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We consider stochastic 2D-Stokes equations with unbounded delay in fractional power
spaces and moments of order p > 2 driven by a tempered fractional Brownian motion
(TFBM) B%*(t) with —1/2 < ¢ < 0 and X > 0. First, the global existence and unique-
ness of mild solutions are established by using a new technical lemma for stochastic
integrals with respect to TFBM in the sense of p-th moment. Moreover, based on the
relations between the stochastic integrals with respect to TFBM and fractional Browni-
an motion, we show the continuity of mild solutions in the case of A - 0, o € (—1/2,0)
or A\ > 0,0 — o9 € (—1/2,0). In particular, we obtain p-th moment Holder regularity
in time and p-th polynomial stability of mild solutions. This paper can be regarded as
a first step to study the challenging model: stochastic 2D-Navier-Stokes equations with
unbounded delay driven by tempered fractional Gaussian noise.

Keywords: Stochastic Stokes equation, Tempered fractional Brownian motion, Unbound-
ed delay, Continuity with respect to parameters, Holder regularity, Polynomial stability.

1. Introduction

Tempered fractional Brownian motion (TFBM) 4V defined by exponentially

*Corresponding author.


Tomas Caraballo


August 1, 2021 21:39 WSPC/INSTRUCTION FILE Liu*Wang*Caraballo

2 Liu, Wang & Caraballo

tempering the power law kernel in the moving average representation of a fraction-
al Brownian motion (FBM), denotes a family of Gaussian processes with continuous
sample paths that are indexed by tempered parameter A and Hurst parameter H
(H =1/2 —0). This extra parameter A controls the deviation from a FBM’s power
law spectrum at low frequencies. Different with the long range dependence of frac-
tional Gaussian noise (FGN), tempered FGN exhibits semi-long range dependence,
i.e., the increments in TEBM decays essentially like a power law over fine/moderate
scales (fractional or scale invariant behavior), however quasi-exponentially over large
scales. Tempered FGN has been successfully applied in wind speed modeling. Tem-
pered fractional processes have attracted much attention in recent years due to a
wide range of applications such as in the physics and modeling of transient anoma-
lous diffusion 122272953 seophysical flows LU#2H3 and finance 12122131060,

In spite of the fast growth of the literature on tempered fractional processes,
there has been little mention of stochastic differential equations driven by tempered
fractional Gaussian noise even in the nondelay case. Very recently, we proved the
existence, uniqueness and exponential stability of mild solutions for stochastic delay
evolution equations driven by tempered fractional Gaussian noise in mean square
54

Navier-Stokes equations have been extensively studied over the last century,
since they are crucial for fluid mechanics and turbulence. Due to the importance
of considering some delay terms in the models, stochastic Navier-Stokes equations
with delay have attracted increasing attention in recent years; see #3% for Brownian
motion and 2% for Lévy process. However, there are some difficulties to study delay
Navier-Stokes equations driven by tempered fractional Gaussian noise even in the
fractional noise case. Since Stokes equations provide a first approximation of the
more general Navier-Stokes equations in situations where the flow is nearly steady,
slow and has small velocity gradients, in this paper, we investigate the following
stochastic 2D-Stokes equation with unbounded delay in the sense of p moment

(p>2):
du(t) = Au(t)dt — Sudt + Vpdt 4+ F(t,us)dt + G(t,us)dB7(t) in R% ¢ > 0,
V-u=0 in R?, t>0,
u(t,z) = p(t, ), in R?, t e (—o0,0].

For convenience, let us rewrite it in an abstract form
du(t) = —Au(t)dt + f(t,u;)dt + g(t,us)dB> t), >0,
u(t) = ¢(t), te(—00,0],

where A = —PA+0PI = —-AP+ 0PI, f(t,ur) = PF(t,ut), g(t,ur) = PG(t,ur), ¢
is the initial data, B%*(t) is a tempered fractional Brownian motion with —1/2 <
o < 0 and X > 0 over a filtered probability space (2, F, (F;)¢>0,P). Here § > 0, P
is the Helmholtz-Leray projector and A is the Stokes operator.

Our purposes in this current work are in four aspects:
(i) To prove global existence, uniqueness and Holder regularity of mild solutions to
(1.1) in fractional power spaces and moments of order p > 2;

(1.1)
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(ii) To prove that the mild solution u”* of (1.1)) converges to the mild solution
u®0 of but with FBM B?° instead of TFBM B°* as A — 0, and to present
the continuity of the mild solution u”* of (1.1) with respect to the parameter
o € (—=1/2,0) in the sense of p moment;
(#it) To prove the p-th polynomial (as well as exponential) stability of global mild
solutions to in the phase space
Cp’C(H'Y) = {1/1 € C( — 00, 0; LP(Q; H’Y)) : egmoo ecew(H) exists in LP(€; H’Y)}7
where p > 2, ( > 0 and the Banach space H” given in Section 2;
(iv) At light that the conditions imposed for (iii) do not allow to consider the case of
variable delay within that formulation, we use the Banach fixed point theorem and
complicated analysis, to prove the global existence and p-th polynomial stability of
mild solutions to in the particular (but still interesting) case of proportional
delay, when g becomes independent of the state variable, where the phase space is
CP(H") = {1!1 € C(—00,0; LP(% HY)) agmoow(O) exists in LP(Q; H'Y)}
Regularity of solutions for stochastic partial differential equations driven by
space-time white noise has been extensively developed over the last one and a half
decades (see, e.g. HHRELTEYA)) "However, the study on the regularity of the solutions
of stochastic equations in an infinite-dimensional space with a fractional Brownian
motion has been relatively limited. Regularity of the solutions for stochastic semi-
linear equations with an additive fractional Gaussian noise, the formal derivative
of a fractional Brownian motion, has been considered in B3#89258 Tt is worthy
mentioning that our Holder regularity results for the mild solutions are established
for stochastic delay 2D-Stokes equations with multiplicative nonlinear tempered
fractional Gaussian noise in fractional power spaces and moments of order p > 2.
In recent years, stability of stochastic ordinary and stochastic partial differential
equations, providing relevant information on the long time behavior of the solution-
s of such equations, has received much attention (see, e.g., 28:32:32kS TR0 LISOOBI01)
Holder continuous paths approach has been used in 121429l to study the exponential
stability of a ordinary or partial differential equation driven by fractional Brownian
motion with Hurst parameter H € (1/2,1). Based on the generalized 1t6 formula
and representation of fractional Brownian motion, the exponential stability has been
obtained in 2% for a class of stochastic differential equations driven by additive frac-
tional noise with Hurst parameter H € (1/2,1). Exponential stability for impulsive
stochastic differential equations has been considered in 2258 Almost sure exponen-
tial stability has been studied in 2729 for stochastic scalar non-autonomous linear
stochastic differential delay equation and Black-Scholes model driven by fractional
Brownian motion with Hurst index > % Up to date, we do not know any published
work on polynomial stability of stochastic differential equations driven by fractional
Brownian motion. In the current work, two different methods are used to analyze
the p-th polynomial stability of stochastic 2D-Stokes equations with infinite delay
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(distributed delay or unbounded variable delay) and proportional delay (which is a
particular case of variable delay) driven by TFBM.

The paper is organized as follows. In Section 2 we recall some preliminary def-
initions and results regarding TFBM, while in Section 3 the global existence and
uniqueness of mild solutions to Eq. are considered. Section 4 is devoted to
the relationship between mild solutions of Eq. driven by TFBM and FBM. In
Section 5, we establish the continuity of mild solutions of Eq. with respect to
the Hurst parameter H € (1/2,1) where H = 1/2 — . Holder regularity in time
for mild solutions to Eq. is proved in Section 6, while Section 7 is devoted to
providing a first stability result for the case of proportional delay. This requires a
new method to analyze the global existence and p-th polynomial stability of mild
solutions to Eq. , and it also needs to consider an additive tempered fractional
Gaussian noise. Finally, in Section 8, we consider a different phase space and pro-
vide not only polynomial but also exponential stability results by imposing different
assumptions.

2. Preliminaries

Let X be a Banach space with the norm || - || x. We denote by C(a,b; X) the
Banach space of all continuous X-valued functions on [a,b] equipped with the sup
norm. Let (Q, F,P) be a complete probability space equipped with some filtration
{Fi}+>0 satisfying the usual condition, i.e., the filtration is right continuous and Fy

contains all P-null sets. For 2 < p < oo, the collection of all strongly-measurable,
L? integrable X-valued random variable, denoted by L?(Q; X) = LP(Q, F,P; X),

1

is a Banach space equipped with the norm [[u(-)||rr(.x) = (Elu(-)|%)”. We
denote by C(a,b;Lp(Q;X)) = C(a,b;Lp(Q,]:7 IP;X)) the Banach space of al-

1 continuous functions from [a,b] into LP(Q; X) equipped with the sup norm
1

()| c(apsLr :x)) = (SUDsepap) Ellu()|%)?. As usual, let u V v denote the max-
imum of u,v € R, and u A v their minimum. In the sequel C denotes an arbitrary
positive constant, which may be different from line to line and even in the same
line. If we want to emphasize the dependence of C on some variable z, we denote
it by C(x).

We now recall the definitions of tempered fractional Brownian motion and frac-
tional Brownian motion as well as the Wiener integrals with respect to them; for
more details, we refer to (36391

Let {B(t)}ier be a two-sided one-dimensional Brownian motion, which is a
process with stationary independent increments such that B(¢) has a Gaussian
distribution with mean zero and variance [¢| for all ¢ € R.

Definition 2.1. For any 0 < % and A > 0, a tempered fractional Brownian motion
(TFBM) is defined by the following integral:

BIA(t) = /:XD [e 204 (1 — )77 — e 2D+ (—2) 7] dB(x), (2.1)
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where ()4 = 21(;>0), 0° = 0 and X is called tempered parameter.

In particular, when A = 0 and o < —%7 TFBM does not exist, since the
integrand is not in L?(R). However, TFBM with A > 0 and ¢ < —3 is well-defined,
because the exponential tempering keeps the integrand in L?(R). When o < —%
and A > 0, or when ¢ = 0 and A > 0, TFBM is a continuous semimartingale,
so the classical 1t6 stochastic calculus is applicable to TFBM in these cases. TFBM
is neither a semimartingale nor a Markov process in the remaining case when o €
(=%,0)U(0,%) and A > 0.

