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Abstract New criteria ensuring global asymptotic stability of the zero solu-
tion for a class of linear neutral differential equations in C1 are proved, by
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1 Introduction

Theory and applications of functional differential equations with delay have
been studied by many authors (see, for example, [19,20] and the references
therein). More recently, researchers have paid special attention to the study
of equations in which the delay argument occurs in the derivative of the state
variable as well as in the independent variable, the so-called neutral differential
equations, see for instance [18,19]. Practical examples of neutral delay differen-
tial systems include biological models of single species growth [24], distributed
networks containing lossless transmission lines [11], population ecology [20],
and other engineering systems [21]. In particular, qualitative analysis such as
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stability of solutions of neutral differential equations has received much atten-
tion over the last few decades. We refer to [1–4,13,14,17,22,23,25] for some
recent work on the subject of stability of neutral equations.

Lyapunov’s direct method has been successfully used to investigate sta-
bility properties of a wide variety of differential equations. Nevertheless, the
application of this method to problems of stability in differential and integro-
differential equations with delays has encountered serious obstacles when the
delay is unbounded or when the equation has unbounded terms [5]-[7]. In recent
years, several investigators have analyzed stability by using a new technique.
Particularly, Burton and other researchers studied stability using various fixed
point theorems which overcame the difficulties encountered in the study of sta-
bility by means of Lyapunov’s direct method. We can refer to [5,15,25,26] and
[28]-[32] for more details. It turns out that the fixed point method is becoming
a powerful technique in dealing with stability problems for stochastic differen-
tial equations with delays [12,16,22,32].

Previously, almost all scholars, who used fixed point theory to study the
asymptotic stability of zero solutions of nonlinear neutral differential equa-
tions with variable delays, imposed that c must be differentiable and τ twice
differentiable and τ ′ (t) 6= 1 for t ≥ 0. As distinguished from this line, in [17],
Jin and Luo stated a sufficient and necessary condition for the asymptotic
stability in the space C0 of the following equation (1.1), by using a fixed point
method of continuous functions:

x′ (t) = −a(t)x(t) + c(t)x′(t− τ (t))− b (t)x(t− τ (t)), t ≥ 0. (1.1)

In [26], Raffoul obtained sufficient conditions for the asymptotic stability
of the zero solution, under appropriate conditions, to the following equation

x′ (t) = −a(t)x(t) + c(t)x′(t− τ (t)) +Q (x (t) , x(t− τ (t))) , t ≥ 0. (1.2)

by using the contraction mapping theorem.

On the other hand, Liu and Yang [23] were the first to establish a necessary
and sufficient condition for the global asymptotic stability in C1 of the zero
solutions of the following nonlinear neutral functional differential equation

x′ (t) = −a(t)x(t) + c(t)x′(t− τ1 (t)) +Q (t, x (t) , x(t− τ2 (t))) , (1.3)

by the fixed point theory, where Q is a Lipschitz continuous function with the
respect to x.

Very recently, by the same method of Jin and Luo [23], Ardjouni and Djoudi
[1] improved the results of Liu et al. [23] to the generalized nonlinear neutral
differential equation with variable delays of the form

x′(t) = −a(t)x(t) + f (t, x(t− τ1 (t)), ..., x(t− τN (t)))

+h (t, x′(t− τ1 (t)), ..., x′(t− τN (t))) , (1.4)
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where f (t, 0, ..., 0) = h (t, 0, ..., 0) = 0 and there exist bounded functions
bi, ci ∈ C ([0,∞) , (0,∞)), a ∈ C (R+,R), such that

|f (t, x1, ..., xN )− f (t, y1, ..., yN )| ≤
N∑
i=1

bi (t) |xi − yi| , (1.5)

|h (t, x′1, ..., x
′
N )− h (t, y′1, ..., y

′
N )| ≤

N∑
i=1

ci (t) |x′i − y′i| , (1.6)

for all xi, yi ∈ R, i = 1, ..., N. More precisely, the following result was estab-
lished.

Theorem A. (Ardjouni and Djoudi [1]) Suppose that assumptions (1.5),(1.6)
hold, and there exists a constant η ∈ (0, 1) such that for t ≥ t0,

lim inf
t→∞

∫ t

t0

a (s) ds > −∞, (1.4)

and ∫ t

t0

e−
∫ t
s
a(u)du

N∑
i=1

(|bi(s)|+ |ci(s)|) ds ≤ η, (1.5)

|a (t)|
∫ t

t0

e−
∫ t
s
a(u)du

N∑
i=1

(|bi(s)|+ |ci(s)|) ds+

N∑
i=1

(|bi(t)|+ |ci(t)|) ≤ η. (1.6)

Then the zero solution of equation (1.4) is globally asymptotically stable in
C1 if and only if ∫ t

0

a(s)ds→∞ as t→∞. (1.7)

By using the contraction mapping principle, the authors established some
new conditions to ensure that the zero solution of equation (1.4) is globally
asymptotically stable in C1. Unlike most research methods, these conditions
do not require a quadratic differentiability of delay τ and τ ′ (t) 6= 1 for t ≥ 0.
In addition, in [1,2,28], they all studied the global asymptotic stability in C1.

