4.9)
KAT™ —rAZe¢
+ Ce™ M t||90||L2(’]I‘2 ||90||Lp2(’]1‘2) + CGite & fHeoH%2(T2)

+ CG2€_K)\ at”eo”LPQ (T2) + CG1G27

t+1
—k 2a
ff/ 10 [Fr2eso 2y dr < €75 B0 Fross(rzy + Cllg2ll o (r2) + Cllonllis (v
t

2
+ Cte ™ G2 2 ||91HH5 (12 + CG2ll91l 112y
. 20
+C€ n)\ t||00||L2 T2)||90||2P;](T2 +CG1(t+1)€7fi/\1 tH90||2L2(T2)

+ CGze_'Q\l t||90||272"(1r2) + CGlGQ,

(4.10)
where py = 2a2_1, n = 2;@_:;5, n e [23;-1-1371) s a constant,
=llgull 23 Q(Tz ||92||Lm(m) and Gz = [|g1]| 1 (r2) + llg2ll72(r2)-

Proof. Multiplying (1.1) with (—A)**## and then integrating over T?, we find that

1d e
53 LI F ok [ (-8

- / Fla,0)(—A)*+0dz — / (1 V0) (—A)*+*0da.
T2 T2

2a+<

0)*dx
(4.11)
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We proceed to estimate the last two terms in (4.11). First, Holder’s and Young’s
inequalities imply that

/ g2(2)(—A)*T*0dx
’]I‘Q

IA

s 2a+ts
[(=A)2g2lL2(r2) [ (=A) "2 8| L2(12)

(4.12)

IA

K
SN0 zase 12y + Cllgalirs (12

By Lemma 1, Holder’s and Young’s inequalities, g; € H*(T?) and (3.4), we have
[ @@ -a)y o
T2

El 2a+ts
< N2 (91 Ol 2r (- 2) 576
< C (lgsllasrn) | (=) FO) |2 + (=) E gall 22 1 £6) e ) 10]l 2o =52y
< Cllgullarscrsy (14 160 20+ a2, ) 1Ol zese

’ 1_ ’
S C||gl||H3(T2 (1 + ||9H212a+< T2)||9||L2n']1’2)) ||9HH2a+s(’]I‘2)
K
< g 10l5zers a2y + Cllgallzrs(r) +CH91HH ) 101122 (r2),
(4.13)

where we have used the Sobolev embedding H*(T?) C L*(T?) for s > 1 and the
following Gagliardo-Nirenberg inequality:

160 20— s py < ClO e oy 101 2
where 1)/ := 22—£2. Next, we analyze the last term in (4.11). By Holder’s inequality,
we have

[ 90 (-8)da| < (-2
T2
Note that V -« = 0. Then by making use of Lemmas 1 and 2, we obtain
] s+1
[(=A)2(w- VO)|L2er2) = [[(=A) = (ud)|| L2(12)
s+1 s+1
< Cl(=A)"= ullpei (12)[10]| L7z (12) + Cllul|Lrz(12)[|(—A) 2
< CI(=A) "2 0l Lo () |10l o2 (T2),

2a+s

@) (=A)% (u- VO)[r2(ray.  (4.14)

(4.15)

where
1 2

P2 =1

y» we use the following Gagliardo-Nirenberg

R

To deal with the term ||(—A) =

inequality:
s+ 2a+s
I(=A)= (—2) =012 oy 1611 2z (4.16)
where ) € [Q‘Ltrls, 1) . Then it follows from (4.14)-(4.16) and Young’s inequality that
= [ VO =A) b < C=A)F O e 101}y 0] e .
4.17

2o¢+s

K
< I =272 00 ) + ClIOIIE: T2)H6‘”Lm(’ﬂ‘2
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Inserting (4.12)-(4.13) and (4.17) in (4.11), we obtain

2a+‘s

d ats
Z1(=8)" 01172 (r2) + lI(=A) 7=

\Lz(qr2)

< C||9HL2(’]I‘2)||0”LP2(’H‘2) + Cligallfis(z2) + Cllgallzgs (z2) + Cllglllip’ép)||9||2L2(T2)-

(4.18)

Applying Gronwall’s inequality to (4.18) and using

2a+s o ats
k[(=4) > KA(-A) 2 (12)>
we find that for all ¢ > 0,
—k 2a
100 Frae 2y < €™ 00 Frae 2y + CllgallFre r2y + Cllgn e (r2y
t

—RA2Y (t—rp

Ol o [ D00 oy (1.19)

#0 [ e N0 a0

Furthermore, integrating (4.18) from ¢ to ¢ + 1, we deduce from (4.19) that for all
t>0,

t+1
[ B sy < € B0 By + el ony + CllnlF oo
t N .
+Cllrlfen [ 00 e
t 2
€ [0 [ o 100 Ly
’ 2 t+1
+Cllrlfeny [ 1060 e dr

t+1
+C [ 100 om0 e .
(4.20)

Inserting (4.2) with ¢ = 2 or ¢ = po into (4.19) and (4.20), the assertions of the
lemma follow. O

Lemma 13. Let the conditions in Lemma 11 hold. Then for any bounded set

B C H?* *5(T?), there exists Ty = To(B) > 0 such that any solution (t,0y) of
problem (1.1) with 6y € B satisfies

t+1
t
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Proof. Taking the inner product of (1.1) with (—A)%*9;0 in L?(T?), we find that

rd

2 dt

— [ Fe,0)(=A) (0,0)de — / (1 V) (—A)* (8,0) dx
T2

T2

e

s s+
(=) (20132 p2) + 5 5 1 (—A) T 0320,

:/T2 g1 (@) f(0)(—A)*(00)dx + | go(z)(—A)°(8,0)dx (4.22)

Tz
—/ (1 V0)(—A) (8,0)dx
’]I‘Q
=L +1+1Is.

By Lemma 1, Holder’s and Young’s inequalities, g, € H*®(T?) and (3.4), I; is
bounded by

I < [[(=8)2 (91 (@) f(0)) I L2 (r2) [ (= 2) 2 (9e0) || L2 (v2)
< C (llgallpoe (21 (=2) % £ (B)l] L2 r2)
HI(=A) 2 gill L2 (e 1F (0) | e r2)) (= 2) (9e0) | 2(r2) (4.23)
< Cllgrlecrzy (1 100 graa oo ) 10000 112y

1
< §||8t9||§1s(1r2) + Cllg1llZs (r2y + CllgallFre (v2) 101 Fr2ass (129,

where we have used the Sobolev embedding H2*+5(T?) C H?* +5(T?) in the last
inequality. For I, applying Holder’s and Young’s inequalities again, we have

s s 1
I < [[(=8)2g2ll2(2) [ (=2)2(2:0) | 2(v2) < 10051 (r2) + Cllgalzre(r2)- (4:24)

Using (4.15), Holder’s and Young’s inequalities, and the Sobolev embedding H2*+*(T?) C
Hst1P1(T?), we deduce that

I3 < [(=A)3 (u- V)| 22) | (—A) % (8:6) || 212
< Cl0N gs+re1 (12) 101l o2 (72) [ 960 125 (72) (4.25)
1
< 1”5159”%{3(?2) + Cll0lFz0 (12) 191172 (72

T 52— are given in (4.15). Inserting (4.23)-(4.25) into

(4.22) yields

where p; = —-— and py =

d
”atOH%IS(Tz) + "{% ||0||2Ha+s(’]1‘2)