When —% <o < % and A = 0, TFBM reduces to a fractional Brownian
motion (FBM) {B0(t)};cr, a self-similar Gaussian stochastic process with Hurst

1

scaling index H = 5 — 0. For the normalized case, we have

Definition 2.2. For —% <o < % and A = 0, a normalized fractional Brownian

motion with H = % — o is defined by

o0

BH(t) = CH/ [(t—2)77 — (-2)7°]dB(z), (2.2)

— 00

[N

(2H sin nHT (2H))
T'(H+3)

Thanks to Proposition 2.3 in*L, it follows that TFBM {B%*(t)}icr, with o < 1
and X > 0, is a Gaussian stochastic process with mean E[B°*(t)] = 0 for all ¢ € R,
and covariance

1
E[B7(t)B7(s)] = 5 [CZH" + C2|s[* — G|t — 5[] (2:3)

where Cy =

. Here I'(+) is Euler’s gamma function.

for any s,t € R, where H = % — o, and

2T(2H) 2I(H+3) 1
O = G~ A i, £#0 24
in which K (-) is the modified Bessel function of the second kind, and CZ = 0. It
is clear that B”*(0) = 0.
For the normalized FBM {B (t)},cg with H € (0,1), it is well known that it is
a Gaussian stochastic process having the properties BH(0) = 0, E[BH ()] = 0 for
all t € R, and

E[BH (t)BH (s)] = %[WH + s — |t —s?"], tseR (2.5)

In order to consider the stochastic integrals with respect to TFBM and FBM, we
now present the definitions of fractional integral and tempered fractional integral.

Definition 2.3. Let a > 0 and T' > 0. For any f € LP(0,T) (where 1 < p < o0)
and for any a,b € [0, T] with b > a, the left and right Riemann-Liouville fractional
integral on (a,b) are defined by

JE(E) = ﬁ / (t — )2 f(s)ds
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and
I .
) == =— — )" d
B10) = g [ =0 F(e)ds
respectively, where T'(+) is mentioned in Definition
Definition 2.4. Let &« > 0, A > 0 and T > 0. For any f € LP(0,T) (where

1 <p < o) and for any a,b € [0,7] with b > a, the left and right Riemann-
Liouville tempered fractional integral on (a,b) are defined by

AP F() = e IR N (1) = ﬁ / = )N f(a)ds
and

I () 1= M £ (1)) = ﬁ / s 0N o
respectively.

Definition 2.5. For any f% <o <0, A>0, and for any a,b € [0,T] with b > a,

we define
b
/ F(&)dB7 (t) = T(k + 1)/ (I F (1) = M2 F (1) dB(2)
for any f € Ay == {f € L*(a,b) : f ‘]Ik’\ —)\Hk+1’\ t)‘gdt<oo}. Here
k = —o, and A; is a linear space with inner product (f,9) 4, = (F,G)12(a,p) Where

F(t) =Tk + 1) (L7 F(5) = AT (),
G(t) =T(k + 1) (I g(t) = ML g (1))
Definition 2.6. For any H € (3,1) and a,b € [0, 7] with b > a, we define

b 1 b Ho1
/f(t)dBH(t) = CHF(H+§)/ A, 2 f(H)dB(t),

for any f € Ao := {f € L*(a,b) f eI, H77 (t)]?dt < oo}. Here Cp is given in

Deﬁmtlonand Ap is a linear space Wlth inner product (f,9) 40 := (Fo,Go) 12(a,p)
where

1. _g-1 1, g1

Fy(t)=CyI'(H + §)t]1b 2 f(b), Go(t) = CyT'(H + i)t]lb 2g(t).

For the stochastic integrals with respect to Brownian motion, FBM and TFBM,

we have the following properties; for the particular case of p = 2 see, e.g., LI

Lemma 2.1. If¢: [0,T]xQ — L? is a progressively measurable function satisfying
E(fOT ||¢(s)||2L2ds)§ < 00, then for any t € [0,T],

)
2

o | oants), < ¢, / oo)zaas) " (2.6)
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where C, > 0 and p > 2.

Lemma 2.2. Let f% <o<0,A>0,p>2.1If¢ :p[O,T} xQ — L? is a progressively
measurable function satisfying E(fOT ||¢(s)||%2ds)§ < 00, then for any t € [0,T],

t N p » t %
g [ osiasro)!, < vt [ o))" (27)
0 L 0
where C,, is given in Lemma@,

2-2H,H+1)
20 -1

1
Nt = (2H7 1)t2H716(2 7 QH,H* 5) +4)\2t2H+15(

H =3 — o and B(-,-) is the beta function.

Proof. To prove 1) we first need to show that (SH;G’)‘QZ)(S) — )\SH%_U’AQS(S)) is
progressively measurable. Let ¢(t) be an elementary process with respect to the
filtration (F3)¢>o defined by

t) zzggj]l(tj,tjurﬂ(t)? j:O,l,...,k—:l, (28)

where 0 = tg < t; < --- < tx = t, and for each index j the random variable qz~5j
is measurable relative to F;,. Hence the elementary process ¢(t) is progressively
measurable. Then we obtain that for ¢,

k—1
S]It_m/\ ( Z Qsj]l(tjvtwl)(s)) - ASH%_UM\(

j=0 J

:# tu_solf)\us)_ u
o =) (X it )

>\ K O' — uU—s .
“r(f_a)/(“‘ " )Z 93t 1) (u)) du
s =0

For u € (0,¢;) we have

it t1 It t1
%0 / (u— )" e Mu=s) gy, — F()\% ) / (u—s)"Te M=)y,

(ZB T -,t_,»+1)(3))

Mw

Il
=]

I'(-o) 1-0
— QEO h —A(u—s) —o 450 h —o 7 —A(u—s)
_F(l—a)/s € d(u—s) +F(1—a)/s (u—s)""de

J— ¢0 7/\(t175) —0
T - U)e (fr =)

If w € (¢j,tj+1), then we find that

}; /t“rl —o—1_—A(u—s) AG; /t"+1 o —A(u—s)
u—s) 7 e MV dy — ———— u—3s)"%e M
(=0) S, “ Y T —0) Jus, 77

(b' —A(tjr1—s —o —A(sVtj—s —0o
:I‘(lia)(e =) (1 —8)77 — e MV (s v ity —5)7).
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Consequently,

k—1 _
Hia)\(zd) 1(tj,t]+1)( ) ]Il U)\ Z 7 (t],t]Jrl) )
7=0

7=0
k—1 ot
—>\(tj+1—8) t. _ —o _ _—A(sVtj—s) Vit — —o (29)
S 7 et )

e—)x(tl—s)(tl _ S)—a
I'(1-o)

+ o
It follows from (2.8)) and (2.9 that mappings
w = J77G(s) — AJT7M(s) and s — (I 7M(s) — AT (s),

are JFi-measurable for each w €  and continuous with respect to s, respectively.
This implies that the mapping

(s,w) = ;7 () — A7 d(s), 0<s<t, weq,
on the product space [0,#] x Q is B([0,#]) x F;-measurable. Then I, " ¢(s) —

~ P
I B(s) is progressively measurable. Notice that E(fOT [o(s)||22ds)? < oo
and thus, for a sequence of elementary processes denoted by {¢,},

T D
E(/o [6(5) — dn(s)||72ds)> =0 asn — co. (2.10)

On the other hand, according to Lemmas 2.2 and 3.6 in 4, we have

ya
2

T
B [ I 000) = a(6)) = A" (005) = G (3)[005)

ks

T ~
<B( [ (66 - dno)lae ~ AT

() — én(s)up)zds)
T
= E(/O 16(5) = Gn(s )HL2dS)2 —0 asn— oo.

Since the fact that limits of progressively measurable processes are progressively
measurable, we conclude that (I, TAh(s) — A} 7‘7’)‘@5(5)) is progressively measur-
able.

Now we are ready to prove (2.7). By using Lemma Definitions and
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we deduce that

EH /t¢>(s)dBU”\(s)’ !

2

Il - o)) PE‘/ (T 0(s) — AT 0(5)aB(s)||
< (P - 0)"CB( / 14T 7 0(5) = AT (s)|[ads )

< cpzéE(/t a2</t(u— s)_”_le_)‘(“_s)||¢(u)||L2du)2
0 s

([ e ot >||L2dx)2ds)g

022E< ///||¢ Mzl 62w — )7 (r =)~

e Mu=) o= A=5) qudrds

+A2///||¢> 2 ll6w) 12y — )~ (z — )=°

—AMy— 5) —Ax— s)de‘dde)

t t uAnTr
< Cp2§E<02/0 /0 /0 llo(w)|lp2llo(r)||z2(w — 8) =7~ (r — 8) 7 Ldsdudr

e t / t / " 6@ o)l ey — ) (@ — s)“dsd;z;dy) :

t t
<68 (20 [ [ 100l — 72715801+ 20, o)
0 0
P
2

t t
Long? / / ||¢<y>|%2|y—x2”15<1+2a,1—a>dzdy)

L 2—2H, H+ 1)\ %
<G, ((ZH — 1)t2H_15(2 —2H,H — 5) 1 4N2g2HAL B( + 2))

2H — 1
([ Ioas) "

where we have used the following inequalities (see °%):
uA”r
/ (u—3s)"7"Hr—s5)"7tds < |r —u| 2 7'B(1 + 20, —0) (2.11)
0
and

/ e sy — ) s < (v Ple -y B0 20— o) (212)
0

for any f% < 0 < 0. The proof of this lemma is finished. O
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Lemma 2.3. Let p > 2 and H € (3,1). If ¢ : [0,T] x Q — L? is a progressively
measurable function satisfying E(fOT |\¢(s)||%2ds>§ < 00, then for any t € [0,T],

EH /Ot é(s)aB" (s)||”

t v
!, < coamte( [ loelias)”, (2.13)
0
where Cy, is given in Lemma [2.1]

1 1
= (Cu)*(H — 5)5(2 —2H,H — §)t2H717
and Cpy is given in Definition 2.2
Proof. Since the proof is similar to Lemma we omit the details here. O

Remark 2.1. For the case A = 0, it follows from Lemma [2.2] that
¢ P
EH / qb(s)dB"’O(s)‘
0
1 P
< oy (- pyste -2 - =) ([ oto)ias)

Comparing (2.13) and (2.14), we find that the coefficient Cp in (2.13) appears

because of the definition of the normalized FBM.