Inspired by the application of the fixed point method mentioned above,
in this paper, we will state some new conditions, which make stability condi-
tions more feasible and the results in [1,17,23,26] are improved. By using two
auxiliary functions g and p to construct a contraction mapping on a complete
metric space S, defined below, which may depend on the initial condition ϕ, we
obtain Theorem 1.3 which will be proved in Section 2. Namely, a necessary and
sufficient condition ensuring the global asymptotic stability in C1 is proved.
In addition, an example is eventually analyzed to illustrate the effectiveness
of the proved results.
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Notice that the condition (1.6) in Theorem A is mainly dependent of the
constraint

N∑
i=1

|bi(t)|+
N∑
i=1

|ci(t)| < 1.

However, there are some interesting examples where the constraint is not sat-
isfied. It is our aim in this paper to remove this constraint condition and
consider the global stability in C1 of the special case of (1.4) when

f (t, x(t− τ1 (t)), ..., x(t− τN (t))) =

N∑
i=1

bi(t)x(t− τ i (t)),

and

h (t, x′(t− τ1 (t)), ..., x′(t− τN (t))) =

N∑
i=1

ci(t)x
′(t− τ i (t)).

In particular, we introduce two auxiliary continuous functions g and p to define
an appropriate mapping, and present new criteria for the global asymptotic
stability of equation (1.2) which can be applied to the case

N∑
i=1

|bi(t)|+
N∑
i=1

|ci(t)| ≥ 1,

as well.

2 Preliminaries

Let us consider the following class of neutral differential equations with vari-
able delays,

x′(t) = −a (t)x(t) +

N∑
i=1

bi (t)x′ (t− τ i (t)) +

N∑
i=1

ci (t)x (t− τ i (t)) , t ≥ t0,

(2.1)
denote x(t) ∈ R the solution to (2.1) with the initial condition

x(t) = ϕ (t) for t ∈ [m (t0) , t0] ,

where ϕ ∈ C ([m (t0) , t0] ,R) . We assume that a, bi, ci ∈ C (R+,R) , τ i ∈
C (R+,R+) satisfy

t− τ i(t)→∞ as t→∞, i = 1, 2, ..., N, (2.2)

and for each t0 ≥ 0,mi(t0) = inf{t − τ i(t), t ≥ t0},m(t0) = min{mi(t0), i =
1, 2, ..., N}.

For each t0 ∈ [0,∞) , denote C1
t0

= C1 ([m (t0) , t0] ,R) with the norm
defined by

|x|t0 := max
t∈[m(t0),t0]

{|x(t)| , |x′(t)|} ,
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for x ∈ C1
t0

= C1 ([m (t0) , t0] ,R). In addition, denote Φt0 , where

Φt0 : =

{
ϕ ∈ C1

t0
: ϕ′−(t0) = −a (t)ϕ(t0) +

N∑
i=1

bi (t0)ϕ′ (t0 − τ i (t0))

+

N∑
i=1

ci (t0)ϕ (t0 − τ i (t0))

}
.

For each t0 ∈ [0,∞), we choose initial functions for equation (2.1) of the
type ϕ ∈ Φt0 .

Let us recall the definitions of stability that will be used in the next section.

Definition 1.1. For each initial value (t0, ϕ) ∈ [0,∞) × Φt0 , x is said to be
a solution of equation (2.1) through (t0, ϕ) if x ∈ C1 ([m (t0) ,∞),R) satisfies
equation (2 .1 ) on [t0,∞) and x(t) = ϕ(t) for t ∈ [m (t0) , t0]. Such a solution
will be denoted by x(t) = x(t, t0, ϕ).
Definition 1.2. i) The Zero solution of equation (2.1) is said to be stable in
C1 if, for any t0 ∈ [0,∞), ε > 0, there is a δ = δ (ε, t0) such that ϕ ∈ Φt0 and
|ϕ|t0 < δ implies

max
s∈[m(t0),t0]

{|x (s, t0, ϕ)| , |x′ (s, t0, ϕ)|} < ε for t ≥ t0.

ii) The zero solution of equation (2.1) is said to be globally asymptotically
stable in C1 if it is stable in C1, and for any t0 ∈ [0,∞) , ϕ ∈ Φt0 implies

lim
t→∞

x (t, t0, ϕ) = lim
t→∞

x′ (t, t0, ϕ) = 0.