< Cllg o2y + Cllgalsecezy + € (91 ay + 100302 2 ) 10120 r2)-
(4.26)

Integrating (4.26) on [t,t+ 1], in view of g1, go € H*(T?), (4.2) and (4.9)-(4.10), we
obtain that for any given bounded set B C H?® %(T?), there exists To = Tp(B) > 0
such that any solution 6(¢,6) of problem (1.1) with 6y € B satisfies

t+1
/ ||3t0||?{s(T2)dT S C, Vt Z TQ,
t

which implies the assertion of the lemma. O
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Lemma 14. Let the conditions in Lemma 11 hold. Also, assume that

LF(O) sy < s (1+ 8]l maecry) , 6 € HEX(T?), (4.27)
and f € C1(R) satisfying
1Ol mor2y < ka (14 110] grasere)) , 6 € HYT(T?) (4.28)

for some ks, ky > 0. Then, for any bounded set B C H?* +5(T?), there ewists
Ty, = T1(B) > 0 such that any solution 0(t,00) of problem (1.1) with 6y € B
satisfies
[0:0(t)|7s p2y < C,  VE>Th. (4.29)
Proof. By differentiating (1.1) in time and writing w = 9;0, we have
Opw +u - Vw + k(—A)*w = —uy - VO + g1 (2) f (0)w. (4.30)
Multiplying (4.30) by (—A)*w and then integrating over T2, we obtain

S NN N EN

2dt Jp T2

= [ @) @ut-a)rwds - [

T2

(u-Vw)(—A) wdx — /T? (uy - VO)(—A) wdz.
(4.31)

Now we estimate the last three terms in (4.31). First, by Holder’s inequality and
Lemma 1, we deduce that for some 0 < p% <ps < q,

| @) @u=a) s

s—a

sta
< (=2) "= (g1 (O)w)ll L2 (rey [(=A) > wll2(r2)
< Cllgnf Ollzesryllwll oo 2 Nwllere ()

72 (12) (4.32)
LOlar f O ... ]

1 1—
< CHglf/(e)”L%(TZ)Hw||7;]11s++a(1r2)||w||L2(n'ﬂ£2)

1 1—
+ C”glf/(a)”Hs—a, 7 (2) Hw”?;stu(w) ||w||L2Z711%2)~

Totss (T2) = (T2)”w”Hs+a(T2)

where we have used the following Gagliardo-Nirenberg inequalities:

1—
||wHHsfa,j;%(T2) < CllwllFera ey lwll 2 (2

and
1—
”w”Lﬁ(T{Q) < Cljw| 7};5+0(T2)Hw”L2(n?1%2)’
where 1y € [;:_—z, 1) and 77 € (0,1). Using Lemma 1 again, (4.28), g; € H*(T?) and

the Sobolev embeddings H*(T?) C LP*(T?) and H*(T?) C H ™ Tt 275 (T?)
for s > 1, we have

lorf O ..

—2 g, —— 2
"T—a+py (']1‘2) 1—a+pg—2/p3 ('I[‘Q)

< (WOl lal,,

!
ol L Oy o)

< O ONas ) lgllae )

N
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< C (14 10llme+acr2)) 191l e (r2)- (4.33)
Noticing that H*(T?) C L°(T?) for s > 1 and g; € H*(T?), hence

lg1 'Ol zes w2y < Cllgallpeewe) lF O s (wey < C (L4110l o+er2)) N1l (o),
(4.34)
where we have used the Sobolev embedding H*(T?) C LP*(T?) for s > 1. Inserting
(4.33) and (4.34) into (4.32), we obtain from Young’s inequality that

/ (@) (O)w(—A) wdx
’H‘Q

1 1— 1 1—
< C (14 10leorn) N llars ooy (0l 250 o el o) + ||w||7{2$u(T2)||w||L2€;2))

K 7
< Sllwl|Fera ey + Cllwlfagrzy (1+ 0]l mota(r))’ i ||91H}1q (12)

e

+ CllwlZ2gp2y (1+ 0] govacry) =7 = 911l g7+ (2 ”2']1‘2)'
(4.35)

Next, we consider the nonlinear terms involving u; - VO and w - Vw on the right
hand side of (4.31). Indeed, it suffices to analyze the term involving wu; - V8, since
the other term satisfies similar estimates. Notice that V - u; = 0. Then by Hoélder’s
inequality and Lemmas 1-2, we deduce that

/(ut~V9)(—A)swdx
’]I‘Q

sta s—a
<(=A) = w2 ez [[(=A) = (ug - VO) | L2(12)

stao s—a+1
<[(=A) = wllp2r2) [[(=A) 72 (ueb) || L2(72)

o =gy 4.36

< Cll(=A) T wl| 22| (-2) (4.36)

2 ut||L”1(T2)||9||Lp2(T2)
sta
+ C” (_A) 2 w||L2(’]1‘2) Hut

| oo 1y || (—A) 5

sta s—a+1
< CI[(=A) = w| 2er2) [[(=A) 72~ wll Lo (r2) 0] Lr2 (72)
sta

s— o¢+1

+C||(— )7 wllze 1r2>|\w||m(1r2)||( A) Ol ot (12,
where p; = == and p; = 20‘,71 are given in (4.15). Using the following
Gagliardo—Nlrenberg mequahtles.
1(=2) =2 w] s r2y < Cl(=A) 55 w]| B o [l T, (4.37)
and
oll s (o) < CH(=A) T 0] P o 0] 50 (4.38)

sta ?

we obtain from Young’s inequality that

/ (ug - VO)(—A) wdz
T2

ste 1 1-
< ON(=A) = wl| 3 ey 1wl 2 52y 16]] o= (r2)

ste 1 1
+ O F w3 bl | -2) 2

where 13 € {S_O‘H 1) and 74 € (0,1), and inserting (4.37) and (4.38) into (4.36),

(4.39)

1
B35,

K n
< g”wuqummz) + C||1UHL2(1I2)||9||£1)2?T2 + Cllw|Za ’]1‘2)||9||Hs+a(11‘2)7
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where we have used the Sobolev embedding H*T*(T?) C L?(T?) in the last inequal-
ity. In a similar way as above, we have

[t Fu)(=a)y wda| < Gl mny + Cllul s 101

(4.40)
+ C”wHL2(T2)”0”]1_[&11@2)
Inserting (4.35) and (4.39)-(4.40) into (4.31) gives

&Hwﬂip(q@) + Kl wl|Fera 2
< Ollwlf2a gz (1+ 8]l erern) =7 ||91||1ﬁr2)
+ Cllwl3agpe (1 + ||0|\Hs+a(qyz>) "2 ||91||13!(’%T2) + Cllw\liz(wa)ll9llﬁw2)
+ C||w||L2(T2)H9||Hs+a(Tr2)

(4.41)

On the other hand, arguing as in (4.13) and (4.15)-(4.16), in view of (4.27) and
the Sobolev embeddings H*T(T?) c H?*(T?), H*+*(T?) c H"1(T?) for s > 1
and « € (3,1], we obtain

llg1f(Dlz2cr2) < Nlgillzo r2)ll £ (O)l| L2(T2)
< Cllgll a2y (1 + 1101 2 (72)) (4.42)
< Cllgillmscrzy (14 0]l grosacr2y)
- VO] L2 (zey = [[(—=A)% (u)| g2z
< Cll(=A) 2 ull or 12) 0] L2 (22) + Clul| o2 (22 1 (= 2) 2 0]| Lo (2
< Of[(=2)20]| o v 101 Lo 72