2

(2.14)

3. The global existence and uniqueness of mild solutions

To set our problem (I.1)) in the abstract framework, we consider the following
usual abstract space:

L2={uel?:V-u=0 in R},

where L? denotes the vector-valued Lebesgue space with the norm || - ||, and

2
Jul =3 [ )P
j=1

For non-integer v > 0, we define the Banach space HY = D(A?7), where A is the
Stokes operator and D(A”) denotes the domain of the fractional power operator
A7 : L2 — 2. The norm is given by

I flly = HA”fH for fe H".
Moreover, we define the abstract phase space CP(H?) by
Cr(H) = {w € (= 00,0, LP(@ HY)) : lim _4(9) exists in L(0; H) |,
60— —oc0

for p > 2. If CP(H") is endowed with the norm

[Wllerary = (| swp EIw@IE)", v ecr(H),

€(—00,0]
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then (CP(H"), | - ller(m)) is a Banach space.
For the semigroup generated by the Stokes operator A, we have the following
properties (see 2%20 for the similar results):

(P1) There exist positive constants Cy, C,yo > 1 such that for any u € L2,

i) HA”S(t)uH < C%()e_‘Stt_WHuH, t>0,

i) |S(t)ul| < Coe™|ull, ¢ =>0.

2 ere exists a positive constan > 1 suc at for any 0 < v < 1 an
P,) Th ists a positi tant C, > 1 such that for any 0 < v < 1 and
u e HY,
|S(t)u —u|| < C,t7||AMul.

In order to prove the global existence and uniqueness of mild solutions to prob-

lem (|1.1), we impose the following assumptions:

(Hy) For any u € CP(H?), the mappings [0,00) >t — f(t,u) € £ and [0,00) >
t > g(t,p) € L? are measurable.
(H3) There exist lf,1; > 0 such that for any p € CP(H?Y) and ¢t > 0,

Bl £l < L (U4 Nlelign vy )
Ellg(t, mlI” < 1g (1 + lligoz1+))-

(Hs) There exist two positive constants Ly and L, such that for any p,v €
CP(H7) and t > 0,

E||f(t, ) = ft& )] < Ll = viIZo 0
EHg(tv,u) - g(t7y)||p S LQHN - V”gp(]-['v)'

For a real number T > 0, each 7 € [0,7] and v € C( — 00, T; LP(; H")), we
denote by v, € C( — 00,0; LP(Q; H?)) the function defined by v, (s) = v(7 + s)
(s <0). We now introduce the following notation. Let u € C(0,T; LP(€%; H")) with
u(0) = ¢(0) and ¢ € CP(H"). Then for 7 € [0, T], we denote by u V, ¢ the mapping
from R~ to LP(2; H") defined by

u(r+s), se (-0,

o(t+s), s<-—T1. (3.1)

wv(s) = {
For our aims, let us state the definition of mild solution to Eq. (1.1).

Definition 3.1. Let ¢ € CP(H") be an initial process with F; = Fy for all ¢ < 0.
An Fi-adapted stochastic process u(t) is called a mild solution of Eq. if u €
C( =00, T; LP( HY)), u(t) = ¢(t)(t < 0) and the following integral equation is
fulfilled with probability one:

u(t) = S(t)e(0) +/0 St —71)f(r,ur)dr —l—/o St —71)g(r, uT)olB‘T’A(T)7 (3.2)

for t € [0, 7.
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Theorem 3.1. Letp > 2 and T > 0 be given arbitrarily. Suppose that the assump-
tions (Hy)-(Hs) and 0 < v < % hold. Then for each ¢ € CP(H"), problem ij has
a unique mild solution on [0,T).

Proof. Let us fix some ¢ € CP(H?), and let R = 3°"'C§(E||¢(0)||Z + 1). Note
1
that for any p > 0, the norms (supte[O,T] Ellu(t)|?)” and (SUPte[o,T] et
1
Elu(t)||2)” are equivalent. Now we consider

B(R) = {ue C(0,T;LP( H)) : u(0) = p(0), o e " Elu(t)|b < R},

and define the mapping M by

(Mu)(t) = S(t)gp(O)Jr/O S(t—7)f(r, u\/Tga)dT+/O S(t—7)g(T,uV+9)dB%(1).(3.3)

In order to show that M has a fixed point in B(R), we split the proof into three
steps.
Step 1. M maps B(R) into C'(0,T; LP(Q; HY)).

Let 0 <t < T and u € B(R) be given arbitrarily. Then, for s > 0 small enough,
we have

B||[(Mu)(t + ) = (Mu)(t)||2 < 57 E[|S(t + s)p(0) — S()e(0)]|2

p

+5771E /0 (S(t+s—1) =St —7))f(T,u V- @)dr

v

t+s
4+ 5 lE / St+s—1)f(r,uV, ga)dTHp
t gl

t (3.4)
+571E /0 (Stt+s—71)—S(t—7))g(r,uV, ¢)dB"(1)

v
p

t+s
+5°71E / St+s—71)g(r,u V-, <,0)dB"’>‘(7')H'y
t

=Vi+Va+ Va4 Vy+ Vs,

where we have used (> ;" bi)l <m!=137" bl for 1 <1 < oo. Using the properties
(P1)-(P2), we obtain

Vi =5 E||ATS(8)(S(s) — I)¢(0) ||
< C(y,p)E(e™ 757|470 (0)|))" (3.5)
< Cly,p)e P |g||By g0y = 0 as s — 0.

Given € > 0, in view of Holder’s inequality, the properties (P;)-(P2) and the as-
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sumption (Hs), we find that for x and s small enough,
t
Vo < 5p—1E</ H(S(t +s—7)=St—7))f(T,uV, <P)prdT)p
0
t—x p
< lOpflE(/ HA'YS(t o ) (S(s) - I)S(X)f(r,u V. cp)HdT)
0 . ,
+ 1op-1E(/ |AYS(t = 7)(S(s) = I) f(r,u Vs <p)HdT)
+—
i
< lOpflE(/ C’,Y,Oef‘s(tfxf'r)(t —x—71)7C,s"”
0
p
x| ATS(0) f(ru vz ) far)

w10 E( [ €0 =) (S0 - 1) fru v, o))
t—x
-1

X bzl Py p
< C(%P)Sm(/ (t—x— T)*ﬁxfﬁdT)
0
t—x
o R e
0
K _ by p—1 [t v
wetun( [ @=nBar) [ Blimuve e
t—x t—x
X pY p—1
< Cly,p, ly)s" "X (/ (t—x— T)_de’r)
0

t—x
X / e’ Te T (1 + [[u Vs @lIgs ) dT
0

¢ Py p—1 [t
+ 0t ([ e=n ) [ e (1 vy ol e
-X -X

(t—x)r ™
< Cp,Lp)s" X 7T (14 R+ 19l g1y )m
p—1
T Xp—p"/
+ C(%pv lf)e" (1 + R+ ||90||cp H7) )7 <e€.

)/ (1 — 2L)p—1
p—1
By Holder’s inequality, the property (P;) and the assumption (Hs), we deduce that

t+s P
V3 < 5P~ 1E</ |A7S(t+s—7)f(r,uV- <p)||d7')
! t+s t+s oy p—1
§5p716’§’0/ E|f(r,uV, g0)||pd7</ (t+s—7)_ﬁd7)
t t

t+s t+s (37)
<cnip) [ e v el i
t

p—1
(t+s— T)ipp%ldT)
SP—PY

C(’Yal% lf)epT(l + R+ ||90||cp(H'r )W —0 as s—0.
o
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Similar to the above arguments, by using Lemma we conclude that for x and s
small enough,

Vi< 10”_1EH /Ot_x ATS(t—x —7)(S(s) = I)S(x)g(T,uV, @)dB””\(T)Hp

T 10?*113)

/ttX A'S(t—1)(S(s) = I)g(T,u V- (p)ng,)\(T)Hp
<C(rp)(Ni—x)* E ( /Otx (t = x — 7)~27e=28(=x=)

P
2

X || (S(s) — I)S(X)g(T,u V. <p)H2dT)

e EE( [

t—x

< C(%p)(NH)%smE(/O _X(t —x = 7)"|[A"S(x)g(r,u V- <P)H2d7)

ya
2

0= (506) — Dt )

s

2

(3.8)

t P
BN (¢ — 1)~ lg(r,u Vs )P )

+CopNEE( [

t—x
yu

L, [tX
< C(1,, 1) (Ni—y) 2877 (¢ — x) 2 / (t—x—7)""x "
0

X e PT(L+|[uVr gy gy dr

i

p_p=2 — T ,—pT

+ C(v,p,lg)(Ny)2x 2 /t (t—7) efTe” (1+Huv‘r 90||§p(Hv))dT
—X

(t—x)2 ™

< Cplg) (Niey) 5P P (L4 Rt 0080 12)) —py

b

» X2 pY
+ C(77p7 lg)(NX)zepT(l + R+ ”QDHZP(HW)) 1— y <€

and

VS

p
2

Vs < 5771 Ch(N,) E(/HS |47S(t+ 5 = 7)g(r,u v, 9)|dr )

t

p—2

t+s
sz / (t + 5 — T)—p’yem'e—m'(l 4 ||u V., @HZ(;P(HW))CZT (3.9)
t

S|

< C(7,p,lg)(Ns)

2

P 5277
< C(v,p, 1) (Ns)2 e’ (1+ R+ ||Lp||§p(H7))71 0 -0 as s—0.

Substituting the estimates of terms V;-V; into (3.4)) yields that E||(Mu)(t + s) —
(Mu)(t)”: — 0 as s — 0, which implies that Mu € C(0,T; LP(Q; H)).
Step 2. M maps B(R) into itself.
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Let u € B(R). Then for t € [0,T], the definition of M immediately implies
e~ E||(Mu) (1) < 37 e B[ ATS () (0)]|”

<+y*%*“EH/“A”%t—fwwnuvaﬂﬂr
o (3.10)

+yﬁ%‘”EW/x@S@—TMﬁﬂﬂGmemMTWP
0

=Vi+ Vo + Vs,
On account of the property (P;), we obtain
Vi <3771 CRe " Ellp(0)|. (3.11)

Using again the property (P;) and the assumption (Hs), in view of Holder’s in-
equality, it follows that

t t—7 T
Vo < 3P~ 1E</ — 2 )e_7||A7S(th)f(T,u\/T (p)HdT)p
0

t
(t—7)
p—1,p — =
<3 Cw,o(/ e~ »1
0

—1\p-1- -
< 67O oty (L B+ el ) (F2)" (00 = )

-1 t
(t— T)fpp%ldT)p / e PTE|f(r,u vV, @)|[Pdr (3.12)
0

In a similar way as in (3.12)), by Lemma we have

P

AYS(t—T1)g(T,u V. <p)||2d7) ’

2p(t—7‘) 2;)7

t
Vs < 3”‘10p(Nt>§E(/ ‘
0

t
s:yrac&cfp(ﬁa)gt%¥ /‘e*P“*TNt—-TY*”e*”fEHg(TﬂLVT¥ﬂ”pdT
0

. (3.13)
EZGP_IC@(AG)gCﬁiJg(14—}%+—H@ngu1w)tgggjf (t —7) Pe Pt="dr
0
5 p=2 ,1,1—
< 6P 'CY (Cp(Ni) 2y (14 R+ \\¢|\CP(H7))t 2 (;) T —py).
Therefore, given T' > 0, we can choose p > 0 sufficiently large such that
_ p—1p—1- DY —1
6" 1 CY )Tl (L+ R+ 0llgs o)) ()" 7 (0L~ )"
P p—1 (3.14)

1

P p=2 1— _
+6771CL (Co(Nr) 2l (1 + R+ 101180 (1)) T2 (;) P01 —py) < 3P71CE.