At light of the previous definition of solution of equation (2.1), it is clear
that the conditions imposed on the initial functions are sensible.

3 Stability by contraction mapping

As we mentioned previously, the results of this work extend and improve pre-
viously known results. More exactly, we will consider a linear scalar neutral
delay differential equation with variable delays and give new conditions to en-
sure that the zero solution is global asymptotically stable in C1 by means of
fixed point theory. By weakening the assumptions on the neutral coefficient
ci and delays τ i, τ

′
i (t) 6= 1,∀t ≥ 0, and by obtaining some criteria, easier to

check in applications, which does not satisfy the constraint

N∑
i=1

|bi(t)|+
N∑
i=1

|ci(t)| < 1.

However, the mathematical analysis used in this research to construct the
mapping to employ fixed point theorem is different from that of [1]. The results
of this article are new and they extend and improve previously known results.
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To the best of our knowledge, there are few authors who have used the
fixed point theorem to prove the existence and uniqueness of solution and the
stability of trivial equilibrium of several special cases of (2 .1 ) all at once [3,
29,31]. In our study, as we are mainly concerned with the stability analysis of
our model, we will assume that there exists a unique solution of (2 .1 ) globally
defined in time.

Theorem 3.1. Consider the neutral delay differential equation (2 .1 ) and sup-
pose the following conditions are satisfied:
H1) Suppose there exists a bounded function p : [m (t0) ,∞[ → (0,∞) with
p(t) = 1 for t ∈ [m (t0) , t0] such that p′ (t) exists for all t ∈ [m (t0) ,∞[ ,
H2) there exists an arbitrary bounded continuous function g ∈ C ([m (t0) ,∞[ ,R+)
and

lim inf
t→∞

∫ t

t0

g (s) ds > −∞, (3.1)

H3) there exists a constant η ∈ (0,
1

2
) such that for t ≥ t0,

r1 (t) :=

∫ t

t0

e−
∫ t
s
g(s)ds

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣
]
ds ≤ η, (3.2)

and

r2 (t) := |g (t)|
∫ t

t0

e−
∫ t
s
g(u)du

{∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣
}
ds

+

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣ ≤ η. (3.3)

Then the zero solution of equation (2.1) is globally asymptotically stable in
C1 if and only if ∫ t

0

g (s) ds→∞ as t→∞. (3.4)
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Proof. (⇐:) First, suppose that
∫ t
0
g(s)ds → ∞ as t → ∞. For each

t0 ∈ [0,∞) , we define S as the following space

S =
{
z ∈ C1 ([m (t0) ,∞) ,R) : lim

t→∞
z (t) = lim

t→∞
z′ (t) = 0

}
,

with the metric defined by

‖z‖ := max
t∈[m(t0),∞)

{|z (t)| , |z′ (t)|} .

Then S is a complete metric space.
For any initial function ϕ ∈ Φt0 , let

Dl
ϕ =

{
z ∈ S : z (t) = ϕ (t) for t ∈ [m (t0) , t0] and max

t≥t0
{|z (t)| , |z′ (t)|} ≤ l

}
,

which is a nonempty, closed convex subset of S.

The technique for constructing a contraction mapping comes from an idea
in [31]. Indeed, let z(t) = ϕ(t) on t ∈ [m (t0) , t0] and for t ≥ t0

x(t) = p(t)z(t). (3.5)

Replacing (3.5) into (2.1), we have

z′(t) = −
(
a (t) +

p′(t)

p(t)

)
z(t)

+

N∑
i=1

bi (t) p (t− τ i (t))

p(t)
z′ (t− τ i (t))

+

N∑
i=1

ci (t) p (t− τ i (t)) + bi (t) p′ (t− τ i (t))

p(t)
z (t− τ i (t)) . (3.6)

If z satisfies (3.6) then it can be verified that x satisfies (2.1).
Since p is a positive bounded function, to obtain global asymptotic stability
of the zero solution of (2.1), it remains to prove that the zero solution of (3.6)
is globally asymptotically stable in C1.