< OO s+ r2) 10] Lo2 (129,
(4.43)

where p; = —L— and py = 52— are given in (4.15). By (4.42)-(4.43) and g1, g2 €
H*(T?), it follows from (1.1) that

[l Z2(pey = 186172 (g2
< Ollu- V|l 22y + (=)0 22 (r2) + 191 f O |7 2(r2) + CllgalT2(re)
< C||0H%IS+D<(’]I‘2)”0”%?’2(1‘2) + C”@H%{sw(?ﬁ)

+ Cllgulre¢zzy (14 1013 v0zn) ) + Cllga [ F2rey-

This together with (4.2) and (4.9) implies that for any given bounded set B C
H#+2% (T?), there exists a T] = T{(B) > 0 such that any solution 6(¢,6p) of
problem (1.1) with 6y € B satisfies

10(t)|[Frasemey < C, VE>TY, (4.44)
||at9(t)”2L2(1r2) <C, Vt>T. (4.45)
Combining (4.44)-(4.45) and g1, go € H*(T?), we obtain from (4.41) that

d
£||w\\%1s(1r2) + llwl|Foragrey <O, VE>TY. (4.46)
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Finally, applying the uniform Gronwall lemma and (4.21), the assertion of the
lemma follows. O

Finally, we establish uniform estimates for 6 in H2*+5(T?).

Lemma 15. Let conditions in Lemma 14 hold. Then for any bounded set B C
H?o +5(T?), there exists Ty = To(B) > 0 such that any solution 0(t,0y) of problem
(1.1) with 6y € B satisfies

Ho(t”ﬁ{zaﬂ(m) <C, Vt>Ts. (4.47)

Proof. Applying the operator (—A)2 to (1.1), in view of (1.2), we find that

2a+s
1(=4)

s

0)172(r2) < ClI(=A)2(:0)[|7 272y + Cll(—A)2 gal|72 (r2)
+C|[(=A)2 (u-VO)|[F2(r2) + ClI(=2)2 (91 £ (0)) 17212
= C||(=2) % (0:0)|1 22 (r2) + Cligallzye(rey + Is + Is.

(4.48)
By (4.15)-(4.16) and Young’s inequality, I4 is bounded by
I < Oll(=A) F 01200 1) 10130 2y
< Cll(=A) 57 0)1 28 oo 10122 0 16]2.0 22 (4.49)
< TI-8) 500 vy + 01 o) WO e
where 7 € [25;4_18, 1) , P1 = 1_1a, and py; = Tz—l are given in (4.15) and (4.16).

Arguing as in (4.13), we have
I5 < Cllgs oy (14 101220 )
2—-2
< Cllgall3recray (1 + 1613 0133 o) (4.50)
1 2a4s
< ZI(=
< <I(=2)*

Inserting (4.49) and (4.50) into (4.48) gives

01|72 (r2) + Clarl| 5.7 (e 101172 (2 + CllgallZrs 2.

1611200 (12) < Cll00N[310 (r2) + COIIZ2 TZ)HQHLpz(Tz) +Cllgll - (T2)||9||2L2<T2>

+ Cllgr |5z r2y + Cllgzllzre vy
(4.51)

Using g1, g2 € H*(T?), (4.2) and (4.29), the assertion of the lemma follows from
(4.51). O

5. Existence and regularity of global attractors. In this section, we prove the
existence of an (H?® +5(T?), H?>* +5(T?))-global attractor and an (H2® +5(T?),

H?%%5(T?))-global attractor for the semigroup associated with the 2D quasi-geostrophic

equation (1.1).

Theorem 16. Assume that the conditions of Lemma 14 hold. Then the semigroup
{S(t)}1>0 associated with problem (1.1) has an (H?® T5(T?), H** +5(T?))-global
attractor.



16 LIN YANG, YEJUAN WANG AND TOMAS CARABALLO

Proof. Lemma 15 implies that {S(¢) };>0 has a bounded absorbing set in H2**%(T?),
and is asymptotically compact in H2® 5(T?). Hence the existence of an (H2?* *¢
(T?), H?* 5(T?))-global attractor for {S(¢)}:>0 follows from Proposition 9. [

In order to obtain the existence of the (H2® +5(T?), H2%+5(T?))-global attractor,
we need the following auxiliary lemma.

Lemma 17. Assume that the conditions of Lemma 1/ hold. Then for any bounded
set B C H?* T5(T?), there exist Ty = T3(B) > 0 and Ng > 1 such that any solution
0(t,00) of problem (1.1) with 6y € B satisfies

(I = P)0i0(t)|[ 3o (p2y < &, ¥t > T, m> Ny, (5.1)

where Py, : L*(T?) — H,, is the projection operator and H,, is the space spanned
by {e; }7:1

Proof. Let wy = (I — Py,)w. Multiplying (4.30) by (A)*ws and then integrating
over T?, we have

%%/TJ(—A)%W]W*”/TQ[(—A)S?wQFdw
= /T g1(@) ' (O)w(—A) wada — /TQ(u-Vw)(—A)Swzd:c - /T2(ut - VO)(=A) wadz.

(5.2)

For the first term on the right-hand side of (5.2), by similar arguments as in (4.32)-
(4.34) we obtain

/T? g1(2) f () w(—A) wadz

s—a s+a

< (=)= (g1 (O)w)l L2 (x2) [ (=A) = wal| L2 (12

< Cllgnf' O)lles oy llwll . 20 |Jwa|lgover2y
HY P32 (T2)

372 (
i
+Clgn s @) ..

[[w]]

< C(L+ 110l s r)) Ngull e o2y llwll s o2y llwal| s+ 2

lwa | gre+e (12)

2 2
’l—a+py (']1-2) I «—pa (']I‘2)

K
< Flwsllyesagray + C (14 1003 ara) ) 91 e crmy ol oy,

where p3 and py are given in (4.32), and we have used Young’s inequality and the
2p3

Sobolev embeddings H*(T?) C H* “#-2(T?) and H*(T?) C L& (T?) for s > 1.
For the last term in (5.2), by Lemmas 1-2, Hélder’s and Young’s inequalities, we
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find that
/ (g - VO)(—A) wada
-
< (= A) 5 wa | 2o [|(—A)F (e - VO)| 22y
< O|(=A)F wal g2 grzy [ (—2) =% el oo 12y | V| oo 2y
+ Ol(=2) 5 wal| gy el oa ooy | () TF Ol ooy (5.4
< OJl(=A) 5% wall 2 (r2) | (=) 2% w]| oo (12) [ VO] oo (12)
+ ClI(=2A) = wal| 2 (x2) ]| oo (2) | (— ) 5 ]| o (22
< Cllwellmstor2) 1wl e (x2) 101 oo (r2)
< 2 flwalFere rzy + Cllwl3pe o 10030 s 2y
where
1 2 2 2
p1 = 1—a—’ p2=ﬁy Ps = I —a—’ pszai,

and we have used the Sobolev embeddings H*(T?) C H*~%P5(T?), H*(T?) C
LP2(T2), H5+e(T2) ¢ HPo(T2) and H*+*(T2) ¢ H*~°*+L»1(T?) in the last in-
equality. For the second term on the right-hand side of (5.2), noticing that (—A)3
and V are commutable, and

s s

(u-V((=A)2w2), (=A)2w2) =0,
hence we have
— [ 0 VU)o = —((~A)E (- V) = - V(=) Eun), (~8) )
—{(=A)3 (u- V), (—A)3ws)
= () (1 Vun) - (~A)F V), (~A) Fu)
—((=A)2 (u- Vwy), (—A)2w,)