Then it follows directly from (3.10)-(3.14) that M maps B(R) into itself.
Step 3. The operator M : B(R) — B(R) is a contraction mapping.
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By applying Holder’s inequality, Lemma the property (P;) and the assump-
tion (Hs), we have that for u,v € B(R),

e P B (Mu) () — (M) (#)]”
<215( /0 e T e T ATS (= 1) (f(ru Ve ) — f(r vV, w))l\df)p

_2p(t—=7) _ 2p7T

t
+2p_1Cp(Nt)gE(/ e » e »
0

AVS(t—7)(9(T,u Vs @)
2.\%
— g(r,0 vy )| Par)
b pen -
Y s R Ay T 315
p p p—2 t
o f(’r, vV, Sﬁ)HdT) + 2p710p(Nt)§C’fy’70tT / e*P(t—T)(t _ T)fmefpr
0

x E||g(r,u V- ¢) — g(r,v Vy 9)|[Pdr

—1\p-1- _
g2pflc§,0(pT)p ' ’”(r(l—]%))p YLy sup e " Elu(r) — o(7)||2

T€[0,t]
P P— 1 —
+ 2p_1CpC§70(Nt)5th (;)1 "IT(1 - py)L, sup e " E|u(r) — o(T) ][5
T€(0,t]
Notice that for sufficiently large p > 0,
-1 P— 1 p-1-py Py \\p—1
2 Cs,o(T) (ra - ﬁ)) TLy (3.16)

p p— 1 —
+ 20710, CP (Np) ST T (;)1 PP = py)L, < 1,
which means that the mapping M : B(R) — B(R) is contractive. Thus, the asser-
tion of this theorem follows immediately from the Banach fixed point theorem. 0O

Remark 3.1. Note that Theorem ensures that for any given 7' > 0, problem
(1.1) has a unique mild solution u on [0, T] for each initial data ¢. Thus the solution
u can be globally defined.

In view of (2.13) and (2.14), the following result can be obtained by slightly
modifying the proof of Theorem

Corollary 3.1. Let p > 2. Suppose that assumptions (Hq)-(H3z) and 0 < v < %

hold. Then for each ¢ € CP(H"), there exists a unique global mild solution for
problem (1.1)) with FBM or Brownian motion instead of TFBM.

4. Continuity of solutions with respect to tempered parameter A

In this section we shall show that mild solutions to Eq. (1.1) are continuous
with respect to tempered parameter A\ at 0. First, we state the following technical
lemma.
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Lemma 4.1. Let p > 2, =2 < 0 < 0 and X > 0. If ¢1,¢2 : [0,T] x Q —
L? are progressively measurable functions satisfying fOTEHgZ)l(S)deS < oo and

fOTEHgbg(s)des < 00, then for any t € [0,T],

EH /O t 1(5)dB7 (s) — /0 t ¢2(s)dBU»0(s)Hp

< 2p_2(4H _ 2)§Cpt20H_1(ﬁ(2 —2H,H — %))% /Ot EH¢1(3) - ¢2(3)de8

P z !
2P 2 (4H — 2) 2 NP0 (5(2 — 2H, H + %))E / El|g2(s)||Pds
0

9p 1 tp(H+l)71
e

1., [t »
(=g =211+ )t [ Blo e

where H = % — 0.

Proof. Following similar arguments as in the proof of Lemma [2.2] we obtain that
(S]I;U‘)‘gi)l(s) - )\S]Iifg’)‘gzﬁl(s)) and I, 7%, (s) are progressively measurable. Then

by using Definitions and Lemma [2.1] we find that

EH /O t é1(5)dB7 (s) — /0 t qbg(s)dB”’O(s)Hp
< 2P~ L\P(D(1 — U))PEH /Ot Sﬂi—”’wl(s)dB(s)Hp
+ 2711~ o)) E| / I (s) - L 7063()aB(s) |

=2 oy [ [ (e = ) w9y tawame)|

p

+2p*1ApEH /Ot /: 1 (u)(u — 8) "N dud B(s)
< 2P—1(—o)pc,,E</Ot (/t 1 ()22 — gy (w)]| (u — s)_"_ldu)2ds>

t t 9 £
+2p1/\PcpE(/ (/ Hqsl(u)”(ufs)*ae*M“*S)du) ds) =1 + To.
0 s

p
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For the term Y, we have

T = 2P—1<—a>popE( [ ([ lontwe o= - pugupere=

o g ) )

< 2% oy, ( L1 hortw = a2 - 9=o=4au)’

([ Tl 1) =)o) ) : *2)
<2773 (-o)C E( / / 1 (w) 2<u>He‘“"—s><u—s>—“-1du)2ds)g

r 22y ([ ([ o0 - s “-1du)2ds)g

= T% + T%.

Applying inequality (2.12)), the mean value theorem and Hélder’s inequality to the
term Y%, we obtain

T%=22p-2<—a>wcpE( [ ([ 1stles=0 - syoan) d)
pE(///II@ e — ) — 5)~ Udrduds>

C
=7
% pE(/// 12 ()| g2(r) (u — )~ (r = 5)~ "dsdudr> (4.3)
C
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where 0 < £ < A. Using inequality (2.11)) and Hélder’s inequality, we have

1< 922 p0E<///||¢>1 (@)l (r) — da(r)]

X (u—s)" 7 (r—s)77" 1dud7“ds>

- 22p-2<—a>PcpE( / t / t / 61 ) = b2l n (1) — (s

p
2
X (u—s)""1(r— s)”ldsdudr>

(M)

g(’; o) pE(/ / 161(r) — 6o (r) | Zu — r|_2"_1ﬁ(1+20,—0)dud7‘>

P 1.2 ¢
<2 (=0) i1 (6(2 — 28, H = ) [ Eloatr) - aulr|Par
0
Then for the term Y3, by inequality (2.12]) and Hoélder’s inequality, we deduce that

p

Ty < 2we,s( [ t / t / ) la ()l — )7 o — ) dudrs)

== ( [ [ ool -7 - o) dsauar

(NS}

L » (4.5)
< 2p‘1)\ptpCpE</ / 161 ()12 — 7[~27"1B(1 + 20,1 — a)dudr)
0o Jo
tp(H+1)—1 p
< 2?*1Apcpﬁ(ﬁ(2 2H, H + f/ E||¢1(r)||Pdr.
PY
Inserting (4.2)-(4.5) into (4.1) gives the assertion of the lemma. O

Furthermore, we need the following uniform (w.r.t. A € (0, 1]) estimates of solu-
tions.

Theorem 4.1. Let u be the mild solution to Eq. (1.1)) and let assumptions in
Theorem hold. Then for each ¢ € CP(H?), any T > 0 and all A € (0,1],

sup Ellu(r)||f < C(1 + [l¢llgs g) (4.6)
rel0,T]

where C is independent of \.
Proof. By Definition we obtain that for ¢ € [0, 7],

EHu(t)HZ < 3”71E||S(t)<p(0)||:—|—3p71EH/O St —7)f(r,ur)dr i

. (4.7)
+3p‘1EH/O S(t = 7)g(r,ur)dB(7) |

v
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= ‘71 + ‘72 + ‘73.
In view of the assumption (H7), we have
Vi < C)E)p(0)]3- (4.8)

Since py takes values in (0,1), we can choose ¢’ > 1 such that pyq’ < 1. Using
Holder’s inequality, the property (P;) and the assumption (Hs), we find that

t
¥ < Cly,p)tr~! / (t— 1) P E| f(r,u,)|Pdr
0

c -~ » p(1=7)
< P
> (fYap7 f)( + ||()DHCP(H’Y)) 1 —py
t
+Coup et (=) sup Blulr)|zar
0 rel0,7]
c -~ » tp(1=7)
< P
— (’Yap7 f)( + ||()DHCP(H'Y)) 1 *p’)/ (49)
t , %4 t / o
+C(y,p, lf)tp_l(/ (t —7)~Pd VdT) a (/ ( sup EHu(r)HZ)p dT) v
0 0 rel0,7]
) 1P—PY
= C(v,p,1p) (1 + IIw\lmm))m
1
(C ,y)p7l tp(l_'Y)_? t ’ #
+ ( 7) + (/ ( sup E||u(7‘)|\’7’)p dT) ,
(1—pgd'y)? 0 relo7]

where p’ > 1 is a constant such that 1/p’ + 1/¢’ = 1. Thanks to Lemma by a
similar way as in (4.9)), it follows that

pa
2

% <co)ie( [ 470 = gt ) |Par)

t
< Cly,p)(Ny)bt5~! / (t = 7) P Ellg(r, u)|Pdr
0

P t3 =Py P, p_
< COvplg) (N2)2 5 - (1 + 18 () + COrps L) (V) 2827
t 1 t , S
y (/ (t - 7) i ar)" (/ (sup Blu(r)[2)” dr)” (4.10)
0 0 relo,7]

< C(y,p,1y) ((2H S eH-lg00 _of, H - L)

2
B(2—2H,H + 1)\5 [ t5—»
L 4g2HA 2 ) 1+ p
2H — 1 17p,7( ||(P||c (H"r))

tp(%f'Y)fi t , ﬁ
t ([ (s Bllu(rl)” dr) )
0

(1-pg) ref0.7]
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Inserting (4.8)-(4.10) into (4.7) yields

( s%p]EIIU(T)H’;)p < C(v,p,lg, 1y, H,q',p',T)
re|0,t
(4.11)

/ t /
(4 1l + [ s Blutre)”ar).

rel0,7]

The assertion of this theorem follows immediately by applying Gronwall’s lemma

to (4.11)). m
Arguing as in the proof of Theorem we have

Corollary 4.1. Let u be the mild solution to Eq. (1.1)) with FBM B°° instead of
TFBM B°*. Suppose that the assumptions in Corollary hold. Then for each
p €CP(HY) and any T > 0,

sup Ellu(r)[[2 < C(1+ [[@llgszn)s (4.12)
rel0,T]

where C is a constant.