Multiplying both sides of (3.6) by e
∫ t
0
g(u)du and integrating from t0 to t,∫ t

t0

[
e
∫ s
0
g(u)duz(s)

]′
ds

=

t∫
t0

e
∫ s
0
g(u)du

(
g (s)−

(
a (s) +

p′(s)

p(s)

))
z(s)ds

+

t∫
t0

e
∫ s
0
g(u)du

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s)) ds

+

t∫
t0

e
∫ s
0
g(u)du

N∑
i=1

ci (s) p (s− τ i (s)) + bi (s) p′ (s− τ i (s))

p(s)
z (s− τ i (s)) ds.
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As a consequence, we arrive at

z(t)e
∫ t
0
g(u)du

= ϕ(t0) +

t∫
t0

e
∫ s
0
g(u)du

(
g (s)−

(
a (s) +

p′(s)

p(s)

))
z(s)ds

+

t∫
t0

e
∫ s
0
g(u)du

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s)) ds

+

t∫
t0

e
∫ s
0
g(u)du

N∑
i=1

ci (s) p (s− τ i (s)) + bi (s) p′ (s− τ i (s))

p(s)
z (s− τ i (s)) ds.

Dividing both sides of the above equation by e
∫ t
0
g(s)ds, we obtain

z(t) = e
−

∫ t
t0
g(s)ds

ϕ(t0) +

∫ t

t0

e−
∫ t
s
g(u)du

(
g (s)−

(
a (s) +

p′(s)

p(s)

))
z(s)ds

+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s)) ds

+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

ci (s) p (s− τ i (s)) + bi (s) p′ (s− τ i (s))

p(s)

×z (s− τ i (s)) ds.

Clearly, Ψ (z) : R → R is continuous with (Ψz) (t) = ϕ (t) for t ∈ [m (t0) , t0],
and for t ≥ t0,

(Ψz) (t) = e
−

∫ t
t0
g(s)ds

ϕ(t0) +

∫ t

t0

e−
∫ t
s
g(u)du

(
g (s)−

(
a (s) +

p′(s)

p(s)

))
z(s)ds

+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s)) ds

+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

ci (s) p (s− τ i (s)) + bi (s) p′ (s− τ i (s))

p(s)

×z (s− τ i (s)) ds. (3.7)
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Initially, we show that, Ψ : Dl
ϕ → Dl

ϕ. In view of (3.7), we can derive, for
t ≥ t0,

(Ψz)
′
(t) = −ϕ(t0)g (t) e

−
∫ t
t0
g(s)ds

+

(
g (t)−

(
a (t) +

p′(t)

p(t)

))
z(t)

+

N∑
i=1

bi (t) p (t− τ i (t))

p(t)
z′ (t− τ i (t))

+

N∑
i=1

c
i
(t) p (t− τ i (t)) + bi (t) p′ (t− τ i (t))

p(t)
z (t− τ i (t))

−g (t)

∫ t

t0

e−
∫ t
s
g(u)du

(
g (s)−

(
a (s) +

p′(s)

p(s)

))
z(s)ds

−g (t)

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s)) ds

−g (t)

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

ci (s) p (s− τ i (s)) + bi (s) p′ (s− τ i (s))

p(s)

×z (s− τ i (s)) ds.

Thus

(Ψz)
′
(t) = −g (t) (Ψz) (t) +

(
g (t)−

(
a (t) +

p′(t)

p(t)

))
z(t)

+

N∑
i=1

bi (t) p (t− τ i (t))

p(t)
z′ (t− τ i (t)) (3.8)

+

N∑
i=1

ci (t) p (t− τ i (t)) + bi (t) p′ (t− τ i (t))

p(t)
z (t− τ i (t)) .

By the definition of Φt0 , (3.8) yields

(Ψz)
′
+ (t0) = −g (t0)ϕ (t0)

+

(
g (t0)−

(
a (t0) +

p′(t0)

p(t0)

))
z(t0)

+

N∑
i=1

bi (t0) p (t0 − τ i (t0))

p(t0)
z′ (t0 − τ i (t0))

+

N∑
i=1

ci (t0) p (t0 − τ i (t0)) + bi (t0) p′ (t0 − τ i (t0))

p(t0)

×z (t0 − τ i (t0))

= ϕ′−(t0).
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Hence, Ψz ∈ C1 ([m (t0) ,∞)) for z ∈ Dl
ϕ.

Next, we verify that max
t≥t0

{∣∣(Ψz)′ (t)∣∣ , |(Ψz) (t)|
}
< l. Let

K = sup
t≥t0

e
−

∫ t
t0
g(s)ds

and A = sup
t≥t0
{|g (t)|} .