= I + I7,
(5.5)

where (-, -) denotes the inner product in L?(T?) and w; = P,,w. Then using Lemmas
1-2 and Hélder’s inequality, we obtain

s—1
6| < Cllwal|grs(12) (||VU||LPG(T2) [(=A)"Z Vwz||1rs (12)

+ ”(_A);u|LP6(T2)||vw2||L’°5(T2)) (5.6)

< Ollwall g (12 (||V9||LP6(T2)|w2||HSvPs(1r2) + ||9|HS’P5(T2)|vw2||L”5(’J1‘2))
< Cllwll s (o) 10]] oo (r2) w2 g5+ (12,

where ps = %, D6 = 0%, and we have used the Sobolev embeddings H*+%(T?) C
H#Ps(T?) and H*T%(T?) C H*P5(T?). By similar arguments as in (4.36), using the
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equivalence property of norm in the finite dimensional case, I7 is bounded by
I7] < [(=A)2wal p2er2) | (—A) 2 (u - Vwr)|| p2(r2)
s s+l
< O(=A)2wallL2(r2)[[(=A) = (uws)] 212

s s+1
< Cl(=A)2wall2(r2) [[(=A) 2 ul| por (12) || w1 ]| Le2 (72)
s st+1
+ Cl[(=A)2wa|| 2 (r2) [ull o2 (r2) [[(=A) 72w o1 (12) (5.7)

< C|l(—A)2wa|| 22y | (= A) F 0] 1o (72

w1 || 2 (12)
s s41
+ Cl[(=A)2wa || L2(r2) [|0]| Loz (72 | (=A) 2 wi| Lo (r2)
< Cllwz || grs+e (v2) |0 mr2o-s=(v2) |w]] 11 (72),

= 32— are given in (4.15), and we have used the Sobolev
embeddings H*V*(T?) C H*(T?), H?**5(T?) C H**'P1(T?) and H?**"5(T?) C
LP2(T?). Inserting (5.6) and (5.7) into (5.5) gives

where p; = —— and ps =

/ (u . V’w)(—A)é’de.’L‘ < CH’lU2||Hs+a(T2) ||9||H2a+s(’]r2)||w||Hs(T2)
T2 (5.8)

K
<3 [wal[Frota(r2y + CllwlFe 2y 101 Frzas (72

due to Young’s inequality and the Sobolev embedding H?*%$(T?) C H*T(T?).
Combining (5.2)-(5.4) and (5.8), we have
d

— NlwallFe (r2y + Kllw||7rsra o
dt (T2) (T2) (5.9)

< C (14 10gesm 2y ) 1913y el crzy + Cllolge ooy 101 Bz -
From (4.9), (4.29) and (4.47) we see that for any given bounded set B C H*T2~ (T?),

there exists a T4 = T4(B) > 0 such that any solution 6(t,60y) of problem (1.1) with
0y € B satisfies

0| Foraaey < C, V> T, (5.10)
||9(t)||§{2a+s(1r2) <C, Vt>Ts, (5.11)
10:0(t) |30 (z2y < €, VE> T (5.12)

Then (5.9)-(5.12) and g; € H*(T?) imply that
d
£||w2||%15(1r2) + oA [wel|Fe ey < O, WE > Ty

Finally, by Gronwall’s inequality we obtain (5.1), and thus the proof of this lemma
is completed. O

We are now ready to prove the main result of this section.

Theorem 18. Assume that the conditions of Lemma 14 hold. Then the semigroup
{S(t)}+>0 associated with problem (1.1) has an (H** +4(T?), H?*"*(T?))-global at-
tractor A.

Proof. Thanks to Theorem 16 and Proposition 9, now it only remains to show that
the semigroup {S(¢)}¢>0 is (H?® *(T?), H?*%#(T?))-asymptotically compact.
Let a bounded set B C H?® *5(T?), sequences {t,}>; with t, — +oo and
{00}, C B are given arbitrarily. We will show that the sequence {S(¢,)00 }°2,
has a convergent subsequence in H2“+$(T?). Notice that Lemma 15 implies that
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{S(t,)08 152, is bounded in H2*"5(T?). By the compactness of embedding H?*%(T?) C
H?> +5(T?2), it follows that there is ¢ € H?* +%(T?) such that, up to a subsequence,

S(tn)0 — & strongly in H?* T5(T?). (5.13)
This together with (3.1) implies that
{u™(t,) - VO™ (t,)}22, is a Cauchy sequence in H*(T?). (5.14)

Since f : H?* *5(T?) — H*(T?) is Lipschitz continuous on bounded subset of
H?* 5(T?), in view of (1.2) and (5.13), we have that

{F(2,0"(t,))}22, is a Cauchy sequence in H®(T?). (5.15)
Observe that
00" (tn) 00" (tw)
Oty Oty
+R(=A)N (0" (t) = 0" (b)) = F(2,0"(ta)) = F(2,0™ (t))-
Taking the inner product of (5.16) with (—A)*F("(t,,) — 8™ (t,)), we obtain

K107 (tn) — 07 (b )20t (1)

=— <(_A)§ (69(;(571) _ 89;5?')) (—A) (Gn(tn) - 0”/(tn,))>

= ()% (u" () - V" () = (1) - V0" (1))
(—8)%7 (0"(tn) = 0 (tw)) )
()8 (B0 (00) = Fla 07 (1)) . (=8) "5 (67(0) = 7' (1)) )

, 2
90" (t,) 90" (tw)
it Ot

U (tn) - VO™ (tn) — " (tn) - VO™ ()

(5.16)

S ||0n(tn) - 0" (tn/)”?—]2a+s('ﬂ*2) + C

| x

H#(T?)

+ Cllu™(tn) - VO (t,) — u™ (tn) - Vo (tn’)H%{s(W)

H1F (2, 0" (tn)) = F(2,0" (tw))77(12)

(5.17)

thanks to Young’s and Hélder’s inequalities. Lemma 17 implies that for every € > 0,
there exist Nj > 0 and mg > 1 such that

20" (t,, 0™ (t,r
H(I_PmO) 3( ) ‘ + (I—Pmo)% <e, Vn,n > Nj.
tn M) ey
(5.18)
On the other hand, by (4.29) we find that the sequence {Pmo %(j”)} ) is bounded

n oS
in H*(T?), and thus {Pm0 %T(:")} ) is precompact in H*(T?). This together with

bn

(5.18) shows that {%} has a finite open covering of balls with radii less
n=1
than ¢ in H*(T?). This implies that, up to a subsequence,

{898t(tn) } is a Cauchy sequence in H*(T?). (5.19)

n=1
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Combining (5.14)-(5.15), (5.17) and (5.19), we have that, up to a subsequence,
{6™(t,)}o2 | is a Cauchy sequence in H?*"*(T?),

and thus {S(¢)}+>0 is (H?* T5(T?), H?>*#(T?))-asymptotically compact. The proof
of this theorem is completed. O

6. Exponential attractors. In this section, we are concerned with the construc-
tion of exponential attractors. First, we recall the definition of exponential attrac-
tors and the fractal dimension for a general set.