Now we are ready to prove that the mild solution u”* of (1.1)) converges to the
mild solution u®° of (1.1)) but with FBM B instead of TFBM B* as tempered
parameter A — 0.

Theorem 4.2. Suppose that the assumptions in Theorem hold. Then for any
T >0,

sup F|u(r) — u"’o(r)Hz —0 as A—0,
0<7<T

where u”* and u”°, respectively, are mild solutions to Eq. (1.1)) driven by TFBM
B> and FBM B°° instead of B> with the same initial data ¢ € CP(H").
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Proof. By Hélder’s inequality and the property (P;), we have

EHu”’)‘(t) - u”’o(t)HZ

+ p
<21[g( / 1475t = 7) (£, ug™) = £(7,ug?))]|ar)
0
t
+EH/AVS(t—T) (7, uN)dB% (1) _/A”St—T (m,uZ®)dB(r H}
0
t
<oicp ! / (t =) VB f(r,u?) = f(r,ug)|"dr
0

+2°P73CP ((4H - 2) LoR Lae (B(2—2H,H — %))

[SIiS)

, (4.13)
“ / (t — )P E||g(r,ue™) — g(7, uS0) |Pdr
0

P
2

, . 1
+2%7ICT  (4H — 2) XU DTICL (B2 — 20, H + )

t
x / (t — 1) P E|lg(r, u2®) |Pdr
0
t (H+1)—1

(4H —2)%

t
x / (t — 1) P E|lg(r, )| Pdr,
0

1,.»
+2°P72C0 (NPC, (B(2—2H,H + §))f

thanks to Lemma In view of u®*(t) = u”°(t) = ¢(t) for each t € (—o0,0], we
obtain

= o ]EHUU’A(T)—u”’O(T)IIQ
re(—oo,r

= sup Elu”?(r) —u”0(r)[[5.
rel0,7]

[u7
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It follows from the assumptions (H2)-(Hs), (4.6) and (4.12]) that
Bllu(t) = u™ @)%

t
< 21’71((3(%Lf)fpfl/ (t=7)"" sup E|u”(r) —u”(r)|Ldr
0 rel0,7]

IS

+22P73C(y, Ly)Cpt?™ 1 (B(2 — 2H, H — %)) (4H —2)* /t(t — )Py
0

X sup E||u”’)‘(r) 7’(1,0’0(7")”1)(17'
re[0,7] " (4.14)

1., B
+ N C(L+ [l@ligr 1)) (B(2 = 2H, H + 7)) # ¢, D=

2P=4(4H — 2)% 213
d i f)
L=py (1 =py)(4H —2)>

t
< APY () + Tg(t)/ (t—71)7P7 sup E||u‘7”\(r) — u"’o(7“)|\1;al7'7
0 ref0,7]

where we have used the notations

1.2 _
T1(t) = C(B2 — 2H, H + )% (1+ [ llgs (gg-)) Cpt™ 077
[237)—4(41{ —-2)% N 243 }
1—py (1—-py)(4H —2)8 )

and

To(t) := 2P~ 1C(y, L)t~

P
2

+22P73C(y, Ly)Cpt?™ 1 (8(2 — 2H, H — %)) f(4H - 2)

Note that py takes values in (0, 1), hence we can choose ¢’ > 1 such that pyq’ < 1
and 1/p’ + 1/¢' = 1. Then by applying Hélder’s inequality to the last term on the
right hand side of (4.14]), we deduce that

sup Ellu(r) —u”(r)[|?
rel0,t]

1

~ ~ T —PY ¢ N

< N T(1) 4+ Ta1)—— / (sup Eum () —ur"))" dr)” . (4.15)
(1 — pq’fy) q’ 0 “rel0,7]

Consequently, the assertion of the theorem holds by using Gronwall’s lemma. O

5. Continuity of solutions with respect to parameter o

This section is devoted to showing continuity of solutions with respect to pa-
rameter o. To this end, we first present the following lemma which is crucial for
proving Theorem
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Lemma 5.1. Let p > 2, =1 < 01,00 < 0 and A > 0. If ¢1,¢2 : [0,T] x Q —
L? are progressively measurable functions satisfying fOtEHgbl(s)des < oo and
ngH¢2(s)des < 00, then for any t € [0,T],

d /ot P1(s)dB7(s) = /Ot 6a(5)dB(s) |

P q t
< 22720 (03 — 01)P(—01) "% (B(1 + 201, —0q)) P2 mo)P—1 / El|p1(s)|[Pds
0

, L1 t
+ 2730, (—02) % (B(1 + 209, —09)) *t(2—o2)P~1 /0 E||¢1(s) = pa(s)[|Pds

)\p L 3 t
+22p20p(0)p(5(1+201,101))275(201)])1/ E||¢1(5)*¢2(5)||pd$
—01 0
4930 (—ay)PBy (¢ / E|lén(s)|Pds
+ 222 \PC, B, (t / E||¢p2(s)||Pds,

where

T e

P

x (u—s)"""'—(u—s)" "2_1)(1:3du)17720[7‘7

T

P

x ((u—s)"" = (u— 8)_"2)dsdu) mdr,
and Cy, is given in Lemma 2.1}

Proof. Applying Definitions and Lemma results in

EH (s)dB°(s) — Ot @(s)dB”’A(s)Hp

t
- EHF(l - 01)/ T (s) = AL gy (5)dB(s)
0
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—T'(1—-o09) /Ot J 72 o (s) — /\S]Itk””\%(s)dB(s)Hp
o[ (o s

- A /:(u — s)falefA(ufs)qSl(u)du) dB(s)

- [ (o [ =gt ar
- A /t(u — 3)7”267)‘(“78)¢2(u)du) dB(s) !

(5.1)

<o [ [ -9t arants
= [ o [t gy myaran(e)|

+ 2p_1)\pEH /t /t(u — s)_‘”e_’\(“_s)gbl(u)dudB(s)
o 0 Js )

— /0 / (u— 3)7‘72eiA(U*S)gbg(u)dudB(s)H

= T3+ Ty

It follows from similar arguments as in the proof of Lemma that I, 7" ¢y (s) —
JT7 A (s) and I 72 o (s) — LI 72 ¢y (s) are progressively measurable. Then,

by using Lemma [2.1] we obtain that

t ot
T3 <2772 (gy — 01)pEH / / (r— 5)_"1_1e_>‘(r_s)¢1(T)drdB(s)Hp
0 Js

+ 272~y | /Ot /:eWS)((r — 8) "7 o (r)
— (r = 5)"" 161 drdB(s) |

<2720, =B | t / t / oo
X (1= s) " u—5)"" " drduds) :

+ 231’*3(—02)1’EH /0 / (r—s)"72 e 279 (9o (1) — ¢ (r) ) drd B(s)

(5.2)

p

t ot
+ 23”_3(—02)pEH / / ((r — 5)_‘71_1 —(r— s)‘”z_l)
0 Js
X e*’\(T*S)qﬁl(r)drdB(s)Hp
=T34+ T3+ 735
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For T3, we deduce from inequality (2.11]) and Holder’s inequality that

vy =22y - [ [ [ 1o0llole -5

X (r— s)*"l*ldsdudr) :

<222y - ([ [l -

(5.3)
X ﬂ(l + 201, —Ul)dud’]") ?
< 2772C, (03 — 01)P(—01) " 2 (B(1 + 207, —01))%
t
et [ (o) s
0
For Y2, using inequality (2.11]) and Holder’s inequality again we have
13 <220 B( [ [ [ 10atr) - n0llat) - on(a
X (r—s)772 Yy —s)72" ldrduds)
t t uAT
=200, B( [ [ [ 102t = 6n(r) a0 = on o)
X (r—s)772 "y — s)*“rldsdudr) : (5.4)

<=0y -orp( [ / [62(r) = o (Plr —ul =272~

X 5(1 + 20’27 —O'Q)d’ud’l’)
Y t
<2979, (~00)f (3(1 + 202, ~02)) Tt 31 [ Bllon(s) — o (s) P
0
Then for T3, by repeatedly using Hélder’s inequality we find that
t t
13 <220, orB( [ ([ (oo
0 s
2 \ %
o ()ar) s )

<23P-3cp(—02)PE(/ot /: /: (r =)t — (r— )" 1)

x ((u—s)" 7" = (u— s)*“rl)||¢1<r>u||¢1<u>|\drduds)g

<23p 30 02 pE / ||¢1 ”2// T‘—s 01_1—(7'—3)_‘72_1)



August 1, 2021 21:39 WSPC/INSTRUCTION FILE Liu*Wang*Caraballo

Stokes equations with unbounded delay and tempered fractional Gaussian noise 27

P
2

x (u—s)"""1—(u— s)*szl)dsdudr)

< 22730 (—ay) /E||gz51 |”dr</ // (r—s) 7t (5.5)

—(r=s)"" ) ((u—s)"""" = (u— s)_"z_l)dsdu) pp_gdr) T.

We next estimate the term T4,

Ty < 22P*2APEH /O t / t(u —5) "7 e M) (6 (u) — pa(u))dudB(s) Y

+ 221’_2)\1”EH /Ot /st ((u —8)7 7 —(u— s)_”"‘)e_’\(”_s)(bg(u)dudB(s)Hp (5-6)

=T+
Applying Lemma [2.1] Hélder’s inequality and the inequality (2.12)) results in

1) < 22p_2)\pCpE(/t (/t(u - s)_"le_)‘(“_s)HqSl(u) - qbg(u)Hdu) 2ds) :
0 s
< 22p2)\pcpE</t /t /t(u _ 8)701(7. _ 8)701
0 s s

x ||¢1(r) = o2 (r) ||| 1 (w0) — ¢2(u)||drduds> :

< NGB /Ot /ot /o(“ SO (5.7)

x ||¢1(r) = o2 (r) ||| 1 (w0) — ¢2(u)||dsdudr)%
<220 B( [ [ orr) = oa(r) lu vt

x B(1+ 20,1 )dUdT)%
D 3 ¢
< 22" 2(00?) (ﬁ(1+201,1—al))ft<f‘”1)p_1/0 E||¢1(s) - ¢2(s)||"ds.