From (3.4) and (3.1), K,A ∈ [0,∞) . Let ϕ be a small bounded initial function
with |ϕ|t0 < δ0, where δ0 > 0 satisfies

δ0 < lmin

{
1,

1− η
K

,
1− 2η

KA

}
. (3.9)

Let z ∈ Dl
ϕ, then max

t≥t0
{|z′ (t)| , |z (t)|} ≤ l. It follows from (3.7) and condition

(3.2) , (3.9) that

|(Ψz) (t)| ≤ e
−

∫ t
t0
g(s)ds |ϕ(t0)|+

∫ t

t0

e−
∫ t
s
g(u)du

∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)| ds
+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))| ds

+

∫ t

t0

e−
∫ t
s
g(u)du

N∑
i=1

[∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣+

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣]
× |z (s− τ i (s))| ds

≤ Kδ0 + ηl < l.
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Now, (3.8), (3.2) , (3.3) and (3.9) imply that∣∣(Ψz)′ (t)∣∣
≤ |g (t)| e−

∫ t
t0
g(s)ds |ϕ(t0)|

+ |g (t)|
∫ t

t0

e−
∫ t
s
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)| ds
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))| ds

+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]
|z (s− τ i (s))|

]
ds

+

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣ |z(t)|
+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣ |z′ (t− τ i (t))|

+

[
N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
]
|z (t− τ i (t))|

≤ KAδ0

+l |g (t)|
∫ t

t0

e−
∫ t
s
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
])

ds

+l

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣+ l

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣
+ l

[
N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
])

≤ KAδ0 + l

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣+ l

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣
+l

[
N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
]

+ ηl

≤ KAδ0 + 2ηl < l,

by the choice of δ0. This implies, max
t≥t0

{
|(Ψz) (t)| ,

∣∣(Ψz)′ (t)∣∣} < l. Now we

show that (Ψz) (t)→ 0 as t→∞.
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For z ∈ Dl
ϕ,

lim
t→∞

z(t) = lim
t→∞

z′ (t) = 0.

Note that lim
t→∞

(t − τ i (t)) = ∞, i = 1, 2..., N. Therefore, for any ε > 0, there

exists T1 > 0 such that for t ≥ T1,

max {|z (t)| , |z′ (t− τ i (t))| , |z (t− τ i (t))|} ≤ ε, i = 1, 2..., N, (3.10)

and the fact z ∈ Dl
ϕ implies that max {|z (t)| , |z′ (t)|} < l for all t ≥ t0. It

follows from (3.2) , (3.3), (3.7) and (3.10) that for t > T1,

|(Ψz) (t)|

≤ e−
∫ t
t0
g(s)ds |ϕ(t0)|+

∫ T1

t0

e−
∫ t
s
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)|
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))|

+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]

× |z (s− τ i (s))|] ds

+

∫ t

T1

e−
∫ t
s
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)|
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))|

+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]

× |z (s− τ i (s))|] ds

≤ e−
∫ t
t0
g(u)du

{
|ϕ(t0)|+

∫ T1

t0

e
−

∫ s
t0
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)|
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))|

+

N∑
i=1

[∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣] |z (s− τ i (s))|

}
ds

+ηε.
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On the other hand, by using condition (3.4), there exists T ≥ T1 such that,
for t ≥ T , we have

le
−

∫ t
t0
g(s)ds

{
|ϕ(t0)|+

∫ T

t0

e
−

∫ s
t0
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
}
ds ≤ ε.

This yields lim
t→∞

(Ψz) (t) = 0 for z ∈ Dl
ϕ.

In addition, we have from (3.8) ,

∣∣(Ψz)′ (t)∣∣ ≤ |g (t)| |(Ψz) (t)|+
∣∣∣∣g (t)−

(
a (t) +

p′(t)

p(t)

)∣∣∣∣ |z(t)|
+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣ |z′ (t− τ i (t))|

+

N∑
i=1

[∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣+

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣] |z (t− τ i (t))| .

This, together with (3.1) − (3.3), leads to lim
t→∞

(Ψz)
′
(t) = 0 for z ∈ Dl

ϕ.

Therefore, Ψz ∈ Dl
ϕ for z ∈ Dl

ϕ, i.e. Ψ : Dl
ϕ → Dl

ϕ.

Now, we will show that Ψ : Dl
ϕ → Dl

ϕ is a contraction mapping. For any

z, y ∈ Dl
ϕ, it follows from (3.2) , (3.3) , (3.7) that, for t ∈ [t0,∞) ,

|(Ψz) (t)− (Ψy) (t)|

≤
∫ t

t0

e−
∫ t
s
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]
ds ‖z − y‖

≤ η ‖z − y‖ . (3.11)
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In addition, we can derive∣∣(Ψz)′ (t)− (Ψy)
′
(t)
∣∣

≤
{
|g (t)|

∫ t

t0

e−
∫ t
s
g(u)du

{∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
}
ds

+

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
}
× ‖z − y‖

≤ η ‖z − y‖ . (3.12)

From (3.11) and (3.12), Ψ : Dl
ϕ → Dl

ϕ is a contraction mapping with
constant η. Thanks to the contraction mapping principle (Smart [27, p. 2]),
we deduce that Ψ possesses a unique fixed point z in Dl

ϕ which solves (3.6)
through (t0, ϕ), is bounded and tends to zero as t goes to infinity.