Definition 19. Let A be a compact subset of a Banach space X. Then the fractal
dimension dim&(A) of A is defined by

)

log N (A
dimg( (A) = limsup M
e—0 log =
where £ > 0 and N (A, €) is the minimal number of closed balls in X having a radius
¢ which cover the set A.

In particular, when dim&(A) < 00, A is said to have a finite fractal dimension.

Definition 20. Let {S(¢)}:>0 be a semigroup on a Banach space X, and let A C X
be a global attractor of {S(¢)};>0 in X. Then a set M C X is called an exponential
attractor for {S(t)};>0 in X if the following properties hold:

(i) M is a compact subset of X such that A C M C X;

(ii) M is positively invariant, i.e., S(t)M C M for all t > 0;

(iii) M has finite fractal dimension in X;

(iv) M attracts exponentially every bounded subset of X, i.e., there exists an
exponent o > 0 such that for any bounded set B C X,

distx (S(t)B, M) < Cpe™, t>1g
with two positive constants C'p and ts depending on B.

For the convenience of applications, we reformulate the abstract result on the
construction of exponential attractors [4, 14, 17, 39] for {S(¢)};>0 under slightly
modified conditions.

Theorem 21. Let {S(t)}+>0 be a semigroup on a Banach space X, and let A C X
be a global attractor of {S(t)}i>0 in X. Assume that there exists a closed bounded
set X C X satisfying:
(i) it is positively invariant, i.e., S(t)X C X for all t > 0;
(i) it is an absorbing set of {S(t)}t>0, i-e., for any bounded set B C X, there
exists a time tg > 0 such that S(t)B C X for all t > tp;
(111) there exist 0 < v1 < 1,0 < v <1, ¢* > 0 and L = L(t*) > 0 such that for
any ty, ta € [t*,2t*] and u, v € X,

1St = Sta)vllx < L(ltr =t + lu—o[I¥);
(iv) there exist a positive constant 6 € [O, %) and a N-dimensional subspace Xn

of X such that the bounded projection Py : X — Xy satisfies that for any
u, v € X,

11 = Pr)(S(#)u = S(E*)v) | x < dllu—v[¥.

Then the semigroup {S(t) }1>0 has an exponential attractor & satisfying the following
properties:
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(1) € contains a global attractor A of {S(t)}i>0;
(2) € is a compact subset of X with finite fractal dimension

1 ( logN
dimg((f) < — (()g# + 1) ;
Yo loga,

(3) & is positively invariant, i.e., S(t)€ C € for all t > 0;

(4) distx(S()X, €) < L(R?)2a;2re (F10800) for cvery ¢ > ¢+,
Here vo = min{y1,72}, R is the diameter of X, 0 < a,, < 1 is the exponent given by
a, =2(8 + pL) with 0 < p < 1522 and N, is the minimal number of closed balls
of X with radius p which cover the closed unit ball of Xn, Bn(0;1) = {z € Xy :

lz]lx < 1} centered at 0.

Proof. Following a similar procedure to the method given in [17, 39], we can con-
struct the exponential attractor £ for {S(t)}i>o-

(1) Let S™ = S(nt*) for n € N. We will first construct an exponential attractor
&* for the discrete dynamical system {S™},>0.

Let p be any exponent such that 0 < p < %, and let a, = 2(6 + pL). Then
it is clear that 0 < a, < 1. The closed unit ball, Zn(0;1) ={z € Xn : ||z]|x <1}
centered at 0, is a finite N-dimensional compact ball in X. Therefore, y(0;1) can
be covered by finite closed balls of X with radius p. Denote by N, the minimal
number of balls of X with radius p which cover Zy(0;1). Following the arguments
in [39, Theorem 6.12] step by step, we obtain that for n = 0,1,2,--- | there exists
a finite covering of S™X such that

8;
Sx C | JBWni Ra),
i=1
with centers W, ; € S"X, 1 <¢ < ]V,’], where R is the diameter of X.

Let Z ={W,,;:0<n<o00,1<i< N;‘} and £* = UZOZO Sn . Then £* is an
exponential attractor for the discrete dynamical system {S™},,>o. More precisely,
E* contains a global attractor A* of {S™},>¢, the fractal dimension of £* is

lo N
imf (£%) < — 28V 1
dim (£7) < B2, (6.)
SnE* C £* for each n and
distx (S"X, £") < R™ay, for all n > 0. (6.2)

(2) Now we consider the continuous case. To this aim, we define
e= J swe
teft*,2t*]

Thanks to the condition (i), it is obvious that £ is compact. Then it follows from
(6.1) and the condition (4i7) that

. 1 . 1 log N,
dim?%, (& < — 1+ dim?. (&* < —[1-=""£],
k€)= o (1 dimf(en) %( o

where 79 = min{~v1, 72 }. Moreover, by the positive invariance for the discrete expo-
nential attractor, we have S(t)€ C & for any t > 0.
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For t > t*, writing ¢t = nt* + 7 with n > 1 and 7 € [0,¢*], by the condition (%)
we obtain that
distx (S(t)X, €) < distx(S(t)%X, S(t*)E") < L(distx (S(t —t")X, £*))". (6.3)
Furthermore, using the condition () and (6.2), we have
distx (St —t")%, &) < distx(S((n — 1)t*)S(r)X, %)
< distx(S"T'X, £)
< sza:Tl = R”zaljla:f;*f
< nga;2ef(%loga;1)t.
This and (6.3) imply that for all ¢ > t*,
distx (S(D)X, £) < L(R?)2a, e (Floga )1, (6.4)

By the condition (i7), we conclude that for the global attractor A of {S(¢)}i>0,
there exists a time t4 > 0 such that S(¢t)A C X for all ¢ > t4. This and the
invariance of A ensure that

diStX(A, 8) = distx(S(t)./L 5) < distx(S«t - t_A):f, E))

Thanks to (6.4), we see that A C &.
The proof is complete. 0

In order to construct an exponential attractor € for the semigroup {S(¢)}:>o0
associated with (1.1) in H2*7(T?) with a > § and s > 1, now it suffices to show
that there exists a closed bounded set X C H?**#(T?) having the properties (i)-(iv)
in Theorem 21.

Lemma 15 implies that {S(¢)};>0 has a closed bounded absorbing set B in
H?2%5(T?), and there exists a time t» > 0 such that S(¢)B C B for every t > ty.
We define

x=J S (6.5)
(2423}
Then it follows that X is a closed bounded set in H2**%(T?), and the conditions ()
and (47) in Theorem 21 are fulfilled.

In order to verify the Holder continuity property, we need the following lemma

on estimates of 0;6.

