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Abstract

In this paper, the asymptotic behavior of a semilinear heat equation with long time memory
and non-local diffusion is analyzed in the usual set-up for dynamical systems generated
by differential equations with delay terms. This approach is different from the previous
published literature on the long time behavior of heat equations with memory which is
carried out by the Dafermos transformation. As a consequence, the obtained results provide
complete information about the attracting sets for the original problem, instead of the
transformed one. In particular, the proved results also generalize and complete previous
literature in the local case.
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1. Introduction1

The main objective of this paper is to analyze the asymptotic behavior of a semilin-2

ear heat equation with long time memory and non-local diffusion, which is an interesting3

situation with important applications in the real world.4

On the one hand, the effects that memory terms (or the past history of a phenomenon)5

produce on the evolution of a dynamical system is obvious, since it is sensible to think that6

the evolution of any system depends not only on the current state but on its whole history7

(see, for instance, [1, 8, 12, 2, 6, 10, 15] and the references therein). On the other hand,8

many problems are better described by considering non-local terms, which created a great9

interest in the modeling of various real applications (see [3, 4, 5, 12] and the references10

therein).11
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Motivated by some physical problems from thermal memory or materials with memory,
one can find a significant literature devoted to the analysis of partial differential equations
with long time memory. For example, the authors introduced in [12] a semilinear partial dif-
ferential equation to model the heat flow in a rigid, isotropic, homogeneous heat conductor
with linear memory, which is given by

c0∂tu− k0∆u−
∫ t

−∞
k(t− s)∆u(s)ds+ f(u) = h,

u(x, t) = 0,

u(x, τ + t) = u0(x, t),

in Ω× (τ,+∞),

on ∂Ω× (τ,+∞),

in Ω× (−∞, 0],

(1.1)

where Ω ⊂ RN is a bounded domain with regular boundary, u : Ω×R→ R is the tempera-
ture field, k : R+ → R is the heat flux memory kernel, R+ denotes the interval (0,+∞), c0

and k0 denote the specific heat and the instantaneous conductivity, respectively. To solve
(1.1) successfully, the authors considered this problem as a non-delay one by making the
past history of u from −∞ to 0− be part of the forcing term given by the causal function
g, which is defined by

g(x, t) = h(x, t) +

∫ τ

−∞
k(t− s)∆u0(x, s)ds, x ∈ Ω, t ≥ τ.

In this way, (1.1) becomes an initial value problem without delay or memory,
c0∂tu− k0∆u−

∫ t

τ
k(t− s)∆u(s)ds+ f(u) = g,

u(x, t) = 0,

u(x, τ) = u0(x, 0),

in Ω× (τ,+∞),

on ∂Ω× (τ,+∞),

in Ω.

(1.2)

However, this problem does not generate a dynamical system in an appropriate phase space,12

since the equation in (1.2) depends on the past history and we are just fixing an initial value13

at time τ .14

Therefore, two alternatives are possible. The first one is based on the idea introduced
by Dafermos [7], for linear viscoelasticity, in the 70’s. Let us define the new variables,

ut(x, s) = u(x, t− s), s ≥ 0, t ≥ τ,

15

ηt(x, s) =

∫ s

0
ut(x, r)dr =

∫ t

t−s
u(x, r)dr, s ≥ 0, t ≥ τ. (1.3)

Besides, assuming k(∞) = 0, a change of variable and a formal integration by parts imply∫ t

−∞
k(t− s)∆u(s)ds = −

∫ ∞
0

k′(s)∆ηt(s)ds.
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Setting
µ(s) = −k′(s),

the original equation (1.2) turns into the following autonomous system without delay,

c0
∂u
∂t − k0∆u−

∫ ∞
0

µ(s)∆ηt(s)ds+ f(u) = g,

ηtt(s) = −ηts(s) + u(t),

u(x, t) = ηt(x, s) = 0,

u(x, τ) = u0(0),

ητ (x, s) = η0(s),

in Ω× (τ,∞),

in Ω× (τ,∞)× R+,

on ∂Ω× R× R+,

in Ω,

in Ω× R+,

(1.4)

where, ηts denotes the distributional derivative of ηt(s) with respect to the internal variable16

s. It follows from the definition of ηt(x, s) (see (1.3)) that17

η0(s) =

∫ τ

τ−s
u(r)dr =

∫ τ

τ−s
u0(r − τ)dr =

∫ 0

−s
u0(r)dr, (1.5)

which is the initial integrated past history of u with vanishing boundary. Consequently,18

any solution to (1.2) is a solution to (1.4) for the corresponding initial values (u0(0), η0)19

given by (1.5). It is worth emphasizing that problem (1.4) can be solved for arbitrary20

initial values (u0, η0) in a proper phase space L2(Ω) × L2
µ(R+;H1

0 (Ω)) (see Section 2 for21

more details), i.e., the second component η0 does not necessarily depend on u0(·). This22

permits us to construct a dynamical system in this phase space and prove the existence of23

global attractors. However, the transformed equation (1.4) is a generalization of problem24

(1.2), and therefore, not every solution to equation (1.4) possesses a corresponding one to25

(1.2). Notice that both problems are equivalent if and only if the initial value η0 belongs to26

a proper subspace of L2
µ(R+;H1

0 (Ω)), which coincides with the domain of the distributional27

derivative with respecto to s, denoted by D(T) (for more details, see [10]). Hence, it is28

natural to construct a dynamical system generated by (1.4) in the phase space L2(Ω)×D(T)29

to prove the existence of attractors to the original problem, via the above relationship (see30

[12, 6, 10]). Nevertheless, as far as we know, it is not possible to prove the existence31

of attractors in this space unless solutions are proved to have more regularity. Thus, in32

principle, we cannot transfer the existence of attractors for system (1.4) to the original33

problem (1.2).34

The idea of the second alternative comes from a simple case, which was successfully
applied in [1] when the kernel is k(t) = e−d0t, d0 > 0 (non-singular kernel). Using
this method, it is proved that the problem in [1] generates a dynamical system in the
phase space L2

H1
0

given by the measurable functions ϕ : (−∞, 0] → H1
0 (Ω), such that∫ 0

−∞ e
γs‖ϕ(s)‖2

H1
0
ds < +∞, for certain γ > 0. Under the construction of this phase space,

there exists a global attractor to this problem (in fact, the problem in [1] is non-autonomous
and the attractor is of pullback type). Notice that, for this kind of delay problems, in which
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the initial value at zero may not be related to the values for negative times, the standard
and more appropriate phase space to construct a dynamical system is the cartesian product
L2(Ω)×L2

H1
0

(see [2] for more details). In such a way, for any initial values u0 ∈ L2(Ω) and

ϕ ∈ L2
H1

0
, there exists a unique solution to the following problem (we set τ = 0 since the

problem is autonomous),
c0
∂u
∂t − k0∆u−

∫ t

−∞
k(t− s)∆u(s)ds+ f(u) = g,

u(x, t) = 0,

u(x, 0) = u0(x),

u(x, t) = ϕ(x, t),

in Ω× (0,∞),

on ∂Ω× R,
in Ω,

in Ω× (−∞, 0).

(1.6)

According to the regularity of solutions to the above equation, one can define a dynamical
system S(t) : L2(Ω)× L2

H1
0
→ L2(Ω)× L2

H1
0

by the relation

S(t)(u0, ϕ) := (u(t; 0, u0, ϕ), ut(·; 0, u0, ϕ)),

where u(·; 0, u0, ϕ) denotes the solution of problem (1.6) (see [2] for more details on this35

set-up). We emphasize that the two components of the dynamical system are the current36

state of the solution and the past history up to present, respectively, what is more sensible37

in a problem with delays or memory. By using this framework, the method in [1] can38

be successfully applied to prove the existence of attractors to problem (1.6) when k is39

of exponential type. However, this exponential behavior may be a big restriction on the40

kernel k, consequently, on the function µ, since in many real situations the latter often has41

singularities, for instance k(t) = e−d0tt−α, α ∈ (0, 1). Therefore, it is interesting to design42

a technique which allows us to handle the cases with this kind of singular kernels within43

the context of the phase space L2(Ω)×L2
H1

0
. We will obtain this result as a consequence of44

the analysis performed in this paper even for the more general case of non-local problems45

as described below.46

Let us recall now that amongst many interesting results concerning non-local differential
equations, we mention the pioneering work [9], in which a model of single-species dynamics
incorporating non-local effects was analyzed, comparing with the standard approach to
model a single-species domain Ω of “Kolmogorov” type,

∂tu = ∆u+ λug(u), in Ω, t > 0.