Referring to [5,14,26], except for the fixed point method, we know of an-
other way to prove that solutions of (3.6) are stable. Let ε > 0, by proceeding
now in the opposite way as before, that is, choosing a fixed l = ε > 0, we obtain
that there is δ > 0 such that for |ϕ|t0 < δ implies that the unique solution z of
(3.6) with zt0 = ϕ on [m (t0) , t0] satisfies max

t≥t0
{|z (t)| , |z′ (t)|} < ε. Moreover

lim
t→∞

z (t) = lim
t→∞

z′ (t) = 0.

Finally, we show that the zero solution of equation (3.6) is stable in C1.
For any ε > 0, let δ > 0 such that

δ < εmin

{
1,

1− η
K

,
1− η
KA

}
.

If z (t) = z (t, t0, ϕ) is a solution of equation (3.6) with |ϕ|t0 < δ, then z (t) =
(Ψz) (t) on [t0,∞). We claim that ‖z‖ < ε. Otherwise, there would exist t∗ > t0
such that

max {|z(t∗, t0, ϕ)| , |z′(t∗, t0, ϕ)|} = ε,

and

max {|z(t, t0, ϕ)| , |z′(t, t0, ϕ)|} < ε,
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for t ∈ [m (t0) , t∗], if |z(t∗, t0, ϕ)| = ε, then it follows from (3.7) and (3.2) that

|z(t∗, t0, ϕ)|

≤ e−
∫ t∗
t0
g(s)ds |ϕ(t0)|+

∫ t∗

t0

e−
∫ t∗
s
g(u)du

∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)| ds
+

∫ ∗
t0

e−
∫ ∗
s
g(u)du

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))| ds

+

∫ ∗
t0

e−
∫ ∗
s
g(u)du

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]

× |z (s− τ i (s))| ds

≤ Kδ + ηε < ε,

and this is a contradiction.
If |z′(t∗, t0, ϕ)| = ε, then it follows from (3.8) and (3.3) that

|z′(t∗, t0, ϕ)|

≤ e−
∫ t∗
t0
g(s)ds |ϕ(t0)| |g (t)|

+ |g (t)|
∫ t∗

t0

e−
∫ t∗
s
g(u)du

∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)| ds
+ |g (t)|

∫ ∗
t0

e−
∫ ∗
s
g(u)du

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))| ds

+ |g (t)|
∫ ∗
t0

e−
∫ ∗
s
g(u)du

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]

× |z (s− τ i (s))| ds

+

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣ |z(t)|
+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣ |z′ (t− τ i (t))|

+

[
N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣
]
|z (t− τ i (t))|

≤ KAδ + ηε < ε,

and this is a contradiction too. Hence, the zero solution of equation (3.6) is
stable in C1. This, together with

lim
t→∞

z (t) = lim
t→∞

z′ (t) = 0,
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implies that the zero solution of equation (3.6) is globally asymptotically stable
in C1. This shows that the zero solution of (2.1) is asymptotically stable if (3.4)
holds.

(:⇒) Assume that the zero solution of equation (2.1) is globally asymptot-
ically stable in C1. Now, we prove that (3.4) holds. If not, let us assume that
(3.1) does not hold. Otherwise, set

J = lim inf
t→∞

∫ t

0

g (s) ds
0

,K = sup
t≥t0

e
−

∫ t
t0
g(s)ds

and
0

A = sup
t≥t0
{|g (t)|} .

Thus, it follows from (3.1) that J ∈ (−∞,∞),
0

K,
0

A ∈ [0,∞) .

Therefore, there exists an increasing sequence {tn} ⊂ [0,∞) such that lim
n→∞

tn =∞ and

lim
n→∞

∫ tn

0

g (s) ds = J, n = 1, 2, ... (3.13)

Denote

In =

∫ tn

0

e
∫ s
0
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
)
ds,

n = 1, 2, ...

From (3.2), it follows that

In = e
∫ tn
0

g(u)du

∫ tn

0

e
∫ s
0
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
)
ds

≤ ηe
∫ tn
0

g(u)du < eJ .