Lemma 22. Assume that the conditions of Lemma 14 hold. Then for any fixed n
with 0 < 77 < 2a—2a7~, there exists Ty = T (X) > 0 such that any solution 6(t, 6y)
of problem (1.1) with 0y € X satisfies for any t1, ta > Tf,

to

/ 100012 20 ny 7 < Clt — 1] + €. (6.6)

ty

Proof. Multiplying (4.30) by (—A)*+5~7y and then integrating over T2, we obtain
1d ats—q

2dt ,p[(_A) 2 w]le‘ + K/EJ(_A)%U)]de
:/ gl(”““)f’(H)w(—A)“ﬂ—ﬁwdx—/ (u- V) (=) Twda (6.7)
T2 5

_ / (g - VO) (= A)+ Ty
‘]1‘2
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For the first term on the right-hand side of (6.7), by similar arguments as in (4.32)-
(4.34) we have

[ @) @2y Tuda

< (=D T (g1 £/ (O)w) | 22 e || (—A) 75w e

< Cllgad Ol g o 0l s 0l svaeces
H P32 (T2)

+Cllgnf O o2, ]
H

T1-n+p) (']1‘ L P4 (’]]‘Z)Hw||HS_77+20(T2)

< C (1+ 110l prvo(r2y) Ngll s o2y 1wl s o2y 1w pre-av2a (72 (6.8)
(17Ot

2
"1-fi+p) —2/pf (T2)

o T O )||w||Hsm2>||w||Hs-a+zam>

'lfﬁ+p172/z>§, (T2)
< C (1+ 110l prvo(r2)) Ngll s o2y 1wl s o2y 1w gre-ivza (72

K

< 0l vnroy + € (14 W01 ooy ) Nl ooy ool o

for some 0 < % < p) < 1, and we have used Lemma 1, Young’s inequality and

the Sobolev embeddings H*(T?) ¢ H = (T2), H*(T?) C L=(T?), H*(T?) C
—2 /
L775(T?), H%(T?) C L¥3(T?) and H*(T?) C
~ 2

H® T (T2) for s > 1. For the last term in (6.7), using Lemmas 1-2,
Holder’s and Young’s inequalities, we deduce that

/(ut~V9)(—A)°‘+s_ﬁwdx
T2
s—i+2a s—i]
SH(=A) 72 w2 (re) [[(=A) = (ur - V)| 12(r2)

n+2a s

< ON(=A) 5wl g2y [|(~A) T

utHLP5 (T2) HVHHL% (T2)

s—i+2a s— ,,+1

+C||<_A) 2 w||L2(T2)||utHLP’2(T2)||(_ ) OHLPII(?P) (69)
s—1+2a s—7
SCH(_A) 2 wHL2(T2)||(_A) 2 w||Lp15(’]I‘2)||V9||Lp6(’]I‘2
s—nt2a s— n+
)50 g ol g -2 F2 0] g
< CH’LU||HS—17+2Q(T2)||’LUHH5(']1~2)||9||Hs+2a('ﬂ~2)
K
< *||w|\1zqs—ﬁ+2a(1r2) + CH“’”%{s(W)||9||§{s+2a(1r2)7
where
/o 1 /o 2 /o 2 o 2
P = 1—a Py = 2% — 1’ Ps = 1—7 p6_77

and we have used the Sobolev embeddings H*(T?) ¢ H® 175 (T?), H*t2*(T?)
H'“Ps(T2), H(T2?) C LP2(T2), H5+2%(T2) ¢ H* T2 (T?) in the last inequality.
Arguing as in (4.36)-(4.39), the second term on the right-hand side of (6.7) is
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bounded by

/(u-Vw)(—A)aJrs*ﬁwdm
T2
s—f42a =i
<N(=A)72 wlpz e [(=4) 7= (u - Vw)| 212

—n+2a s—n+1

<(=A)"7  wlpzae [(—A) T2 (uw)||p2(re)

s—742a s—741
SCON(=A) 7 wllee ) [I(=A) 2 ullLes (02 [wll Lo (72
s—f+2a s—n+1
+Ol(=A)"= wllp2e) el pea o) [ (=2) 2wl o 72
n+2c s— n+1

<C|(-A) " w||z2(r2) [[(—=4)
s—n+2« s—n+

+ ClI(=A) T w]| 2z 101 oo r2y | (=) F w0 o 22y
s— n+1

s— n+2a 1+ / 1—n"
< Cli(=4) Wil 2 ey 1wl 2oy (= 2) 7 0l Lo (22

Ol Lo (T2) wll Lr2 (T2)

n+ a 140k
+ CI=2) T w8 w5 101 o2 )
2
K 1-n]
< ol aaa (z2y + Cllwl o oo 101l g2y + Clloll 72 T2>H9||H5+2a =
3 (T2) (T2) (T2)"
(6.10)

Here p; = #, Do = 20[_27_1, and we have used the Sobolev embeddings H**2%(T?) C
Hes=mLpiy(T?), {g5+22(T2) ¢ LP2(T?), and the following Gagliardo-Nirenberg in-
equalities:

s—1n+1 s—n+2a

=8 F ) o ) < C=A) T 0] g 0] e

en+o¢

[w]|Lr2 (v2) < Cl(=A) W] o 0] 2

s—n+2a’
Inserting (6.8)-(6.10) into (6.7) gives

d
%”w”%{aﬂfﬁ(w) + H||w||i[5*77+204(ﬂ'2)

where 7} € [ s—n+] 1) and 4 € (0,1).

< C (1411002 ) 911+ 2y 100 g2y + Clll oy 1020 g2y (6:11)

171

1
+ Ol 101 ey + Clll oy 161 -

Recall that 6y € X and X is a closed bounded set in H?*"%(T?) having the pos-
itively invariant property. In view of Lemma 14, we deduce that there exists
T5* = T3*(%X) > 0 such that any solution 6(t,6y) of problem (1.1) with 6y € X
satisfies

10:0() |57+ r2y < C, ¥t > T,
10:0() 322y < C, V> T3,

and by (4.46), we have that for any ¢, to > T§*,

to
/ 1001221 rzy 7 < Clts — ] + C.

ty
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Using g1 € H*(T?) and the Sobolev embedding H*"2%(T?) C H*T(T?), it follows
from (6.11) that

%|\w||§{a+s_ﬁ(m) 102 giza ey < O, VE> T3, (6.12)

Applying the uniform Gronwall lemma to (6.12) results in
18:0(t) [ Fraso-sprzy < Oy VE>Tg* + 1. (6.13)
Integrating the differential inequality (6.12), then the assertion of the lemma follows
immediately from (6.13). O

The Lipschitz continuity of the solutions with respect to the initial data is pre-
sented in the following lemma.

Lemma 23. Assume that the conditions of Lemma 14 hold. Let 6 and & be the
solutions of problem (1.1) with the initial data 0y and & € X, respectively. Then,
for any fixred n with 0 <1 < 2a — 2a~,

2a
KAT

Cr _
||9(t) - g(t>||H20_+S(’H‘2) S OHGO - §0||H2°_+S(T2)e ”te 4 t,

a—a—

kA2 o _n
10(t) — E@) || r2ats—n(r2) < Ce™ 7'~ ||6h — Sl grza=-+s(72)

(6.14)
_ "T’A%a t Cy¢
+C€ 4 ev ||00_§0||H2“_+5(T2)7
where v is a constant with v > ——.
Proof. Thanks to (3.2), we have
t
O(t) — &(t) = e~ (0o — &) + / e hen(t=) ((F(w, 0(r)) — F(z,&(r)))
0 (6.15)

~ (ulr) - V() ~ o) - V() Jar
where u = (—R26, R10) and v = (—Rz¢, R1&). Denote
Aoz*Jr%,n = R(_A)aijL%a A%,/@ = K(_A)g
By Proposition 3 and (6.15), we deduce that
[ Aa-st0) — €], .

< [[Aa- s geem 400 - €0))]

o)l
oAc

KAZQ

<Ce 2t

L2(T2)

a gm0 gy (@) (F(B(r) — f(E(?"))))‘

T
L2(T2)

o g€ D () - V() = o(r) - VE))|

L2(T?)