Arguing as in we obtain
t t
i < 22p—2)\pCpE(/ (/ ((u=28)"7" = (u—s)"")
0 s
y 6A(u8)||¢2(u)du>2d8) ’
t t t
<22, [ [ o@lleml (-9 = =97

ya
2

X ((u—s)""" = (u— s)_‘”)drduds)
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<oy [Nol [ [ (=97 - - s7)

X ((u—5)""" = (u—1s)" ”2)dsdudr

<or-2v, [ Bloera( [ / AN 6.9

X ((u—s)""" = (u—s)~ ”z)dsdu) dr)
Collecting (5.2))-(5.5) and (5.6)-(5.8) together, the assertion of this lemma follows
immediately from (5.1)). O

Theorem 5.1. Let u®? denote the mild solution to Eq. (1.1) driven by B (t)
with —1/2 < o < 0 and A > 0. Suppose that the assumptions in Thereom hold.
Then for any T > 0 and A > 0,

w\'u

sup Elut? (7 )*UUQ’A(T)Hg*)O as o1 — 09.
0<r<T

Proof. By Lemma 5.1] Hélder’s inequality and the property (P;), we deduce that

EHu"l’)‘(t) — u”z’)‘(t)H:
t P
< 2p71E(/ HAWS(t - T)(f(T u"l’)‘) flruZ® ))Hd’l’)
0
t
+ 2p—1EH/ AVS(t — T)g(r, ul M) ABO A (7)
0
t P
= [ 05t = Dtz o
t
< 2p—10§,otp_1/ (t =7) PV E[| f(rul?) = f(ruf>?)||"dr
0
+2%73CP (Cp(o2 — 01)P(—01) "2 (B(1 + 201, —01)) Zy(h—o0p-1

t
x / (t = 1) PV |lg(r,ul ) Pdr
0

+29774CP (€ (=02) B (B(1 4 209, ) T3 —o2)p 1

(5.9)

t
< [t =Bl ) — gtz s
0

1 93p=3)\pCP ocp(ﬂ(l + 201,1 — 01))gt(;_gl)p 1
Vs

—0q

t
/ (t—1) mEHg 01’\)—9(7 g2, deT
0

t
F2IIC ol 0)F [ =) Bllgtr P
0
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t
+ 23BN (C,0,(1) /O (t = 7) PV E|g(r,ul ) |Pdr.

Since u®1 A (t) = u2* (t) = ¢(t) for each t € (—o0,0], we obtain

”uf—l’A 02 )\HCP(HW) = e(bup ]E”ual )\( ) o “62’A(T)||5
. (5.10)
= sup Efu”(r) —u”?(r)|2.
rel0,7]

Then, by using Holder’s inequality, the assumptions (Hs)-(Hs) and (4.6]), we obtain

Blu(t) — u= ()P
t
cote iy [(-m s B A0) - o)ar
0 rel0,7]
+(02,01)Pt(2 T=NPC (0, p, 7y, 1 o) (1+ llellg, H“f))
t
+t(%*02)p*1C(02,p77)Lg/ (t=7)7"" sup Elu”*(r) —u”(r)|[bdr
0

rel0,r
el (5.11)

t
+APA%*UI)P*RC(m,p,y)Lg/ (t—7)"" sup Elju”r) —u®(r)|dr
0 rel0,7]

P (B (¢ yez +)\PE§2( = )(C(ag P lg)(1+ ||<PHcp(Hw))

T ([ (s Bl w20 12)7 ar)”

rel0,7]
+ (01 — 09)P X6 (t) + T (t),

where we choose ¢’ > 1 such that pg'y < 1, 1/p’+1/¢' = 1 and pp’(% —o9—7) > 1.
Here we have used the notations

?S(t) = 2p71017 tp(l_’Y)_ﬁLf + t(%_02_7)p_i(c(0’27p’ V)Lg
+Apt(§"” VP Cor,p,7) Ly,

Te(t) _t(Q_Jl v)p@(al,p7% )<1+||<pHCP(H’V))’

and

T?(t) = tlip’y (61(t)172;2 + )\p62(t)p772)(c(0'2ap777 lg)(l + ngHgP(H’Y))

Therefore, by applying Gronwall’s lemma to ([5.11)), the assertion of this theorem
follows immediately from the dominated convergence theorem. O
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6. Time regularity of mild solutions

The goal of this section is to show mean-p Holder regularity of mild solutions.
Theorem 6.1. Letp > 2, v € (0, %) and @ € CP(HY). Suppose that the assumptions
n Theorem@ hold. Then there exists C > 0 depending on l¢,lg,y,p, T such that
for all ty,ts €10,7T],

1_
lutn) = ult2)l] o gy < Clix = b2 777, (6.1)
where u is the unique mild solution of problem (1.1)) on [0,T).

Proof. Let 0 <t <t+ s <T. Then we have

lu(t + 5) = u(®ll r@ury < IS+ £)0(0) = SEEO)| 1y 09

n /Ot (St+s—7)—S(t—7)f(r, uT)dT]

Lr(Q;HY)

+ / St+s—1)g(r,u) — St —7)g(r, u-,—)dBG’)‘(T)‘
0

Le(:Hm) (6.2)

t+s
+/t S(t+s—7)f(7,uf)d7‘

Lr(Q;HY)

t+s

+ St+s—1)g(r, uT)dB”’)‘(T)‘
t

=V + Vo + Vs + Vo + V.

Lr(Q;HY)

We now estimate each term V; (i = 6,...,10). By making use of the property (P1)
and Hélder’s inequality, we can choose a € (0, %) such that

t+s
— $ d ‘
V= | / Seer|,
t

+s
< /t HAS(T)QD(O)HLP(Q;Hv)dT

t+s
< /t 01:06_577_1 H‘p(O)HLp(Q;Hw)dT (6.3)

p—1

t+s 1 ths . p=t
S Cl,o”@”cz’(m)(/ T_padT) (/ T*ﬁdT)
t t

1—a
(1-pa)s

where we have used the inequality

< Ciolleller (it

)

a = <(a—b)f for a>b>0 and 6€(0,1). (6.4)
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Using the property (P1), the assumption (Hz) and (4.6)), the term V7 can be bounded
by

t ptts
Ve < / / HA’Y+1S(T—T)f(T,uT)HLp(Q;CZ)deT
o Jt

t t+s
= / / Cry0(r = 1)~ F (7, ur) || 1o 0y 2y drdr
0 Jt

1 t+s 65
SC(’vaalg,lfvaq/7p/vT)(l+||SD||gp(HW p/ / 1_Vd7'd7’ ( ! )
(r—1t) 1 Y t+s
C“yp,l,l?quTlJrs&pwp(i )
( g f )( | ”c (H™) ) (I —7) It

-

< C(v,pily, s, H, ¢.p, T)<1+ HSDHCP(Hw );3177-

For Vg, by using Holder’s inequality, (4.6, the property (P;) and the assumption
(H2) again, we deduce from Lemma [2.2| that

t t+s .
Vs = H/ / S(T—T)g(ﬂuf)d’"dBU’A(T)‘
ti—s '
<]
t
1 e
< (Cp)b Nt / / A5 = 790700 [y )
< (C)s /Nt / / ||A1+”S(r—T)g(T»UT)Hip(n;ﬂ)dT)pdr (6.6)

) t+s t 1
< (Cp)» /Nyt 2 b ClJWO/ (/0 (r—7)7P7P||g(r, u7)||1£p(9;£2)d7) dr

p—2 1
< COy,plg, Ly Hod' o0 )V Nt 2 (L [ll1Go 1) 7

X /H_S (/t(r — T)_p_deT)%dr
t 0

p=2 11
SC('Y>palgylf7H7ql>pl7T) Ntt 2p (1+||30||gp(Hv))pSp ’Y'

Lr(Q;HY)

dr
Le(QHY)

/t AS(r —T1)g(T, UT)dBU’)\(T)’
0

Analogous to the arguments as in (6.5)) and , we conclude that
t+s
Vo < / 186+ 5 =) £7, 0| s 7
t

< / Cyo(t+s—=1) N f(1,ur) | Lo e2ydr
t

t+s
/ (t+s—7)"dr
t

8 )

(6.7)

3=

S (C(’Y7pa lga lf7H7 q/7pl7T)(1 + ||()0||gp(H'y))

g =

S C(’Y7pa lga lf7H7 q/7pl7T)(1 + ||()0||gp(H'y))
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and
1 p=2 s D %
Vio < (Cy)4 /o5 (/ 18+ 5 = 7)a(r, u) [ 00,07
t
1 p=2 t+s P %
= (Cp) 7/ Nys 7 (/ HAVS(t +s—7)g(T, uT)HLP(Q;CQ)dT)
t
y — pe2 ths 1
S (Cp); NSSTPC"/,O(/ (t +s5— T)*p“/”g(T’ UT)||Z[},p(Q;L2)dT)
t

11
< C(vp s Uy Hy g o0 TN N (L4 (1920 1)) 75277

Inserting (6.3)-(6.8) into (6.2) yields

lu(t + s) — u(t)| e a7y < Clle(0)|ler it

(6.8)

<1 pa)?

Clv,p 1y, Uy, H,q' 9, T)(l"‘H(PHcp(Hw)) 51

C( WA (14 IIsallcp(m)%sif7 (6.9)
COypylgo by, Hog' 0, T) (L4 100180 1)) Psl
C( )

1
YDy lgs Ly Hog' 0!, T) /N (1 + [P )”8%‘”,

and thus the proof is complete. O

Y0, lg, s, Hq' 0, T

Arguing as in the proof of Theorem we have

Corollary 6.1. Let p > 2, v € (0, %) and ¢ € CP(HY). Suppose that the assump-
tions in Corollary hold. Then there exists C > 0 depending on lf,ly,v,p,T such
that for all t1,t2 € [0,T],

Hu(tl) - u(tZ) < (C|t1 — 252|%_’\’/7

||LP(Q;H’Y)

where u is the unique mild solution of problem (1.1|) with FBM or Brownian motion
instead of TFBM.

It is worth mentioning that the results in Sections 3-6 can be obtained for
problem (1.1) but with § =0, i.e., A = —PA.