Taking into account the following two natural assumptions: (i) a population in which
individuals compete for a shared rapidly equilibrate resource; (ii) a population in which in-
dividuals communicate either visually or by chemical means, then the most straightforward
way of introducing non-local effects is to consider, instead of g(u), a “crowding” effect of
the form g(u, ū), where

ū(x, t) =

∫
Ω
G(x, y)u(y, t)dy,
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and G(x, y) is some reasonable kernel. Reasoning in a heuristic way, Chipot et al. [5]
studied the behavior of a population of bacteria with non-local term a(

∫
Ω u) in a container.

Later, Chipot et al. (cf. [3, 4]) extended this term to a general non-local operator a(l(u)),
where l ∈ L(L2(Ω);R), for instance, if g ∈ L2(Ω),

l(u) = lg(u) =

∫
Ω
g(x)u(x)dx.

Motivated by these works, the dynamics of the following non-autonomous non-local
partial differential equations with delay and memory was investigated in [20] by using the
Galerkin method and energy estimations,

∂u
∂t − a(l(u))∆u = f(u) + h(t, ut),

u = 0,

uτ (x, t) = ϕ(x, t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω× (−ρ, 0],

(1.7)

where Ω ⊂ RN is a bounded open set, τ ∈ R, the function a ∈ C(R;R+) is locally Lipschitz,47

f ∈ C(R), h contains hereditary characteristics involving delays, and ut : (−∞, 0] →48

R is a segment of the solution given by ut(x, s) = u(x, t + s), s ≤ 0, which essentially49

represents the history of the solution up to time t. Moreover, 0 < ρ ≤ ∞, which implies,50

the authors considered both cases, bounded and unbounded delays, for this model. However,51

the technique applied in [20] is the same used in [1] and, therefore, it is valid only for non-52

singular memory terms of exponential kind (e.g., k(t) = k1e
−d0t, k1 ∈ R, d0 > 0), for more53

details, see [1]. Whereas, this technique fails to deal with various important models with54

memory, whose kernels have singularities.55

Consequently, very recently, a new model has been considered related to long time
memory differential equations containing non-local diffusion,

∂u
∂t − a(l(u))∆u−

∫ t

−∞
k(t− s)∆u(s)ds+ f(u) = g,

u(x, t) = 0,

u(t+ τ) = ϕ(t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω× (−∞, 0],

(1.8)

where Ω ⊂ RN is a bounded domain with regular boundary, the function a ∈ C(R;R+)56

satisfies57

0 < m ≤ a(r), ∀r ∈ R. (1.9)

k : R+ → R is the memory kernel, with or without singularities, whose properties will be58

specified later, g ∈ L2(Ω) which is independent of time. Notice that, thanks to a change59

of variable, the long time memory term in problem (1.8) can be interpreted as an infinite60

delay term,61

h(ut) :=

∫ 0

−∞
k(−s)∆ut(x, s)ds =

∫ 0

−∞
k(−s)∆u(x, t+ s)ds =

∫ t

−∞
k(t− s)∆u(x, s)ds.

(1.10)
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Obviously, our model is an autonomous non-local partial differential equation. The authors62

first proved in [21] the existence and uniqueness of solutions to (1.8) by using the Dafermos63

transformation. Next, they constructed an autonomous dynamical system in the phase64

space L2(Ω)× L2
µ(R+;H1

0 (Ω)) and proved the existence of a global attractor in this space.65

As in the local heat equation case mentioned above, the same lack of enough regularity66

does not allow us to obtain an appropriate attractor for the original problem (1.8) in the67

phase space L2(Ω) × L2
H1

0
. Therefore, our objective is to overcome this difficulty and we68

succeeded by proceeding in the following way: Consider problem (1.8) with initial values69

u(τ) = u0 and u(t + τ) = ϕ(t) for t < 0, where (u0, ϕ) ∈ L2(Ω) × L2
H1

0
. Thus, for70

those kernels µ(·) which guarantee that, when ϕ ∈ L2
H1

0
the corresponding ηϕ, defined by71

ηϕ(s) =
∫ 0
−s ϕ(r) dr, (s > 0) belongs to the space L2

µ(R+;H1
0 (Ω)), we can perform the72

Dafermos transformation and obtain the initial value problem which was already analyzed73

in [21], and consequently we have the existence, uniqueness and regularity of solutions in a74

straightforward way. Thanks to this result, we are able to construct the dynamical system75

in the phase space L2(Ω) × L2
H1

0
with the help of some additional technical results. The76

existence of global attractor is then proved by first showing the existence of a bounded77

absorbing set and the proof of the asymptotic compactness property which requires an78

appropriate adaptation of the technique used in [1]. These results proved in the non-local79

problem (1.8) improve and complete the ones in [1] by simply assuming that a(·) is a80

constant, and also improve the previous literature on the local case (see, e.g., [10, 11, 12]),81

where it is only provided the existence of attractors for the transformed equation (1.4) but82

not for the original one (1.1).83

The content of this paper is as follows: In Section 2, we recall some preliminaries,84

notations and the framework in which we will carry out our analysis. Section 3 is devoted85

to proving the main results of our paper. First, we state the existence and uniqueness86

of solutions of our problem by rewriting it as an equivalent one thanks to the Dafermos87

transformation. The transformed problem has already been analyzed in [21], whence our88

result follows immediately. However, as some estimations we need for the subsequent results89

are based on the ones in the proof of this existence theorem, we have included the complete90

proof in the Appendix (at the end of the paper). Next, we prove that our model generates91

an autonomous dynamical system in the phase space L2(Ω)×L2
H1

0
. Eventually, the existence92

of a global attractor for the dynamical system is proved by working directly on our model93

with memory, instead of using any result already proved in [21] for the transformed problem.94
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2. Well-posedness to a non-local differential equation with memory95

The following non-local differential equation associated with singular memory will be96

investigated,97 

∂u
∂t − a(l(u))∆u−

∫ t

−∞
k(t− s)∆u(x, s)ds+ f(u) = g(x, t),

u(x, t) = 0,

u(x, 0) = u0(x),

u(x, t+ τ) = φ(x, t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω

in Ω× (−∞, 0],

(2.1)

where Ω ⊂ RN is a fixed bounded domain with regular boundary. The function a ∈98

C(R;R+) satisfies99

0 < m ≤ a(r), ∀r ∈ R, (2.2)

k : R+ = (0,+∞)→ R is the memory kernel, whose properties will be specified later. The100

initial values are u0 ∈ L2(Ω) and φ ∈ L2
V (see Section 2.2 below).101

Let us define the new variables102

ut(x, s) = u(x, t− s), s ≥ 0,

and103

ηt(x, s) =

∫ s

0
ut(x, r)dr =

∫ t

t−s
u(x, r)dr, s ≥ 0. (2.3)

Assuming k(∞) = 0, a change of variable and a formal integration by parts yield104 ∫ t

−∞
k(t− s)∆u(s)ds = −

∫ ∞
0

k′(s)∆ηt(s)ds,

here and in the sequel, the prime denotes derivation with respect to variable s. Setting105