AOF ( 50)‘
¢ “1
—|—C/ e 2
0
t K2
JrC’/ e
0

L2(T2)

=) (A (91 @) (FO0) = FEE| o ey A

Tt — 1) || As e (u(r) - VO(r) — o(r) - VE(r

HL2(T2) dr.
(6.16)
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Since g1 € H*(T?) and f : H?* *5(T?) — H?*(T?) is Lipschitz continuous on
bounded subsets of H2* *$(T?2), by using Lemma 1 and the Sobolev embedding
H#(T?) C L*(T?) for s > 1, we have

c/ -2 ey =) [Ag e (@) (FO0) = FEEDD] 2 o dr

<0/e‘@”t”a—mfi@mmwmﬂeAﬁqu»—ﬂammmma
0

4|KAﬁglLawnmﬂwm>f@v»num@a>m
<cmmmmz/e*ﬂi“ﬂu—mf%wwwv»—ﬂawmmmmm

<c /
In view of (3.1) and 6(r), &(r) € X for all r > 0, we find that

o)
gOA >a_n4%(wvmmwﬁma

+M@MHMWNWann—fvahw%wﬂr

¢ ”A%a a”
gc/ e 2 Ut — )T
0

Yt =1) 7 [0(r) = )| graa—e gy -
(6.17)

HL2 ’]1‘2)

(6.18)

0(7’) - §(T)||H2oﬁ+s (Tz)dr-
Inserting (6.17)-(6.18) into (6.16) result in
_mA,
”9( ) - ( )||H2m—+§(']1*2) < Ce 2 ||90 - SOHH2(¥_+S(T2)

+0/’ 4= ) 100) — €0 g sy

< C’e_

£0||H2a +s(T2)

v—1
v

C( R - r)_“(a”u”d’“) (6.19)

([

< Ce_ 2 tHQO _£O||H2a7+s(’ﬂ‘2)

t KA
—|—C(/ e~ 4
0

<=

ORI CIR—

v

O) = €y
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where v > —%— and we have used the property of Gamma function in the last
inequality. Therefore,

AZay,
e 10(8) = €O e v a2,

< Ol €allyau sy + C / E1007) — )2 gy
Applying Gronwall’s lemma,
c 7"6)\%a
1008) — €@l gae o2y < Cllo — ol 12 gaye£te 0. (6.20)

For any fixed 7 with 0 <7 < 2a —2a7, denote A, o5, = n(fA)‘”%, by
2

similar arguments as in (6.16)-(6.18), we have

KR

a

2

a—a

t a

Ay esn o (000) =€)

2

L2(T2)

A2

< O Aa 4 100 — )

L2(T?)

il

a—a—-1 t KA
+Ct7 = 2/6_ e G (S
0

. i (6.21)
a—a” -4 [t a3e a-3
+Ct /e_ ()"
0
X HAz w(u(r) - VO(r) —o(r) Vf(r))HLQ(TQ) dr
é Ce £0||H20< +s(T2)
bt [ (0T 0(0) = 600 s ooy
0
Inserting (6.20) into (6.21) gives
a—a” g
t [0(t) — (@)l rrza+s—n(12)
ka3 a—a~ -1 _mi, o,
<(Ce 2 50‘|H2a*+s(']1~2)+0t * e 4+ "ev ||007§O||H2a7+s('ﬂ‘2)?
(6.22)

where the property of Gamma function is also used. Thus the assertion of the
lemma follows immediately from (6.20) and (6.22). O

Now we are ready to state and prove the main results of this section.

Theorem 24. Assume that the conditions of Lemma 1/ hold. Then the semi-
group {S(t)}1>0 associated with problem (1.1) possesses an exponential attractor €
in H?>* +5(T?), which is bounded in H****(T?).

Proof. Recall that X given in (6.5) is a closed bounded positively invariant set in

H?2+5(T?), and for any bounded set B C H?* 5(T?), there exists tp > 0 such
that

S(t)BC X, Vi>tp. (6.23)
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In order to apply Theorem 21, now it only remains to verify the conditions (iii) and
(7v) in Theorem 21. For any 6y, & € X, let 6(t) = S(t)0p and £(t) = S(t)&o. Notice
that
00  0¢ o
% +u-VO—v-VE+R(=A)Y (O —&) = F(z,0) — F(x,§), (6.24)
)

where u = (—R20, R10) and v = (—Rq€, R1€). Taking the inner product of (6.24
with (—A)*T#(0—¢), we find that for any fixed 77 with 0 < 7 < min {20 — 207, %},

k[0 —§||%12a+s(1r2)

——(&F (G- 5) 0" 6-9)
(u- VO —v-VE), (-2)*F7 (0 -9))
+((~A)F (P(2,0) - F(,€)), (-8) 7 (0 - €) )

00 ¢
Sy VR P—— (Hat S PR A H())

10 = Ellmzars () [ F' (2, 0) = F(z, )| o (12),

(6.25)

thanks to Holder’s inequality. Arguing asin (3.1), in view of the Sobolev embeddings
H?2o+s(T?) ¢ HYF$H1(T?) and H?*T$(T?) C H*T(T?) and 0(t), £(t) € X for all
t > 0, we have
u- VO —v- V| gorarre)
< OO = &l gara) 10l grvstacrzy + CliEl gavacr2y 10 = §ll vt (r2)
< Cl10 = €l mzavs o2y (0] rzass (n2) + 1€]l rzas (72))
< C (110l za+s(r2) + €l mrzass(2)) < C.

(6.26)

Since f : H?* +5(T?) — H*(T?) is Lipschitz continuous on bounded subsets of
H?® +5(T?), by using Lemma 1, (1.2), gy € H*(T?) and the Sobolev embedding
H#(T?) C L*°(T?) for s > 1, we obtain that
|1F(x,0) = F(x,8)| 12 r2)

= Jl91(2)(7(68) ~ 7€) oo

< C(lgillzee ) 1 £O) = FEllars o2y + llgrllers oz £(8) — f(E)l=(r2))  (6.27)

< Clgallas ) I1f(0) = f(O)llm=(r2)

<Clo—-¢

|I{2a*+ﬁ(T2)'

Inserting (6.26) and (6.27) into (6.25), in view of (6.13), the Sobolev embedding
Hets=1(T?) ¢ H**(T?) and 6(t), £(t) € X for all t > 0, we conclude that there
exists tf; > 0 such that for any ¢ > t{,

16(2) — €@l Fr20++ (12
< CllO() = E() | rzas-(r2) + ClOE) = E(O) | graaq(2)

a—a” -4 KAZY

_BA]
||60 _£0||H2a*+s(r]r2) +C€ 4

A2
1
2 tt_

_ (e}
< (Ce te"t”eo_fO”Hzaf-ps(']p)a

(6.28)
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thanks to Lemma 23. Hence, it follows from Lemma 22 that there exists t* > §
such that for all ¢1, to € [t*,2t*] with t; < to,

||S(t1)90 - S(t2)£0||H2a*+s(T2)
S ||S(t1)00 - S(t2)90”H2a*+3(T2) + ||S(t2)90 — S(t2)€0HH2a7+S(T2)

t2
< / ||at0||H2a—+s(T2)d7_ + ||0(t2) - f(tQ)“HQa_*S(T")
" (6.29)