7. Polynomial stability for a special case

In this section we will start our analysis of the asymptotic behavior of solutions
and will provide some significant results. Due to the fact that the right hand side
of inequalities and are dependent of ¢, it is difficult to show that mild
solutions to problem with tempered fractional Gaussian noise or fractional
Gaussian noise are polynomially stable in the space CP(H"). However, it is still
possible to provide insightful results for the special case of proportional delay when
the function g becomes independent of the state variable.
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Therefore, we shall study polynomial stability of mild solutions for the following
stochastic 2D-Stokes equation with proportional delay (also called of pantograph
type) and additive tempered fractional Gaussian noise:

{du(t) = —Au(t)dt + f(t,u(nt))dt + g(t)dB°*(t), t>0, ne(0,1),

7.1
u(0) = up. (7.1)
First, we need the following assumptions on functions f and g.

(Hg) There exists a nonnegative function L; € L>(R™) such that for any u,v €
LP(Q; HY) and t > 0,

B||f(t,p) = f(t0)]]" < L E|lu— v

(H7) There exist nonnegative functions l1,ls € LY(R*") such that for any u €
LP(Q; HY) and t > 0,

Elf @ wP < L(t) + L) E|plf,

</00° qulg(T)dT)% < 00, (/o

for some € € (0,1), where 1/p+1/q = 1.
(Hg) There exists a constant ¢ > 1 such that

and

oo

1
T_qglg(T)dT) < oo

/ (7 B|g(7)|P) Ydr := h < o0,
0
where 1/p+1/G=1and 1 <p < %.

Theorem 7.1. Let p > 2, v € (O,%) and ug € LP(Q2; HY). Suppose that the as-
sumptions (Hg)-(Hg) hold. Let ||L1|| g r+) be sufficiently small such that
3PCP (87T = 7)) 0 E | Ll oo rey < 1, (7.2)

where § and C., o are given in the property (P1). Then problem (7.1) has a unique
global mild solution u satisfying

sup TfEHu(r)H{’/ < 00,
ref0,00)

where € is given in the assumption (Hz).

Proof. Define [[ully = sup,e(g o0y I E||pu(t)[[5 for any p € C(0,00; LP(Q; HY)),

where
TS, tel0,T),
oo — [0,7]
£, t>T,

with T > 0 given later. We consider the abstract phase space
Cy(0,00; LP(Q; HY)) = {p € C(0,00; LP(Q; HY)) : ||pllo < o0}
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Then (Cﬁ (O,oo;Lp(Q;HW)), I| - ||19) is a Banach space. For our purpose, we define
the mapping T by

(Tu)(t) = S{t)uo + /0 St —7)f(r,u(nr))dr + /0 St —7)g(r)dB> r). (7.3)

Step 1. We show that 7T is contractive.

In view of ([7.3)), Holder’s inequality, the property (P;) and the assumption (Hg),
we deduce that for ¢ € [0,T] and any u,v € Cy (O, oo; LP(€; HV)),

I E||(Tu)(t) — (To)0)|”

<7<E( [ |15t = (st = sirvtm)) | dr)”

P

< TECZ’;,OE(/O e 0=t — 1) 7| (7, ulnT)) — f(Tav(WDHdT)

t -1 t
< TEC,?O (/ e_‘s(t_")(t — T)"’dT)p / e_é(t_f)(t —7)77
0 0

x B\ f(r,u(nr)) = f(r,v(nr))|[ dr
<CY,(0T( - )L Lo @y 1w — v]lo-

(7.4)

Next we consider the case of ¢ > T. Let M be a positive constant which will be
fixed later. Then for any u,v € Cy (O7 00; LP (£ H"f)),

O() B|(Tu)(t) — (To)(®)]]]

< g /0 St =) (f(rur)) — F(r vl dr

p

v

<y en( [T 8= (1) - frotm) | i)
y ) (7.5)
v 31’*1t5E(/ IS¢t = ) (f(r,unr)) = £ (r,00rm)) |7 )

1
2

p—148 t -7 T,u(nt)) — f(r,v(nT Tp
+3 6B ( [ 8= ) (f(rutm) = 1))
=V + VA + V.
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Applying Holder’s inequality, the property (P;) and the assumption (Hg), we have

VY < 3p_1téC§’OE</02 e 0 (b — 1) (7 u(nT)) — f(Tav(W))HdT)p

3p=LCP ¢S 5 . ,
< W (/O efTé(tfr)e*;ci(tfr)Hf(T,u(nr))—f(T,U(nT))HdT)

t
3 -1
< 3?*%502,0@)7”(/2 e*5<t*7>d7)p
0

2

%
< [T e B fryutrm) £ o) P

0

typy 367 % pot H (7.6)

Stgcﬁ,o(i) Y 3 )¥ HU7U||19||L1||L°°(R+)777£/0 e 8qr

p (by-pv 3¢~ % \p1 t 2 —6p/ (t—7) v
< Co(5) " ()" e elolalliey e (e dr)

X (/2 T*qlng)?
0 St i
— )q’ §t§

_ 8t otot
2 e 2 (3

t e 1
< 3P7LCP () PV L | oo gyl — vl (——)”
= 7,089 (®*) NS 3 > 7

né(op')? (1 — ')

where we take £ in (0,1) and choose ¢ > 1 such that £¢’ < 1 and 1/p'+1/¢ = 1.
Using Holder’s inequality, the property (P;) and the assumption (Hg) again, we

obtain that
t—M

v <3t B ( /

2

< || £ unr) = £, v dr)”

t—M p—1
<31Cl M / e~3="ar )

1
2

e—%é(t—T) (t B T)fye—%é(t—'r)

t—M

X / e CDE| f(r,ulnr)) = fr,v(m)|dr

5 (7.7)
< 3p-1CP A[-PY e M1 [T s t—7)s+7°
. () / e ((t =) +7%)

t

2

X Li(7) Ellu(nT) — v(n7)|5d7
—0M

)"

< 3p_1C$,0M_m||L1||L°°(R+)||u — U||19( 5

t—M
X / e 0t=7) ((t — 7)57_5 + 1)d7‘

2
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p—1 P —py M \p —¢
< BTICE MLl gyl = wllo (—5—)"

M e T(14€)
X<65 +(5) " e )

thanks to
(a+0)? <a®+b° for a,b>0 and 6 € (0,1). (7.8)

For the term Vi3, we find that

t
Vi <87l B / e O R i
tf

< |17 unr) = £z, o) dr)”
t —6(t—7) 1 rt
p—1P 4€ € T b —0(=T)(t — )7
<3 IC%Ot(/t—M (th)'Yd) /t_Me (- 1)
X E||f(r,utr) = f(r,u0m) | "dr (7.9
<3100 ot (7701 =) flu = vl La e ey

t
X / eiS(tf")(t — 1) 8dr
t—M

—&4€
_ - n_°t
<3P 105,0(67 1F<1_7)>p7(t—M) L1l oo oty [l — ]9

Inserting — into gives
I E[|(Tu)(t) = (To)®)][]

st 1

s31’—10”0((t)_m(e_g)p_1 HHTE
A2 g e (0p) ¥ (1— q/€)7
—&(,—6M /s\p—1 , —6M

n~¢(e " /9) e ty—e(1+&)
Mpy ( 5 +(§) sl+e )

(7.10)
+

S7Ira — pﬁ L _
+( I'( ’Y)) (= M) | L1ll o ety [lw — v]|o-

By using ([7.2]), we can choose M > 0 and T' > 2M sufficiently large such that for
any t > T,

IOE[(Tu)(t) = (To)®)|7 < llu—wvls,
which together with 1) implies that T is contractive on the space Cy (O, oQ;

LP(; HY)).
Step 2. We prove that 7 is bounded in Cy (O, oo; LP(€; H“’))
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Due to (7.3)) and the property (Pi), we deduce that for u € Cy (0, oo;
LP(Q; HY)) and any ¢ > 0,

I E|[(Tu) B[] < 37~ 9() E||S(t)uo

+3p‘119(t)EH/t S(t =) f(r.unr))dr |
0 K (7.11)
+ 37 () E| /0 S(t — 7)j(r)dB" () j

< 371 Che P Blfuolf, + Viz + Vis.

Following similar calculations as in (7.4) and applying the assumption (H7), we
obtain that

p—1

Vi < (C(v,p)ﬁ(t)(/ot e—é(t—f)(t _ T)_7d7->

t@,g(t,T) — 7. ulnt p T
/ (t—7) B f(r,u(nr)|Pd
< C(v,p)0(t) (8701 — 7))
y / e — 7)YV (14 (7) + Io(7) EJu(nr) |2) dr-

Now we consider the case of ¢ > T. Using inequality (7.8) and Hélder’s inequality
results in

Via < € 0) ([ e (00 (- 0))
X ((7) + () El[u(nr)|[5) dr

< C(p,,0) (((6p)“‘5)”‘1f(1 — (v - «E)p))% (7.12)
< el -l ([ 87 o5ar) ]
+ (o r =) ([ e ttoan) o lulolialy] )

For the term Vi3, by making use of Lemma Holder’s inequality, the property
(P1) and the assumption (Hg), we have
t r
Vig < C(?W(t)(Nt)%E(/O |5t — T)g(T)HidT) ’
t D
< COonpIOWDFE( [ e 07— 7y g(r) Par)
0 (7.13)

< N ([ ey ar)

0

t
x / =230 (¢ — 1) B||g(r) Pdr
0
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1

t
< C(p, s, w)ﬁ(t)(Nt)ge_ét( / e PO(E=T) (¢ — T)—QﬁvdT) ’
0

([ @ mamiryr)
< C(p.8,7)0(t)(Ne) 2o R

By similar arguments as above, we can compute Vi5 and Vi3 in the case of ¢t €
[0,T]. Hence T is bounded on the space Cy (O7 oo; LP(Q; HV)) The assertion of this
theorem follows immediately by applying the Banach fixed point theorem. O

Remark 7.1. Indeed, there exist nonnegative functions [y, I satisfying the assump-
tion (H7). For example, we can take [1(t) = e~ “t, [5(t) = e 2, then it is easy to
see that

/ %1 (1)dr < CT(1 + ¢¢), / 791 (T)dT < CT(1 — ¢¢)
0 0
for some constant C.

The following result follows directly from Theorem [7.1]

Corollary 7.1. Letp > 2, v € (0, %) and ug € LP(Q2; HY). Suppose that 1) and
the assumptions (Hg)-(Hs) hold. Then problem (7.1) but with FBM or Brownian
motion instead of TEFBM has a unique global mild solution u satisfying

sup T§E||u(r)||§ < oo
ref0,00)

where & is given in the assumption (Hr).