µ(s) = −k′(s), (2.4)

the above choice of variable leads to the following non-delay system,106 

∂u
∂t − a(l(u))∆u−

∫ ∞
0

µ(s)∆ηt(s)ds+ f(u) = g(x, t),

∂
∂tη

t(s) = u− ∂
∂sη

t(s),

u(x, t) = ηt(x, s) = 0,

u(x, τ) = u0(x),

ητ (x, s) = η0(x, s),

in Ω× (τ,∞),

in Ω× (τ,∞)× R+,

on ∂Ω× R× R+,

in Ω,

in Ω× R+,

(2.5)

where, by the definition of ηt(x, s) (see (2.3)), it obviously follows107

ητ (x, s) =

∫ τ

τ−s
u(x, r)dr =

∫ 0

−s
φ(x, r)dr := η0(x, s), (2.6)
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which is the initial integrated past history of u with vanishing boundary.108

It is worth emphasizing that we will consider solutions of our problems in the weak109

(variational) sense.110

111

2.1. Assumptions112

In our analysis, we shall suppose the nonlinear term f : R→ R is a polynomial of odd113

degree with positive leading coefficient,114

f(u) =

2p∑
k=1

f2p−ku
k−1, p ∈ N. (2.7)

This situation can be extended, without any additional difficulties, to a more general func-115

tion satisfying suitable assumptions (see, for instance, [12]).116

In view of the evolution problem (2.5), the variable µ is required to verify the following117

hypotheses:118

(h1) µ ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+;119

(h2) µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+, for some δ > 0.120

Remark 2.1. 1. It is straightforward to check that conditions (h1)-(h2) are fulfilled by
singular kernels given by

µ(t) = e−δtt−α, t > 0,

for δ > 0 and α ∈ (0, 1).121

2. Restriction (h1) is equivalent to assuming k(·) is a non-negative, non-increasing,122

bounded, convex function of class C2 vanishing at infinity. Moreover, from (h1) it123

easily follows that124

k(0) =

∫ ∞
0

µ(s)ds is finite and non-negative.

3. Assumption (h2) implies that µ(s) decays exponentially. Also, this condition allows the125

memory kernel k(·) to have a singularity at t = 0, which coincides with the intention126

to study problem (2.5).127

2.2. Notations128

Let Ω be a fixed bounded domain in RN . On this set, we introduce the Lebesgue space129

Lp(Ω), where 1 ≤ p ≤ ∞. Besides, W 1,p(Ω) is the subspace of Lp(Ω) consisting of functions130

such that the first order weak derivative belongs to Lp(Ω). In this paper, L2(Ω) is denoted131

by H, H1
0 (Ω) is denoted by V and H−1(Ω) is denoted by V ∗. The norms in H, V and V ∗132

will be denoted by | · |, ‖ · ‖ and ‖ · ‖∗, respectively.133
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In view of system (2.5) and (h1), we need to introduce some additional notations before
proving our main theorems. Let L2

µ(R+;H) be a Hilbert space of functions w : R+ → H
endowed with the inner product,

(w1, w2)µ =

∫ ∞
0

µ(s)(w1(s), w2(s))ds,

and let | · |µ denote the corresponding norm. In a similar way, we introduce the inner
products ((·, ·))µ, (((·, ·)))µ and relative norms ‖·‖µ, |||·|||µ on L2

µ(R+;V ), L2
µ(R+;V ∩H2(Ω))

respectively. It follows then that

((·, ·))µ = (∇·,∇·)µ, and (((·, ·)))µ = (∆·,∆·)µ.

We also define the Hilbert spaces

H = H × L2
µ(R+;V ),

and
V = V × L2

µ(R+;V ∩H2(Ω)),

which are respectively endowed with inner products

(w1, w2)H = (w1, w2) + ((w1, w2))µ,

and
(w1, w2)V = ((w1, w2)) + (((w1, w2)))µ,

where wi ∈ H or V (i = 1, 2) and usual norms.134

At last, with standard notations, D(I;X) is the space of infinitely differentiable X-135

valued functions with compact support in I ⊂ R, whose dual space is the distribution space136

on I with values in X∗ (dual of X), denoted by D′(I;X∗). For convenience, we define L2
V137

the space of functions u (·) satisfying138 ∫ 0

−∞
eγs ‖u (s)‖2 ds <∞,

where 0 < γ < min{mλ1, δ} and δ comes from (h2).139

3. Main results140

Let us start by proving a technical result which will be crucial to our analysis. To this141

end, we define the linear operator J : L2
V → L2

µ(R+;V ) by142

(J φ)(s) =

∫ 0

−s
φ(r) dr, s ∈ R+. (3.1)

Then we have the following result.143
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Lemma 3.1. Assume (h1)-(h2) hold. Then, the operator J defined by (3.1) is a linear and144

continuous mapping. In particular, there exists a positive constant Kµ such that, for any145

φ ∈ L2
V , it holds146

‖J φ‖2L2
µ(R+;V ) ≤ Kµ‖φ‖2L2

V
. (3.2)

Proof. The linearity of J is obvious, we only need to prove it is well defined and bounded.
Indeed, taking into account the fact that φ ∈ L2

V , (h1)-(h2) and (3.1), we have

‖J φ‖2L2
µ(R+;V ) =

∫ ∞
0

µ(s)

∥∥∥∥∫ 0

−s
φ(r)dr

∥∥∥∥2

ds

=

∫ 1

0
µ(s)

∥∥∥∥∫ 0

−s
φ(r)dr

∥∥∥∥2

ds+

∫ ∞
1

µ(s)

∥∥∥∥∫ 0

−s
φ(r)dr

∥∥∥∥2

ds

≤
∫ 1

0
sµ(s)

∫ 0

−s
‖φ(r)‖2drds+ µ(1)

∫ ∞
1

e−δ(s−1)

∥∥∥∥∫ 0

−s
φ(r)dr

∥∥∥∥2

ds

≤
∫ 0

−1
‖φ(r)‖2

∫ 1

−r
sµ(s)dsdr + µ(1)eδ

∫ ∞
0

e−δss

∫ 0

−s
‖φ(r)‖2drds

≤
∫ 1

0
sµ(s)ds

∫ 0

−1
‖φ(r)‖2dr + µ(1)eδ

∫ 0

−∞
eγr‖φ(r)‖2

∫ ∞
−r

se−γre−δsdsdr

≤
∫ 1

0
µ(s)ds

∫ 0

−1
e−γreγr‖φ(r)‖2dr

+ µ(1)eδ
∫ 0

−∞
eγr‖φ(r)‖2

∫ ∞
−r

seγse−δsdsdr

≤
(
eγ
∫ 1

0
µ(s)ds+ µ(1)eδ(γ − δ)−2

)
‖φ‖2L2

V
.

Denoting Kµ = eγ
∫ 1

0 µ(s)ds+ µ(1)eδ(γ − δ)−2, the proof is finished. �147

Remark 3.2. Notice that when we fix an initial value φ ∈ L2
V for problem (2.1), then the148

corresponding initial value for the second component of problem (2.5) becomes η0 := J φ,149

which belongs to L2
µ(R+;V ) thanks to Lemma 3.1.150

Before stating the existence, uniqueness and regularity of solution to our problem (2.1),
we first recall a general result proved in [21] for problem (2.5) with general initial data in
H × L2

µ(R+;V ). Let us denote

z(t) = (u(t), ηt) and z0 = (u0, η0).

Set

Lz =

(
a(l(u))∆u+

∫ ∞
0

µ(s)∆η(s)ds, u− ηs
)
,
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and
G(z) = (−f(u) + g, 0).

Then problem (2.5) can be written in the following compact form,
zt = Lz + G(z),

z(x, t) = 0,

z(x, τ) = z0,

in Ω× (τ,∞),

on ∂Ω× (τ,∞),

in Ω.

(3.3)

Now we have the following result.151

Theorem 3.3 ([21]). Suppose (2.2), (2.7) and (h1)-(h2) hold true, also let g ∈ H. In152

addition, assume that a(·) is locally Lipschitz, and there exists a positive constant m̃ such153

that,154

a(s) ≤ m̃, ∀s ∈ R. (3.4)

Then:155

(i) For any z0 ∈ H, there exists a unique solution z(·) = (u(·), η·) to problem (3.3) which
satisfies

u(·) ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V ) ∩ L2p(τ, T ;L2p(Ω)), ∀T > τ,

η· ∈ L∞(τ, T ;L2
µ(R+;V )), ∀T > τ.