<l -l / OO gy )+ 1) = €t

< Cltr —ta]7 + C|l6 — EOHHM To(T2)’
where we have used Holder’s inequality and (6.28). This implies that the condition
(7i7) in Theorem 21 holds true. Finally, by (6.28) we obtain that there exists N > 1
such that

H(I - PN)(S(t*)GO - S(t*)§0)”]{2a*+s('[r2)

1 * *
WH(I — Pn)(S(t7)00 — S(t)o) | rrza+s (12)
N+1

S0 = £t rrzats 72 (6.30)

— 2(a a~
)\N+1

c

— \2(a—a7)
N+1

1
0y — —1|6
160 < 71160 -

1
50”12{2(1—4-5('[2) €0HH2Q +5(T2)’

where Py : L?(T?) — Hy is the projection operator and Hy is the space spanned
by {e; };VZI Therefore, the condition (iv) in Theorem 21 holds true and consequently
the assertion of this theorem follows immediately from Theorem 21. O

Theorem 25. Let a € [%,1), k > 0 and go € H*(T?) with s > 1. Then the
semigroup {S(t)}i>0 associated with problem (1.1) with go(x) instead of F(x,0)
has an exponential attractor £, whose compactness, boundedness of the fractional

dimension and exponential attractiveness for the bounded subset B of H** +5(T?)
are all in the topology of H?*5(T?).

Proof. By similar arguments as in (6.25), in view of (6.26), (6.13), the Sobolev
embedding H*T*~7(T?) c H**"(T?) and (t) € X for all t > 0, we deduce that for

any fixed 77 with 0 < 77 < min {Qa —2a7, 5} , there exists t] > t§ such that for any
t17 tg Z t)lk with tl S tQ,

K10(t1) = O(t2)|Frzase (2
—— (a7 (G - B 8) o) - 000 )

~ (6(t1) — 8(t2)))

s+n

—((=A)*F (u(tr) - VO(1) — ulta) - VO(12)) , (~A)
< CJ6(t1) = 0(t2) 12043072

2a+s—17
2

(6.31)
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Combining (6.6), (6.28) and (6.31) together, we find that there exists t5 > ¢} such
that for any 1, to € [t5, 2t5] with t; < Lo,
[1S(t1)00 — S(t2)éoll rr2ats(12)
< |IS(t1)00 — S(t2)boll mr2a+s(r2y + [|S(t2)0 — S(t2)€oll mraats (12

< C”S(tl)eo - S(t2)00”]§{2a+57ﬁ('}1‘2) + CHGO - 50”?[2&*4&-(11*2)

to 2 1
<C (/ at9|H2a+s—v7(1r2)d7') + Cl[6o — 50”;12““@2) (6.32)

t1

1 t2 T 1
< 0t = taft ([ 100 e enr) €l = &l

ty

1 1
< C|t1 - t2|4 + CHHO - §0||12-[2cx+5(’[[‘2)'

On the other hand, multiplying (6.24) by (A)***(I—Py/)(0—¢) and then integrating
over T2, in view of (6.26), (6.13), the Sobolev embedding H***~7(T?) C H*7(T?)
and 6(t), £(t) € X for all ¢ > 0, we obtain that

RII(T = Prve) (0(3) = £(82)) 1 Fr20s (72

= (o () B p) 5 ) ) - e )

ot} ot}
—{(=A)F (u(ts) - VO(E) — v(t5) - VE(83))

2a4s—7

(—A)=57(1 = Pyo) (0(85) — £(13)) )
< CI|(I = Pe) (8(¢3) = E(83)) L aece s,

(6.33)

where 0 < 77 < min {2a — 207, %} is given in (6.31), Pys : L*(T?) — Hyy is the
projection operator and Hpy+ is the space spanned by {ej}j»vzll. Hence (6.28) and
(6.33) ensure that for N’ sufficiently large,

I(Z = Pn:)(S(t5)80 — S(t3)&0) || rza+s (2
< O = Prn)(S(t5)00 — S(t3)€0) | mr2a+s-a(12)

C . .

< (I = Pnr)(S(t2)00 — S(t3)80) | r2a+s (1)

NC;“ (6.34)
< S 110(t3) = £(E) [ 2042 (12)

AN 11

C i 1 1
< )\77 HGO - £0||H2a—+s(1~2) < 1”00 - §0||H2o+s(']1‘2)'
N’'+1

Since X given in (6.5) is a closed bounded positively invariant set in H2>%(T?),
and (6.23) holds true for X, by using (6.32) and (6.34), the assertion of this theorem
follows immediately from Theorem 21. O

Remark 26. In fact, in addition to the hypotheses in Lemma 14, if we also assume
that for any fixed 77 with 0 < 7 < 2a—2a~, g1 € H*t7(T?) and f : H?>* +5+7(T?) —
H*+1(T?) is Lipschitz continuous on bounded subsets of H?* +5+7(T?2), then by
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similar arguments as in (6.27), we deduce that
| F'(x,0) — F(%f)HHHﬁ(’ﬂQ) <Clo- §||H2a—+s+ﬁ(qr2)‘ (6.35)

Arguing as in the proof of Theorem 25, by (6.35) we obtain that the semigroup
{S(t)}+>0 associated with problem (1.1) has an exponential attractor £, whose com-
pactness, boundedness of the fractional dimension and exponential attractiveness
for the bounded subset B of H?* T$(T?) are all in the topology of H?**%(T?).

7. Summary. In this work we studied the regularity of global attractors for the
surface quasi-geostrophic equations with fractional dissipation in the subcritical
case. We proved the existence of the global attractor that is compact in H2**5(T?)
and attracts all bounded subsets of H2* *%(T?) with respect to the norm of H2*+5(T?).
It is worth mentioning that, similarly, the results in this work can be extended to
a bounded domain 2 C R? with smooth boundary. Furthermore, if we can show
that the H2**+5_-norm of solutions is arbitrary small uniformly on the exterior do-
mains R? \ Qg, where Qg = {z € R? : |z| < K} for K > 0, then we can also
obtain the regularity of global attractors in the unbounded domain case. Here we
mainly want to show how to study the regularity of global attractors for the surface
quasi-geostrophic equations with fractional dissipation, the basic idea can be more
easily obtained for readers by considering the periodic domain T?. When proving
the asymptotic compactness in H2+$(T?) for problem (1.1), the dissipative term
(—A)*,1/2 < a < 1, and the nonlinear term u- V6 give much more trouble than for
reaction-diffusion systems. In addition, the uniform estimates in H2*+#(T?) cannot
be obtained immediately, since problem (1.1) is treated in the base space H*(T?).
For the external forcing term F(z,0), it is necessary to use product estimates for
g1(z) f(0) and composition estimates for f(#). Another highlight of the work is that
we present some sufficient conditions for the construction of exponential attrac-
tors for autonomous dynamical systems on Banach space, which can be used to
establish the existence of exponential attractors of problem (1.1) in H2® $(T?)
and furthermore the regularity of the exponential attractor £ of problem (1.1) with
g2(z) instead of F(z,0) in H2*T(T?) for s > 1 and o € (%,1]. More precisely, £
is compact in H2%+$(T?), an upper bound of the fractal dimension of £ is given
in the topology of H2*%$(T?), and £ attracts exponentially all bounded subsets of
H?> +5(T?) with respect to the norm of H?*5(T?).
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