This, together with (3.13), implies that the sequence {In} is bounded.
Furthermore, there exists a convergent subsequence. For brevity of notation,
we still assume that {In} is convergent. Therefore, there exists a positive
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integer m such that for any integer n > m,

∫ tn

tm

e
∫ s
0
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
)
ds

<
1− η

8B (e−J + 1)
, (3.14)

and

e−
∫ tn
tm

g(u)du >
1

2
, e−

∫ tn
0

g(u)du < e−J + 1, e
∫ tm
0

g(u)du < eJ + 1, (3.15)

where

B = max

{
0

K
(
eJ + 1

)
,

0

K
0

A
(
eJ + 1

)
, 1

}
.

For any δ0 > 0, consider the solution z(t) = z(t, tm, ϕ) of equation (3.6)

with |ϕ|tm < δ0 and |ϕ (tm)| > δ0
2
. It follows from (3.7) , (3.8) , (3.15) and

(3.1)− (3.3) , that for t ∈ [tm,∞) ,

|z (t)| ≤ δ0e
−

∫ t
tm

g(s)ds +

∫ t

tm

e−
∫ t
s
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)|
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))|

+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]
|z (s− τ i (s))|

)
ds

≤
0

K
(
eJ + 1

)
δ0 + ‖z‖tm

∫ t

tm

e−
∫ t
s
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

[
N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
])

ds

≤ Bδ0 + η ‖z‖tm ,
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and

|z′ (t)| ≤ |z(tm)| |g (t)| e−
∫ t
tm

g(s)ds +

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣ |z(t)|
+

N∑
i=1

∣∣∣∣bi (t) p (t− τ i (t))

p(t)

∣∣∣∣ |z′ (t− τ i (t))|

+

[
N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
]
|z (t− τ i (t))|

+ |g (t)|
∫ t

tm

e−
∫ t
s
g(u)du

(∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣ |z(s)|
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣ |z′ (s− τ i (s))|

+

N∑
i=1

[∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣] |z (s− τ i (s))|
)
ds

≤
0

K
0

A
(
eJ + 1

)
δ0

+ ‖z‖tm |g (t)|
∫ t

tm

e−
∫ t
s
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣+

N∑
i=1

∣∣∣∣bi (s) p′ (s− τ i (s))

p(s)

∣∣∣∣
]

+

∣∣∣∣g (t)−
(
a (t) +

p′(t)

p(t)

)∣∣∣∣+

N∑
i=1

∣∣∣∣ci (t) p (t− τ i (t))

p(t)

∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (t) p′ (t− τ i (t))

p(t)

∣∣∣∣
≤ Bδ0 + η ‖z‖tm .

Hence, ‖z‖tm ≤ Bδ0 + η ‖z‖tm , thus we have

‖z‖tm ≤
B

1− η
δ0, for all t ≥ tm. (3.16)
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It follows from (3.7) , (3.14)− (3.16) that ,for any n > m,

|z (tn)|

≥ |ϕ(tm)| e−
∫ tn
tm

g(s)ds −
∫ tn

tm

e−
∫ tn
s

g(u)du

∣∣∣∣[(g (s)−
(
a (s) +

p′(s)

p(s)

))
z(s)

+

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s))

+

N∑
i=1

ci (s) p (s− τ i (s))

p(s)
z (s− τ i (s))

]
ds

∣∣∣∣∣

≥ δ0e
−

∫ tn
tm

g(u)du −
∫ tn

tm

e−
∫ tn
s

g(u)du

∣∣∣∣[(g (s)−
(
a (s) +

p′(s)

p(s)

))
z(s)

+

N∑
i=1

bi (s) p (s− τ i (s))

p(s)
z′ (s− τ i (s))

+

N∑
i=1

ci (s) p (s− τ i (s))

p(s)
z (s− τ i (s))

]
ds

∣∣∣∣∣
≥ δ0e−

∫ tn
tm

g(u)du

−‖z‖tm e−
∫ tn
0

g(u)du

∫ tn

tm

e
∫ s
0
g(u)du

[∣∣∣∣g (s)−
(
a (s) +

p′(s)

p(s)

)∣∣∣∣
+

N∑
i=1

∣∣∣∣bi (s) p (s− τ i (s))

p(s)

∣∣∣∣
+

N∑
i=1

∣∣∣∣ci (s) p (s− τ i (s))

p(s)

∣∣∣∣
]
ds

≥ 1

4
δ0 −

δ0B

1− η
(
e−J + 1

) 1− η
8B (e−J + 1)

=
1

4
δ0.