Furthermore, z(·) ∈ C(τ, T ;H) for every T > τ , and the mapping F : z0 ∈ H →156

z(t) ∈ H is continuous for every t ∈ [τ, T ].157

(ii) For any z0 ∈ V, the unique solution z(·) = (u(·), η·) to problem (3.3) satisfies

u(·) ∈ L∞(τ, T ;V ) ∩ L2(τ, T ;V ∩H2(Ω)), ∀T > τ,

η· ∈ L∞(τ, T ;L2
µ(R+;V ∩H2(Ω))), ∀T > τ.

In addtion, z(·) ∈ C(τ, T ;V) for every T > τ .158

Based on the previous theorem, we can state now the corresponding result for our159

original problem (2.1).160

Theorem 3.4. Assume (2.2), (2.7), and (h1)-(h2) hold. Let a(·) be locally Lipschitz sat-
isfying (3.4),

g ∈ H, u0 ∈ H and φ ∈ L2
V .

Then, there exists a unique function z(·) = (u(·), η·) satisfying161

u(·) ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V ) ∩ L2p(τ, T ;L2p(Ω)), ∀T > τ,

η· ∈ L∞(τ, T ;L2
µ(R+;V )), ∀T > τ,
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such that162

∂tz = Lz + G(z)

in the weak sense, and163

z|t=τ = (u0,J φ).

Furthermore, for every t ∈ [τ, T ],164

z(t) : H → H is a continuous mapping.

If we also assume that u0 ∈ V , φ ∈ L2
V ∩H2(Ω), then165

u ∈ L∞(τ, T ;V ) ∩ L2(τ, T ;V ∩H2(Ω)), ∀T > τ,

η· ∈ L∞(τ, T ;L2
µ(R+;V ∩H2(Ω))), ∀T > τ,

and for each t ∈ [τ, T ],166

z(t) : V → V is a continuous mapping.

Proof. Thanks to Lemma 3.1, we obtain J φ ∈ L2
µ(R+;V ) since φ ∈ L2

V . Therefore,167

the first statement of Theorem 3.4 holds by applying (i) in Theorem 3.3 with initial value168

z0 = (u0,J φ). If, in addition, we assume that initial values u0 ∈ V and φ ∈ L2
V ∩H2(Ω),169

then it is straightforward to prove that z0 = (u0,J φ) ∈ V and the regularity result follows170

from statement (ii) in Theorem 3.3. �171

Remark 3.5. Although the proof of Theorem 3.4 follows directly from Theorem 3.3, some172

computations, that we need in the sequel, are based on some estimations carried out in the173

proof. For this reason, we have included the complete proof of Theorem 3.4 as an Appendix,174

so that the paper is self-contained and easier to read.175

In what follows, we construct the dynamical system generated by (2.1) assuming that176

g does not depend on t, which makes our problem be autonomous. Thus, the theory177

of autonomous dynamical systems is appropriate to carry out the analysis of the global178

asymptotic behavior. We emphasize that the non-autonomous case can also be studied by179

exploiting the theory of non-autonomous dynamical systems (either the theory of pullback180

attractors or the uniform attractors one). The autonomous framework is concerned with181

the phase space182

X = H × L2
V ,

endowed with the norm
‖(w1, w2)‖2X = |w1|2 + ‖w2‖2L2

V
.

Then, thanks to Theorem 3.4, we can define a semigroup S : R+ ×X → X by

S(t) (u0, φ) = (u(t; 0, (u0,J φ)), ut(·; 0, (u0,J φ))),

where (u(·; 0, (u0,J φ)), η·) is the unique solution to problem (2.5) with u (0) = u0, η0 = J φ.183

Let us first prove that the dynamical system S is well defined. In what follows, we will184

take τ = 0 since we are working on autonomous dynamical system.185

12



Lemma 3.6. Under assumptions of Theorem 3.4, if (u0, φ) ∈ X, then S(t) (u0, φ) ∈ X.186

Proof. Let (u0, φ) ∈ X and, for simplicity, denote by (u(·), η·) the solution to problem187

(2.5) corresponding to the initial value (u0,J φ). It follows from Theorem 3.4 that the first188

component u(t) belongs to H, thus it only remains to show that the segment of solution189

ut(·) belongs to L2
V . Indeed,190 ∫ 0

−∞
eγs‖ut(s)‖2 ds =

∫ 0

−∞
eγs‖u(t+ s)‖2 ds

=

∫ t

−∞
eγ(σ−t)‖u(σ)‖2 dσ

= e−γt
∫ t

−∞
eγσ‖u(σ)‖2 dσ

= e−γt
∫ 0

−∞
eγσ‖φ(σ)‖2 dσ +

∫ t

0
eγ(σ−t)‖u(σ)‖2 dσ

< +∞,

where the above estimation holds true since φ ∈ L2
V and u ∈ L2(0, T ;V ) for all T > 0. The191

proof of this lemma is complete. �192

Lemma 3.7. Under assumptions of Theorem 3.4, there exist two positive constants K1193

and K2, such that194

‖S(t)(u0, φ)‖2X ≤ K1 ‖(u0, φ)‖2X e
−γt +K2, ∀t ≥ 0, (u0, φ) ∈ X. (3.5)

Proof. Let (u0, φ) ∈ X and denote by z(·) = (u(·), η·) the solution to (2.5) corresponding
to the initial value (u0,J φ). Now, we multiply the first equation in (2.5) by u (t) in H and
the second equation in (2.5) by ηt in L2

µ(R+;V ). Then, by the same energy estimations as
in the proof of Theorem 3.4 (see Appendix (3.29)), we obtain

d

dt
‖z‖2H +mλ1 |u|2 +m ‖u‖2 + f0 |u|2p2p + 2(((ηt)′, ηt))µ

≤ 2a0 |Ω|+
2√
λ1
|g| ‖u‖

≤ 2a0 |Ω|+
2

mλ1
|g|2 +

m

2
‖u‖2 .

Since195

2(((ηt)′, ηt))µ = −
∫ ∞

0
µ′(s)|∇ηt(s)|2ds ≥ δ

∫ ∞
0

µ(s)|∇ηt(s)|2ds, (3.6)

it follows that196

d

dt
‖z‖2H + γ ‖z‖2H +

m

2
‖u‖2 + f0 |u|2p2p ≤ K0, (3.7)
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where K0 = 2a0|Ω| + 2
mλ1
|g|2 and we recall that γ < min{mλ1, δ}. Notice that inequality

(3.6) has been deduced formally but can be fully justified by using mollifiers (see [12, p.
348]). Now multiplying the above inequality by eγt and integrating over (0, t), neglecting
the last term of the left hand side of (3.7), we obtain

‖z (t)‖2H +
m

2

∫ t

0
e−γ(t−s) ‖u (s)‖2 ds

≤ ‖z(t)‖2H +
m

2

∫ 0

−t
eγs‖ut(s)‖2ds

≤ ‖z0‖2H e
−γt +

K0

γ
. (3.8)

Then

m

2
‖ut‖2L2

V
=
m

2

∫ 0

−∞
e−γ(t−s)‖φ(s)‖2ds+

m

2

∫ t

0
e−γ(t−s)‖u(s)‖2ds

≤ m

2
e−γt‖φ‖2L2

V
+ ‖(u0,J φ)‖2He−γt +

K0

γ
.

In view of Lemma 3.1, we have that197

‖z0‖2H ≤ |u0|2 + ‖J φ‖2L2
µ(R+;V ) ≤ |u0|2 +Kµ‖φ‖2L2

V
. (3.9)

Hence, (3.8)-(3.9) imply the existence of positive constants K1 and K2, such that

‖S(t)(u0, φ)‖2X := |u(t)|2 + ‖ut‖2L2
V
≤ K1

(
|u0|2 + ‖φ‖2L2

V

)
e−γt +K2.