8. Polynomial and exponential stability of mild solutions in a more
regular phase space

In this section we will analyze not only polynomial stability of our Eq. but
also will provide some exponential stability results. However, we need to consider a
different phase space, CP¢(H"), defined below, in which the norm has an exponential
weight which prevents, in general, that the case of variable delay can be included in
this formulation (in particular the case of proportional delay considered in Section
7), since the Lipschitz assumption (Hg) cannot be proved with the new norm (see
30 for more details). Let us define the phase space C*¢(H") by

CPE(HT) = {¢ € C(=00,0: L7 (Q: 7))+ lim_e<p(0) exists in L”(Q;HV)},
——00
for p > 2, ¢ > 0. If CP¢(H") is endowed with the norm

[¥llerc ) = (9 sup " Blv(0)|5)7, ¥ e CPo(H),
S

(—00,0

then (CP(H7),|| - |lcr.c(mv)) is a Banach space.
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We now enumerate now the new assumptions on the delay terms f and g.

(Hy) For any p € CP<(H"), the mappings [0,00) 3 t — f(t, ) € £2 and [0, 00) 3
t > g(t,p) € L? are measurable.

(H,) There exist nonnegative functions kq, ko € L (R*) such that for any p,v €
CPS(H") and t > 0,

BIf 1) — 1 )P < Rl Ve 0oy
Ellg(t, n) — g(t. )" < k26l = vlIGo.c (5
and
Hk1||Loo(R+) = K7 < o0, ||k2||Loo(]R+) = Ky < oc0.

(H3) There exist nonnegative functions ks, k4 and ¢’ > 1 such that for any
p € CPCS(HY) and t > 0,

BIF(t P < ka(t) + ksl Byc -

and
/ ks (1)dT := K3 < 00, / (667—]{:4(7')7'_5)(1/(17' = K, < oo,
0 0

for some ¢ € (0,1), and where ¢ is given in (L.1)).
(H,) There exist nonnegative functions ks and ke such that for any pu € CP¢(H")

and t > 0,
Ellg(t, mlI” < ks(t) + ksl 1ller.c oy
and
/o P TR (1)dr = K5 < o0, /0 (" ks (r)r=¢) Bdr = K < ox,

for some £ € (0,1). Here 1/¢} + 1/¢5+1/p' =1, 1/¢ + 1/p’ = 1 and
1<q,q) < 55
Remark 8.1. Similar to the proof of Theorem [3.1] we can deduce from the as-
sumptions (H;)-(Hy) that for each ¢ € CP*¢(H?), there exists a unique global mild

solution to Eq. (1.1).

Theorem 8.1. Letp > 2, v € (0
tions (Hy)-(Hy) and

,%) and ¢ € CPS(H"). Suppose that the assump-
¢ > pd (8.1)

hold. Then, mild solutions to Eq. (1.1]) are polynomially stable, that is, for any mild
solution u of Eq. (1.1)) with the initial condition p € CP*¢(H"),

sup el e gy < 0. (32)
t€[0,00)

where & is given in the assumptions (Hs) and (Hy).
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Proof. It follows immediately from (3.2]) that

Ellu(t)|L < 32~ B||S()e(0)|]” +3p*1E(/O HS(t—T)f(T,uT)HvdT)p

(8.3)
t
+ 3p_1EH / S(t - 1)g(r,un)dBA ()| = G + G + G,
0 ¥
By the property (P;), we have
G1 < 371 Che P Bl (0)]12. (8.4)

In view of Holder’s inequality, the property (P;) and the assumption (.F~I3), we
deduce that

t 1 P
Gy <3102, / T (= 1) e H | £ () ar)
0
t
oot
0

Py -1 K
< 3p*105,o</ (e —7) #rar) /0 e CDE| f(7 ur)|Pdr
by ))P_le—5t

<3rmle? (67T IT(1 - -1
(8.5)

t t
X (/ eéTkg(T)dT+/ 6571474(7)77575||ur||§p,<(Hw)dT)
0

_ Py -1 _ _
< 3P71CP (57 (1_2%))” e Ky + 3771CF

4 t ’ .
x (3t E) e ( / (e 1) 7)™

where ¢’ is given in the assumption (ﬁg) and 1/p’ + 1/¢' = 1. For the stochastic
term (3, thanks to Lemma by a similar way as in (8.5 we obtain that

ya

t
Go <3 )FE( [ e PO =) P g(r ) |Par )
0
o[ =
<3 (N ( / 20N (1 — 1)~ 2dr )
0
t
x / 07 (4 — 1) B|g(r, u,)|Pdr
0
N,)% B =2, [t (i _
< 3P~ (622 ((25)27 11’(1—27)) 2 (/0 667—]65(7')6 a(t )(t—T) 2dr (8.6)

t
Jr/ 6*5(“7)(75—T)*Qve‘”k@(ﬂfwHUTHZP,c(m)dT)
0

317 1(Nt)§ ((25)2771F(1 . 27))’72;2 <K§’1' </t efgq’(tf-r) (t . T) 2q 7d’r>
0

=T gt

a1 t ER i / L
+ ng (/O eféql(tf'r)(t _ 7_)72111Vd7.) a1 (/0 (7—&”“7”211&(]{“/))1) dT) ? )

1
a7
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4
7

S 3p71 ((25)27711-\(1 o 2,}/)) p% ((5q/)2q/7711—w(1 o 2(]/’)/)) P KgT’ (Nt)gefét

- _ e=2 T(1—2¢\9)\ .ot »
+3P 1((26)27 1F(1—2’y)) (((S(qll)l_2(11/17)> Kﬁ (Nt)2e ot

t ;oL
p U
X </O (T§||UT||ZC)1),C(H’Y)) dT)p .
Inserting (8.4)-(8.6) into (8.3) yields
Ellu(®)|5 < 377 Ce P E|@(0)]|% + Clp,p',q', 6,7, K, Ks)e™* (1 + (Ny) %)

! CNE
ot 67 K Ke)e ™ (1 (N5) ([ (05t ) ) (8)

By the assumption (8.1, we have e(¢=79¢ < 1 for § < 0. Then multiplying by
e$%e=C% and replacing t by t + 6, in view of the monotonicity for N; with respect to
t, we conclude that for 6 € [—t,0],

e<9E||u(t + 9)||§’
< 37710 P E||p(0)||2 + Clp, p', ', 6,7, K3, K5)e % (1 + (N,) %)

t (8.8)

N

+C(pvqlvqllaq/%éa’yaKﬁhKﬁ)eiat(l+(Nt)g)(/ (T£||UTHZP~C(HW))Z) dT) .

0
On the other hand, we have for all 6 € (—o0, —1],
OB |u(t+0)|7 < e eI Bfu(t + 0)|
—(t P —pdt P (89)
S € ||<10||CP~C(H’Y) S € ||<pHCT-uC(H'Y)'

Therefore,

tgHutng,C(H’v)

_ t _ »
< @G+ G el gy + Cop's a2 0,7 K Ks)e (14 (N)F) - (s.10)
1

t /
+ Ol 5.7 K K)o ™01+ 0 ) ([ (8 rlen))ar)

By using Gronwall’s lemma, the assertion of this theorem follows immediately. O

As a simple consequence of Theorem we have

Corollary 8.1. Let p > 2, v € (0, %) and o € CP<(H"). Suppose that the assump-
tions (Hy)-(Hy) and
¢>po (8.11)

hold. Then mild solutions to Fq. (1.1)) with FBM or Brownian motion instead of
TFBM are polynomially stable.
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Remark 8.2. In fact, by slightly modifying the conditions of Theorem the
exponential stability of mild solutions to Eq. (1.1)) is established in the sense of
p—th moment. More precisely, let p > 2, v € (0, %) and ¢ € CP*(H"), and assume
that

(ﬁg) There exist nonnegative functions ks, ks and ¢’ > 1 such that for any
p € CPC(HY) and t > 0,
ELF ()7 < ko) + aOllal B 00,

and
/ €5T]€3(7')d7' = K3 < oo, / (6(575)712:4(7))(1@7' =K, < 0,
0 0

for some & € (0,1), where § is given in problem (|1.1]).
(H4) There exist nonnegative functions ks and kg such that for any pu € CP<(H")
and ¢t > 0,

Bllg(t, w7 < ks(t) + ko () [l c 110

and
/0 Y (7)dr 1= K < o0, /0 (497 hg(r)) dr 1= R < oo,

for some ¢ € (0,1). Here 1/¢} + 1/¢5 +1/p' =1, 1/¢' + 1/p’ = 1 and
1<q,q) < 55

Furthermore, suppose that the assumptions (I;f 1)—(ﬁ2), and

¢ >pd > p€ (8.12)
hold. Then mild solutions to Eq. (1.1]) are exponentially stable, that is, for any mild
solution u of Eq. (1.1)) with the initial condition ¢ € CP¢(H?),

sup etgﬂutH’cjp,C(Hv) < 00, (8.13)
te[0,00)

where ¢ is given in the assumptions (8.12) and (ﬁ3)-(ﬁ4).

9. Summary

There have been very few work in the literature on stochastic partial differential
equations with unbounded delay driven by tempered fractional Gaussian noise. In
this paper we have considered stochastic Stokes models with unbounded delay and
multiplicative TFBM B (t) in fractional power spaces and moments of order p >
2. The continuity of mild solutions is first studied in the case of A — 0, 0 € (—1/2,0)
or A > 0,0 — gy € (—1/2,0) where A is tempered parameter and H :=1/2 — o
is Hurst index. It is worth mentioning that the global existence, continuity and
p-th moment Hdélder regularity in time can be obtained for stochastic delay Stokes
models without damping term. One technical challenge is that we consider the
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stability of models in the sense of p—th moment. The presence of fractional power
spaces and unbounded delay also makes the analysis more complicated. Another
highlight of the work is that p-th polynomial stability of mild solutions can be
obtained in two types of infinite delay phase spaces. By considering the phase space
¢ € CP*(H") we prove, not only polynomial stability of mild solutions, but also
exponential stability in the p—th moment. However, the assumptions imposed do
not allow the case of variable delay be handled. At least the case of proportional
delay can be analyzed considering the phase space more general infinite delay phase
@ € CP(H") and polynomial stability is suscessfully proved in this case.

Eventually, it is important to emphasize that our results hold not only for the
Stokes problem, but for any other semilinear problem in which the operator A
satisfies properties (1) and (Ps).
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