The facts that lim
n→∞

tn = ∞ and the zero solution of equation (3.6) is

globally asymptotically stable in C1 imply lim
n→∞

z (t, tn, ϕ) = lim
n→∞

z′ (t, tn, ϕ) =

0, which is in contradiction with (3.17) . Hence condition (3.4) is necessary in
order that (3.6) has a solution asymptotically stable in C1. Thus, the zero
solution of (3.6) is asymptotically stable, and hence the zero solution of (2.1)
is asymptotically stable in C1. The proof is complete.

Remark 3.1. When

f(t, x(t− τ1(t))), ..., x(t− τN (t)))) =

N∑
i=1

bi(t)x(t− τ i(t))
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and

h(t, x(t− τ1(t))), ..., x(t− τN (t)))) =

N∑
i=1

ci(t)x
′(t− τ i(t)),

with g(t) ≡ a(t) and p(t) = 1, Theorem 3.1 reduces to Theorem A.

Remark 3.2. It follows from the first part of the proof of Theorem 3.1 that the
zero solution of (2.1) is globally asymptotically stable in C1 under (3.1), (3.2),
and (3.3). Moreover, Theorem 3.1 still holds true if (3.2), (3.3) are satisfied for
t ≥ tσ for some tσ ∈ R+.

4 An Example

In this section, we analyse an example to illustrate two facts. On the one
hand, we will show how to apply our main result in this paper, Theorem 3.1.
On the other hand and most importantly, we will highlight the real interest and
importance of our result because the previous theory developed by Ardjouni
and Djoudi [1] cannot be applied to this example.

Example 4.1. Consider the following linear neutral delay differential equation

x′(t) = −a (t)x(t) + b1 (t)x′(t− τ1 (t)) + c1 (t)x(t− τ1 (t)), (4.1)

for t ≥ 0, corresponding to equation (2.1) when N = 1, τ1 (t) =
π

2
and

a (t) = 1 − 6 sin t cos t

1 + sin2 t
, c1 (t) = sin6 t, b1 (t) =

1

10
sin6 t. By choosing g(t) = 1

and p (t) =
(
1 + sin2 t

)3
in Theorem 3.1, we obtain that∣∣∣∣g (t)−

(
a (t) +

p′(t)

p(t)

)∣∣∣∣ = 0.

By straightforward computations, we have∣∣∣∣p (t− τ1 (t))

p (t)
c1 (t)

∣∣∣∣ =

∣∣∣∣∣
(
2− sin2 t

)3(
1 + sin2 t

)3 sin6 t

∣∣∣∣∣ ≤ 0.1539,

and ∣∣∣∣p (t− τ1 (t))

p (t)
b1 (t)

∣∣∣∣ =

∣∣∣∣∣
(
2− sin2 t

)3(
1 + sin2 t

)3 sin6 t

10

∣∣∣∣∣ ≤ 0.1539

10

≤ 0.0153.

Since |sin t cos t| < 1 for t ∈ R, then we deduce∣∣∣∣p′ (t− τ1 (t))

p (t)
b1 (t)

∣∣∣∣ =
6

10

∣∣∣∣∣
(
2− sin2 t

)2(
1 + sin2 t

)3 sin6 t

∣∣∣∣∣ |sin t cos t|

≤ 6

10
× 0.1286× |sin t cos t|

≤ 0.0771.



Title Suppressed Due to Excessive Length 21

According to the definition of r1, r2 under conditions (3.2) and (3.3) of
Theorem 3.1, for t ∈ [0,∞) , we can calculate and obtain

r1 (t) := 0.1539 + 0.0153 + 0.0771 = 0.2463,

and
r2 (t) := 2 (0.1539 + 0.0153 + 0.0771) = 0.4926,

then, we have r1 (t) < 1/2 and r2 (t) < 1/2. Hence, since t − π

2
→ ∞ as

t → ∞, and it is easy to verify that
∫ t
0
g (s) ds → ∞ as t → ∞, |p (t)| ≤ 2,

then assumptions of Theorem 3.1 are fulfilled. Therefore, the zero solution of
(4.1) is globally asymptotically stable in C1 thanks to Theorem 3.1.

Note that

|b1 (t)|+ |c1 (t)| = 1

10

∣∣sin6 t
∣∣+∣∣sin6 t

∣∣ = 1.1 when t = kπ+
π

2
for k = 0, 1, 2, ....

Thus, Theorem A cannot be applied to equation (4.1), when f(t, x(t−τ1(t)))) =
b1(t)x(t− τ1(t)) and h(t, x(t− τ1(t))) = c1(t)x′(t− τ1(t)) in (1.4).

Remark 3.3: The method in this paper can be applied to more general
neutral differential systems than Eq. (2.1).
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