The proof of this lemma is complete. �198

From Lemma 3.7, we immediately have the following result.199

Corollary 3.8. The ball B0 = {v ∈ X : ‖v‖2X ≤ 2K2} is absorbing for the semigroup S.200

Now we shall prove the asymptotic compactness of the semigroup S. To this end, we201

first state the next result.202

Lemma 3.9. Assume the hypotheses in Theorem 3.4. Let {(un0 , φn)} be a sequence, such203

that (un0 , φ
n)→ (u0, φ) weakly in X as n→∞. Then, S(t) (un0 , φ

n) = (un(t), unt ) fulfills:204

un (·)→ u (·) in C([r, T ], H) for all 0 < r < T ; (3.10)

205

un(·)→ u(·) weakly in L2 (0, T ;V ) for all T > 0; (3.11)

206

un → u in L2 (0, T ;H) for all T > 0; (3.12)
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207

lim sup
n→∞

‖unt − ut‖
2
L2
V
≤ K5 e

−γt lim sup
n→∞

(
|un0 − u0|2 + ‖φn − φ‖2L2

V

)
for all t ≥ 0, (3.13)

where K5 = 1
m((γ+ δ)2 + 1). Moreover, if (un0 , φ

n)→ (u0, φ) strongly in X as n→∞, then208

un(·)→ u(·) in L2 (0, T ;V ) for all T > 0; (3.14)

209

unt (·)→ ut(·) in L2
V for all t ≥ 0. (3.15)

Proof. Let T > 0 be arbitrary. In view of (3.5) and integrating in (3.7) over (0, T ), we
deduce that un is bounded in L∞(0, T ;H), L2(0, T ;V ) and L2p(0, T ;L2p (Ω)), ηtn is bounded
in L∞(0, T ;L2

µ (R+;V )). Hence, passing to a subsequence, we have

un → u weak-star in L∞(0, T ;H); (3.16)

un → u weakly in L2(0, T ;V );

un → u weakly in L2p(0, T ;L2p (Ω));

ηtn → ηt weak-star in L∞(0, T ;L2
µ(R+;V ));

thus (3.11) holds. Also, by the same arguments in the proof of Theorem 3.4 (see Appendix),
we deduce

dun

dt
→ du

dt
weakly in L2(0, T ;V ∗) + Lq (0, T ;Lq (Ω)) , (3.17)

f (un)→ χ weakly in Lq (0, T ;Lq (Ω)) .

In view of (3.11) and (3.17), making use of the Compactness Theorem [18] we infer that210

(3.12) holds true. Thus, un (t, x) → u (t, x), f (un (t, x)) → f (u (t, x)) for a.a. (t, x) ∈211

(0, T )× Ω, so Lemma 1.3 in [16] implies that χ = f (u) .212

By proceeding as in the proof of Theorem 3.4, we obtain that z(·) = (u(·), η·) is a213

solution to problem (2.5) with initial value z (0) = (u0,J φ). Thanks to the uniqueness of214

solution, a standard argument implies that the above convergences are true for the whole215

sequence.216

Further, we will prove (3.10). Formally, we multiply the first equation of (2.5) by
−∆u (t) in H, and the second equation of (2.5) by −ηt in L2

µ(R+;V ∩ H2(Ω)) (these
calculations can be rigorously justified via Galerkin approximations). Then, arguing as in
the proof of Theorem 3.4, we obtain

d

dt
‖z‖2V + 2a(l(u))|∆u|2 + 2(((ηt, (ηt)′)))µ

= 2(−f(u) + g(t),−∆u)

≤ m|∆u|2 +
2

m
|g|2 +

2

m
f2

2p−1|Ω|+ d0 ‖u‖2 ,
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where d0 > 0. Under the suitable spatial regularity of ηt, integration by parts in time and217

condition (h1) imply that218

(((ηt, (ηt)′)))µ = −
∫ ∞

0
µ′(s)|∆ηt(s)|2ds ≥ 0.

Hence, by (2.2), we have219

d

dt
‖z‖2V ≤

2

m
|g|2 +

2

m
f2

2p−1|Ω|+ d0‖u‖2 ≤ K3

(
1 + ‖u‖2

)
, (3.18)

where we have used the notation,

K3 = max

{
2

m
|g|2 +

2

m
f2

2p−1|Ω|, d0

}
.

Integrating in (3.7) over (t, t+ r) for t ≥ 0, 0 < r < T − t and using (3.8), we deduce that220 ∫ t+r

t
‖u‖2 ds ≤ 2K0

m
r +

2

m
‖z(t)‖2H ≤ K4 (1 + r) , ∀t ≥ 0, (3.19)

where we have used the notation

K4 = max

{
2K0

m
,

2

m
‖z0‖2H +

2K0

mγ

}
.

We integrate in (3.18) over (s, t+ r), where s ∈ (t, t+ r). Thus, by (3.19),221

‖z(t+ r)‖2V ≤ ‖z (s) ‖2V +K3r +K3K4 (1 + r) .

Integrating the above inequality now again over (t, t+ r) in s, with the help of (3.19), we
have

r‖z(t+ r)‖2V ≤ ‖z0‖2Vr + 2K3r
2 + (K3 + 1)K4r(1 + r), ∀t ≥ 0,

thus, ‖z(t)‖V is uniformly bounded in [r, T ]. We observe that by a standard argument (see222

[1, p.195]), for any sequence tn → t0 as n → ∞, tn, t0 ∈ [0, T ], un (tn) → u (t0) weakly in223

V . Then the compact embedding V ⊂ H ensures un (tn) → u (t0) strongly in H, for all224

tn, t0 ∈ [r, T ] and tn → t0 as n→∞, therefore (3.10) holds true.225

Define the functions wn = zn − z, βtn = ηtn − ηt, similarly to the uniqueness step in the
proof of Theorem 3.4, Step 5 in Appendix, we have

d

dt
‖wn‖2H + 2(((βtn)′, βtn))µ (3.20)

≤ −2

∫
Ω

(f (un)− f (u)) (un − u) dx−
∫

Ω
(a (l (un))∇un − a(l (u))∇u)·∇ (un − u) dx.
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Since a is locally Lipschitz, by (2.2) and the Young inequality, we have

− 2

∫
Ω

(a (l (un))∇un − a(l (u))∇u)·∇ (un − u) dx

= −2

∫
Ω
a (l (un)) |∇ (un − u)|2 dx− 2 (a (l (un))− a (l (u)))

∫
Ω
∇u·∇ (un − u) dx

≤ −2m ‖un − u‖2 + 2La (R) |l| |un − u| ‖u‖ ‖un − u‖

≤ (α− 2m) ‖un − u‖2 +
L2
a (R) |l|2

α
|un − u|2 ‖u‖2 , (3.21)

where α ≤ (mλ1 − γ) /λ1, and for all n ≥ 1, t ≥ 0, we chooseR > 0 such that |un (t)| , |u (t)| ≤
R (cf. (3.10)). By (3.6), (3.20) and (3.21), we have

d

dt
‖wn‖2H + γ ‖wn‖2H +m ‖un − u‖2

≤ d

dt
‖wn‖2H + (2m− α) ‖un − u‖2 + δ

∫ ∞
0

µ(s)|∇βtn(s)|2ds

≤ L2
a (R) |l|2

α
|un − u|2 ‖u‖2 − 2

∫
Ω

(f (un)− f (u)) (un − u) dx,

where we have used that γ ≤ min{(m− α)λ1, δ} by the choice of α. Multiplying by eγt on
both sides of the above inequality and integrating over (0, t), we obtain

‖wn (t)‖2H +m

∫ t

0
e−γ(t−s) ‖un − u‖2 ds

≤ e−γt ‖wn (0)‖2H +
L2
a (R) |l|2

α

∫ t

0
e−γ(t−s) |un − u|2 ‖u‖2 ds

− 2

∫ t

0
e−γ(t−s)

∫
Ω

(f (un)− f (u)) (un − u) dxds.

On the one hand, by (3.10), we know that |un (s)− u (s)|2 ‖u (s)‖2 → 0 for a.e. s ∈ (0, t).226

On the other hand, e−γ(t−s) |un (s)− u (s)|2 ‖u (s)‖2 is bounded by the integrable function227

4R2e−γ(t−s) ‖u (s)‖2. Hence, Lebesgue’s theorem implies that228 ∫ t

0
e−γ(t−s) |un − u|2 ‖u‖2 ds→ 0 as n→∞.

Since f (un)→ f (u) weakly in Lq (0, T ;Lq (Ω)), it follows that229 ∫ t

0
e−γ(t−s)

∫
Ω

(f (un)− f (u))udxds→ 0 as n→∞.

Furthermore, as f (un (t, x))un (t, x) ≥ −κ1 + κ2|un(t, x)|2p (see (3.28)) and un (t, x) →
u (t, x), f (un (t, x)) → f (u (t, x)) for a.a. (t, x) ∈ (0, T ] × Ω, Lebesgue-Fatous’s theorem
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implies

lim sup
n→∞

(
−2

∫ t

0
e−γ(t−s)

∫
Ω
f (un)undxds

)
≤ −2 lim inf

n→∞

∫ t

0
e−γ(t−s)

∫
Ω
f (un)undxds

≤ −2

∫ t

0
e−γ(t−s)

∫
Ω

lim inf
n→∞

f (un)undxds

= 2

∫ t

0
e−γ(t−s)

∫
Ω
f (u)udxds.

This inequality, together with230 ∫ t

0
e−γ(t−s)

∫
Ω
f (u) (un − u) dxds→ 0 as n→∞, (3.22)

shows that231

lim sup
n→∞

(
−2

∫ t

0
e−γ(t−s)

∫
Ω

(f (un)− f(u))undxds

)
≤ 0 as n→∞.

Notice that (3.22) follows from the facts f (u(·)) ∈ Lq (0, T ;Lq (Ω)) and un → u weakly in232

L2p
(
0, T ;L2p (Ω)

)
.233

Collecting all inequalities and using (3.2),

lim sup
n→∞

∫ t

0
e−γ(t−s) ‖un(s)− u(s)‖2 ds

≤ 1

m
e−γt lim sup

n→∞
‖wn (0)‖2H

=
1

m
e−γt lim sup

n→∞

(
|un (0)− u0|2 +

∫ ∞
0

µ (s) ‖β0
n (s) ‖2ds

)
≤ 1

m
e−γt lim sup

n→∞

(
|un (0)− u0|2 +Kµ

∫ 0

−∞
eγs ‖φn (s)− φ (s)‖2 ds

)
.

Finally, (3.13) follows from

‖unt − ut‖
2
L2
V

=

∫ 0

−t
eγs ‖un (t+ s)− u (t+ s)‖2 ds+

∫ −t
−∞

eγs ‖un (t+ s)− u (t+ s)‖2 ds

=

∫ t

0
e−γ(t−s) ‖un (s)− u (s)‖2 ds+ e−γt

∫ 0

−∞
eγs ‖φn (s)− φ (s)‖2 ds.

If (un0 , φ
n)→ (u0, φ) in X, then (3.13) implies (3.14) and (3.15). �234

As a consequence, we obtain the continuous dependence with respect to the initial data.235
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Corollary 3.10. Assume conditions of Theorem 3.4 are true. Then, for any t ≥ 0, the236

mapping (u0, φ) 7→ S(t) (u0, φ) is continuous.237

Finally, we are ready to prove the asymptotic compactness of the semigroup.238

Lemma 3.11. Under assumptions of Theorem 3.4, the semigroup S is asymptotically com-239

pact.240

Proof. Let B ⊂ X be a bounded set, we need to prove that for any sequences
{(yn, φn)}n∈N ⊂ B and tn → +∞ as n → +∞, the sequence {S(tn)(yn, φn)}n∈N is rel-
atively compact. Recall that

S(tn)(yn, φn) = (u(tn; 0, (yn,J φn)), utn(·; 0, (yn,J φn))) := (un(tn), untn(·))

Pick now T > 0, and assume that tn > T for all n ∈ N (there is no loss of generality in
assuming this since tn → +∞). Now we can define vn(t) = un (t+ tn − T ), observe that
vn(T ) = un(tn) and vnT (t) = vn(T + t) = un(t+ tn) = untn(t). Therefore

S(tn)(yn, φn) = (un(tn), untn(·)) = (vn(T ), vnT (·)).

Let us denote now

Yn = (vn(T ), vnT ) = (un(tn), untn(·)), ξTn = (vn(0), vn0 (·)) = (un(tn − T ), untn−T (·)).

By Lemma 3.7, the sequences {Yn}, {ξTn } are bounded in X, so up to a subsequence241

Yn → Y := (y, φ), ξTn → ξT weakly in X. In addition, by Lemma 3.9, V(t) := S(t)ξT =242

(v(t), vt(·)) satisfies (3.10)-(3.13). It follows from the above convergences that, φ = vT in243

L2
V and y = vT (0) , φ (s) = vT (s) for almost all s ∈ (−∞, 0). Also, in view of (3.10) we244

infer that245

un(tn) = vn(T )→ v (T ) = y.

Hence, in order to prove that Yn → Y in X, it remains to check that untn(·)→ φ in L2
V (up

to a subsequence). Notice that untn(·) = vnT for all tn > T and vT = φ. Thanks to (3.13) we
have, for each T > 0,

lim sup
n→∞

∥∥untn(·)− φ
∥∥2

L2
V

= lim sup
n→∞

‖vnT − vT ‖
2
L2
V

≤ K5 e
−γ(T−τ) lim sup

n→∞

(∥∥ξTn − ξT∥∥2

X

)
≤ K̃e−γT ,

where the last inequality follows from Lemma 3.7. For every k > 0, there exists T := T (k)246

such that for all T ≥ T (k),247

lim sup
n→∞

∥∥untn(·)− φ
∥∥2

L2
V

= lim sup
n→∞

‖vnT − vT ‖
2
L2
V
≤ 1

k
.
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Taking k → ∞ and using a diagonal argument, we obtain that there exists a subsequence248

{unktnk (·)} such that unktnk
(·)→ φ in L2

V . �249

By Corollaries 3.8, 3.10 and Lemma 3.11 the general theory of attractors (see [14,250

Theorem 3.1]) implies the following result.251

Theorem 3.12. Under the assumptions of Theorem 3.4, the semigroup S possesses a global252

connected attractor A ⊂ X.253

As a straightforward consequence of the previous results, we can provide information for254

the local problem analyzed, amongst others, in the papers [10, 11, 12] by simply assuming255

that a(·) is a constant function.256

Corollary 3.13. Under the hypotheses of Theorem 3.4, assume also that a(t) = k0 > 0 for257

all t ≥ 0. Then the local problem (2.1) poseesses a global connected attractor A ⊂ X.258
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Appendix266

Proof of Theorem 3.4. We follow a standard Faedo-Galerkin method. Recall that267

there exists a smooth orthonormal basis {wj}∞j=1 in H which also belongs to V ∩ L2p(Ω)268

([12, Proposition 2.3]). Let us take a complete set of normalized eigenfunctions for −∆ in269

V , such that −∆wj = λjwj (λj the eigenvalue corresponding to wj). Next we will select270

an orthonormal basis {ζj}∞j=1 of L2
µ(R+;V ) which also belongs to D(R+;V ).271

The proof is divided into 6 steps.272

Step 1. (Faedo-Galerkin scheme) Fix T > τ , for a given integer n, denote by Pn and
Qn the projections on the subspaces

span{w1, · · · , wn} ⊂ V and span{ζ1, · · · , ζn} ⊂ L2
µ(R+;V ),

respectively. We look for a function zn = (un, η
t
n) of the form

un(t) =
n∑
j=1

bj(t)wj and ηtn(s) =
n∑
j=1

cj(t)ζj(s),
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satisfying{
(∂tzn, (wk, ζj))H = (Lzn, (wk, ζj)) + (G(z), (wk, ζj)),

zn|t=τ = (Pnu0, Qnη0),

k, j = 0, · · · , n,
(3.23)

for a.e. τ ≤ t ≤ T , where w0 and ζ0 are the zero vectors in the respective spaces. Taking
(wk, ζ0) and (w0, ζk) in (3.23), applying the divergence theorem, we derive a system of ODE
in the variables

d
dtbk(t) = −λka(l(

∑n
j=1 bj(t)wj))bk −

∑n
j=1 cj((ζj , wk))µ − (f(

∑n
j=1 bj(t)wj), wk) + (g, wk),

d
dtck(t) =

∑n
j=1 bj((wj , ζk))µ −

∑n
j=1 cj((ζ

′
j , ζk))µ,

(3.24)

subject to the initial conditions,273

bk(τ) = (u0, wk), ck(τ) = ((η0, ζk))µ. (3.25)

According to the standard existence theory for ODE, there exists a continuous solution of274

(3.24)-(3.25) on some interval (τ, tn). Then a priori estimates imply tn =∞.275

Step 2. (Energy estimate) Multiplying the first equation of (3.24) by bk and the second276

one by ck, summing over k (k = 1, 2, · · · , n) and adding the results, we have277

1

2

d

dt
‖zn‖2H = (Lzn, zn)H + (G(zn), zn)H. (3.26)

On the one hand, by the divergence theorem,(∫ ∞
0

µ(s)∆ηtn(s)ds, un

)
= −

∫ ∞
0

µ(s)

∫
Ω
∇ηtn(s) · ∇un(s)dxds = −((un, η

t
n))µ,

therefore,278

(Lzn, zn)H = −a(l(un))|∇un|2 − (((ηtn)′, ηtn))µ. (3.27)

On the other hand, (2.7) yields that there exists a constant a0, such that

f(u) · u ≥ 1

2
f0u

2p − a0,

hence,279

(G(zn), zn)H = (−f(un) + g, un) ≤ −1

2
f0|un|2p2p + a0|Ω|+ (g, un). (3.28)

It follows from (2.2), (3.26)-(3.28) and the Young inequality that280

d

dt
‖zn‖2H + 2m|∇un|2 + 2(((ηtn)′, ηtn))µ + f0|un|2p2p ≤ 2a0|Ω|+

1

mλ1
|g|2 +m|∇un|2. (3.29)
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Integration by parts and (h1) yield that,

2(((ηtn)′, ηtn))µ = −
∫ ∞

0
µ′(s)|∇ηtn(s)|2ds ≥ 0,

thus the third term of the right hand side of (3.29) can be neglected, we obtain

d

dt
‖zn‖2H +m|∇un|2 + f0|un|2p2p ≤ 2a0|Ω|+

1

mλ1
|g|2.

Integrating the above inequality between τ and t, t ∈ (τ, T ], we have281

‖zn(t)‖2H +

∫ t

τ

[
m‖un‖2 + f0|un|2p2p

]
dr ≤ ‖z0‖2H + Λ(T − τ), (3.30)

where we have used the notation Λ := 2a0|Ω|+ 1
mλ1
|g|2. Therefore, it arrives that

un is bounded in L∞(τ, T ;H) ∩ L2(τ, T ;V ) ∩ L2p(τ, T ;L2p(Ω)),

ηn is bounded in L∞(τ, T ;L2
µ(R+;V )).

Passing to a subsequence, there exists a function z = (u, η) such that282 
un → u weak-star in L∞(τ, T ;H);

un → u weakly in L2(τ, T ;V );

un → u weakly in L2p(τ, T ;L2p(Ω));

ηtn → ηt weak-star in L∞(τ, T ;L2
µ(R+;V )).

(3.31)

Step 3. (Passage to limit) For a fixed integer m, choose a function

v = (σ, π) ∈ D((τ, T );V ∩ L2p(Ω))×D((τ, T );D(R+;V ))

of the form

σ(t) =
m∑
j=1

b̃j(t)wj and πt(s) =
m∑
j=1

c̃j(t)ζj(s),

where {b̃j}mj=1 and {c̃j}mj=1 are given functions in D(τ, T ), then (3.23) holds with (σ, π) in283

place of (ωk, ζj).284

Our main target is to prove problem (2.5) has a solution in the weak sense, i.e., for285

arbitrary v ∈ D((τ, T );V ∩ L2p(Ω))×D((τ, T );D(R+;V )) (here, specially, we pick up v =286

(σ, π) ∈ D(τ, T ) as a test function), the following equality287 ∫ t

τ
(∂rzn, v)Hdr =

∫ t

τ

[
− a(l(un))(∇un,∇σ)− ((ηtn, σ))µ − (f(un), σ)

+ (g, σ) + ((un, π
t))µ− � (ηtn)′, πt �

]
dr

(3.32)
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holds in the sense of D′(τ, T ). Here, we denote by � ·, · � the duality map between288

H1
µ(R+;V ) and its dual space.289

Firstly, using the same argument as in [20, Theorem 2.7] and (3.31)2, we know∫ t

τ
a(l(un))(∇un,∇σ)dr →

∫ t

τ
a(l(u))(∇u,∇σ)dr as n→∞.

Similarly, by means of (3.31)4 and (3.31)2, we have∫ t

τ
((ηtn, σ))µdr →

∫ t

τ
((ηt, σ))µdr as n→∞,

and ∫ t

τ
((un, π

t))µdr →
∫ t

τ
((u, πt))µdr as n→∞,

respectively.290

Secondly, we now show that

lim
n→∞

� (ηtn)′, πt �=� (ηt)′, πt � .

Notice that, for every υ ∈ L2
µ(R+;V ), making use of integration by parts, we derive291

� υ′, πt �= −
∫ ∞

0
µ′(s)(∇υ(s),∇πt(s))ds−

∫ ∞
0

µ(s)(∇υ(s),∇(πt)′(s))ds. (3.33)

Replacing υ by ηtn in (3.33), together with (3.31)4, it is clear the right hand side of (3.33)292

converges to � (ηt)′, πt � as n→∞.293

Thirdly, we are going to prove that

lim
n→∞

∫ T

τ

∫
Ω
|f(un)σ|dxdt =

∫ T

τ

∫
Ω
|f(u)σ|dxdt.

Based on the dominated convergence theorem, it is sufficient to show

f(un(t, x))→ f(u(t, x)) for a.e. (t, x) ∈ (τ, T )× Ω,

and
|f(un)|Lq((τ,T )×Ω) ≤ C,

where q = 2p
2p−1 ∈ (1, 2), which is the conjugate exponent of 2p and the constant C is294

independent of n. Observe that295

‖∂tun‖L2(τ,T ;V ∗)+Lq(τ,T ;Lq(Ω)) ≤ ‖a(l(un))∆un‖L2(τ,T ;V ∗) +

∥∥∥∥∫ ∞
0

µ(s)∆ηtn(s)ds

∥∥∥∥
L2(τ,T ;V ∗)

+ ‖g‖V ∗ + ‖f(u)‖Lq(τ,T ;Lq(Ω)).

(3.34)
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It follows from (2.7), there exists a constant K > 0 such that296

|f(un)|q ≤ K(1 + |un|2p). (3.35)

Together with (3.4), (3.31) and the assumption g ∈ H, we know that {∂tun} is bounded in297

L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)). Thus, up to a subsequence, we infer298

∂tun → ũ weakly in L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)). (3.36)

By a standard argument we infer that ũ = ut. Since

L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)) ⊂ Lq(τ, T ;V ∗ + Lq(Ω))

and
L2(τ, T ;V ) ⊂ Lq(τ, T ;V ),

by (3.31) and (3.36), we deduce299

un → u weakly in W 1,q(τ, T ;V ∗ + Lq(Ω)) ∩ Lq(τ, T ;V ). (3.37)

Applying a compactness argument [16], we derive that the injection

W 1,q(τ, T ;V ∗ + Lq(Ω)) ∩ Lq(τ, T ;V ) ↪→ Lq(τ, T ;Lq(Ω))

is compact. Therefore, (3.37) implies that

un → u strongly in Lq(τ, T ;Lq(Ω)).

By the continuity of f we obtain that (up to a subsequence)

f(un(t, x))→ f(u(t, x)) for a.e. (t, x) ∈ (τ, T )× Ω.

In virtue of (3.35), we obtain

|f(un)|qLq((τ,T )×Ω) =

∫ T

τ

∫
Ω
|f(un)|qdxdt ≤ K|Ω|(T − τ) +K

∫ T

τ
|un|2p2pdt,

which is bounded uniformly with respect to n.300

Eventually, by a standard argument, we derive

∂tzn → zt in D′(τ, T ;V ∩ L2p(Ω))×D′(τ, T ;D(R+;V )).

Therefore, using a density argument, (3.32) is proved by the previous statements.301

Step 4. (Continuity of solution) By (3.33)-(3.34), it is immediate to see that zt = (ut, ηt)
fulfills

ut ∈ L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω));

ηt ∈ L2(τ, T ;H−1
µ (R+;V )),
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where L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)) is the dual space of L2(τ, T, V ) ∩ L2p(τ, T ;L2p(Ω)).302

Using a slightly modified version of [19, Lemma III.1.2], together with (3.31), we infer that303

u ∈ C([τ, T ];H).304

As for the second component, by means of the same argument as [12, Theorem, Section305

2], we obtain that ηt ∈ C([τ, T ];L2
µ(R+;V )). Thus, z(τ) makes sense, and the equality306

z(τ) = z0 follows from the fact that (Pnu0, Qnη0) converges to z0 strongly.307

Step 5. (Continuity with respect to the initial value and uniqueness) Let z1 = (u1, η1)308

and z2 = (u2, η2) be the two solutions of (3.3) with initial data z10 and z20, respectively.309

Due to the a priori estimates on the first component of solutions u, see (3.30), together310

with the fact that u ∈ C(τ, T ;H), we can ensure that there exists a bounded set S ⊂ H,311

such that ui(t) ∈ S for all t ∈ [τ, T ] and i = 1, 2. In addition, taking into account that312

l ∈ L(H;R), we have {l(ui(t))}t∈[τ,T ] ⊂ [−R,R] for i = 1, 2, for some R > 0. Therefore,313

let z̄ = z1 − z2 = (ū, η̄) = (u1 − u2, η1 − η2) and z̄0 = z10 − z20. Thanks to (2.2), the314

locally Lipschitz continuity of function a with Lipschitz constant La(R) and the Poincaré315

inequality, we have316

d

dt
‖z̄‖2H ≤ 2a(l(u1))|∇ū|2 + 2La(R)|l||ū||∇u2||∇ū|

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ −2m|∇ū|2 + 2La(R)|l||ū||∇u2||∇ū|

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ −2m|∇ū|2 + 2m|∇ū|2 +
1

2m
L2
a(R)|l|2|ū|2‖u2‖2

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ 1

2m
L2
a(R)|l|2‖z̄‖2H‖u2‖2 − 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ,

(3.38)

where < ·, · >Lp,q is the duality between L2p and Lq. The previous calculation is obtained
formally taking the product in H between z̄ and the difference of (3.3) with z1 and z2 in
place of z, and it can be made rigorous with the use of mollifiers, see [12, Theorem, Section
2]. In fact, integrating by parts and by the fact that µ′ < 0 (see again [12, Section 2]), we
have

2(((η̄)′, η̄))µ = − lim
s→0

µ(s)|∇η̄t(s)|2 −
∫ ∞

0
µ′(s)|∇η̄t(s)|2ds ≥ 0.

Hence, the last term of the right hand side of (3.38) can be neglected.317

At last, from (2.7) we know that f(u) is increasing for |u| ≥ M , for some M > 0. Fix
t ∈ (τ, T ], and let

Ω1 := {x ∈ Ω : |u1(t, x)| ≤M and |u2(t, x)| ≤M},
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and
N = 2 sup

|s|≤M
|f ′(s)|.

Let x ∈ Ω1, then we have

2|f(u1(x))− f(u2(x))| ≤ N |ū(x)|.

Then, by the monotonicity of f(u) for |u| ≥M and the Poincaré inequality, it follows that318

−2 < f(u1)− f(u2), ū >Lp,q ≤ −2

∫
Ω1

(f(u1(x))− f(u2(x)))ū(x)dx

≤
∫

Ω1

N |ū(x)|2dx

≤ N‖z̄‖2H.

(3.39)

(3.38)-(3.39) imply that

d

dt
‖z̄‖2H ≤

(
1

2m
L2
a|l|2‖u2‖2 +N

)
‖z̄‖2H.

The uniqueness and continuous dependence on initial data of solution to problem (3.3)319

follow from the Gronwall inequality. Till now, we finish the proof of the first assertion.320

Step 6. (Further regularity) We are going to study further regularity of (u, η). To this
end, let us first consider the linear operator I : L2

V ∩H2(Ω) → L2
µ(R+;D(V )) defined by

(Iφ)(s) =

∫ 0

−s
φ(r) dr, s ∈ R+.

Then, the operator I defined above is a linear and continuous mapping. In particular,
there exists a positive constant Kµ, which is the same as in Lemma 3.1, such that, for any
φ ∈ L2

V ∩H2(Ω), it holds

‖Iφ‖2L2
µ(R+;D(A)) ≤ Kµ‖φ‖2L2

V ∩H2(Ω)

.

321

Next, multiplying (2.5)1 by −∆u with respect to the inner product of H, the Laplacian322

of (2.5)2 by η with respect to the inner product of L2
µ(R+;D(A)), and adding the two terms,323

we obtain324

d

dt
‖z‖2V + 2a(l(u))|∆u|2 + 2(((ηt, (ηt)′)))µ = 2(−f(u) + g,∆u). (3.40)

Since f is a polynomial of odd degree, there exists a constant d0 > 0, such that325

f ′(u) ≥ −d0

2
, ∀u ∈ R. (3.41)
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Then, it follows from the above inequality, (2.7), the Green formula and the Young inequal-
ity that

2(f(u),∆u) = 2

∫
Ω
f2p−1∆udx− 2

∫
Ω
f ′(u)∇u · ∇udx

≤ 2

m
f2

2p−1|Ω|+
m

2
|∆u|2 + d0|∇u|2.

Again by the Young inequality, we have

2(g,∆u) ≤ m

2
|∆u|2 +

2

m
|g|2.

Together with (2.2), (3.40) becomes326

d

dt
‖z‖2V +m|∆u|2 + 2(((ηt, (ηt)′)))µ ≤ Θ, (3.42)

where we have used the notation Θ = 2
mf

2
2p−1|Ω| + d0|∇u|2 + 2

m |g|
2, which belongs to

L1(τ, T ). Under the suitable spatial regularity assumptions on η, integration by parts in
time and using (h1), we obtain

(((ηt, (ηt)′)))µ = −
∫ ∞

0
µ′(s)|∆ηt(s)|2ds ≥ 0.

Therefore, the term 2(((ηt, (ηt)′)))µ in (3.42) can be neglected, we integrate (3.42) between327

τ and t, where t ∈ (τ, T ), which leads to328

‖z(t)‖2V +m

∫ t

τ
|∆u(s)|2ds ≤ ‖z(τ)‖2V +

∫ t

τ
Θ(s)ds. (3.43)

From the above estimation, we conclude that

u ∈ L∞(τ, T, V ) ∩ L2(τ, T ;D(A));

η ∈ L∞(τ, T ;L2
µ(R+;D(A))).

Concerning the assertion (ii) of this theorem, the continuity of u follows again using a329

slightly modified version of [19, Lemma III.1.2]. The continuity of η can be proved mim-330

icking the idea of the proof of Step 4 of (i), with D(A) in place of V . The proof of this331

theorem is complete. �332
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