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Abstract

In this paper, we investigate the existence of positive periodic solutions
for an n-species Lotka-Volterra system with distributed delays and impul-
sive effect. In the process we use integrating factors and convert the given
Lotka-Volterra differential equation into an equivalent integral equation.
Then we construct appropriate mappings and use Krasnoselskii’s fixed
point theorem to show the existence of a positive periodic solution of this
system. In particular, the results improve some previous ones in the liter-
ature. Finally, as an application, we exhibit an example to illustrate the
effectiveness of our abstract results.

AMS Subject Classifications: 34K20, 34K13, 92B20
Keywords: Krasnoselskii’s fixed point theorem; positive periodic solu-
tions; Lotka-Volterra competition systems; Variable delays; impulses.

1 Introduction

It is well known that the theory of impulsive differential equations has become
an important area of scientific activity. Many evolution processes are charac-
terized by the fact that at certain moments of time they experience an abrupt
change of state. These short term perturbations act instantaneously, that is in
the form of impulses. Equations of this kind are found in almost every domain
of applied sciences, numerous examples can be found in, e.g., [2, 3, 18, 19, 27].
For example, many biological phenomena involving fields such as economics,
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mechanics, electronics, telecommunications, medicine and biology, etc. (see
[19]). Thus, impulsive differential equations appear as a natural description of
observed evolution phenomena of several real world problems. However, be-
sides impulsive effects, time delay is present in many fields in our society. In
recent years, non-autonomous delay differential equations have been used in
the study of population ecology and infectious diseases, population dynamics.
Indeed, a famous model for population dynamics is the Lotka-Volterra compe-
tition system. Due to its theoretical and practical significance, Lotka-Volterra
systems have been extensively and intensively studied for the past few years (see,
[5, 6, 14, 23, 24, 25, 26, 29, 30]). On the other hand, a very basic and important
qualitative problem is the study of periodic solutions of delay differential equa-
tions with or without impulsive effects which has attracted the interest of many
mathematicians (we refer the reader to [1, 7, 10, 12, 15, 16, 17, 20, 21, 22, 28]).
For instance, in 2006, by using the method of Krasnoselskii’s fixed point theo-
rem, Tang and Zhou [25] investigated the existence of positive periodic solutions
of the following system with deviating arguments:

x′i(t) = xi (t)

ri (t)−
n∑
j=1

aij(t)xj(t− τ ij (t))

 , i = 1, 2, ..., n. (1.1)

By the same method as the one in [25], Zhang et al. investigated in [30] the
existence and global attractivity of positive periodic solutions of 3-species Lotka-
Volterra predator-prey systems with infinite delays as follows:

x′1(t) = x1 (t)
(
r1 (t)− c11(t)x1(t)− c12(t)

∫ t
−∞K12 (s− t)x2(s)ds

+ c13(t)
∫ t
−∞K13 (s− t)x3(s)ds

)
,

x′2(t) = x2 (t)
(
r2 (t)− c21(t)

∫ t
−∞K21 (s− t)x1(s)ds− c22(t)x2(t)

+ c23(t)
∫ t
−∞K23 (s− t)x3(s)ds

)
,

x′3(t) = x3 (t)
(
r3 (t) + c31(t)

∫ t
−∞K31 (s− t)x1(s)ds

+ c32(t)
∫ t
−∞K32 (s− t)x2(s)ds− c33(t)x3(t)

)
.

(1.2)

Very recently, Benhadri et al. improved in [1] the results of Zhang et al.
[25] to the generalized nonimpulsive nonlinear Lotka-Volterra competition with
deviating arguments of the form:

x′i(t) = xi (t)

ri (t)−
n∑
j=1

aij(t)xj(t)−
n∑
j=1

bij(t)fj (xj(t))

−
n∑
j=1

cij(t)gj (xj(t− τ ij (t)))

 , (1.3)

i = 1, 2, ..., n.
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The authors derived some sufficient conditions for the existence of positive pe-
riodic solutions of (1.3) .

In this paper, motivated by the content in [1] and [25], we generalize system
(1.1) to a model with variable and distributed delays and impulses,

x′i(t) = xi (t)

ri (t)−
n∑
j=1

aij(t)hj (xj(t))−
n∑
j=1

bij(t)fj (xj(t− τ ij (t)))

−
n∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s) ds

 , (1.4)

i = 1, 2, ..., n, t 6= tk, t > 0,

xi
(
t+k
)
− xi

(
t−k
)

= Iik (tk, xi (tk)) , t = tk, k ∈ Z+,

where x(t) = [x1(t), x2(t), .., xn(t)]
T ∈ Rn. The expression ∆xi (tk) = xi

(
t+k
)
−

xi
(
t−k
)

= Iik (tik, xi (tk)) denotes the impulse at moment tk, and t1 < t2 < ...,

is a strictly increasing sequence such that tk goes to infinity, xi
(
t+k
)

and xi
(
t−k
)

stand for the right-hand and the left-hand limits of xi (t) at the impulsive mo-
ment tk respectively. Consider that Iik (·, ·) ∈ C (R+ × R+,R+) , i = 1, 2, ..., n,
k = 1, 2, ..., shows the impulsive perturbation at the moment tk. Since we are
searching for the existence of periodic solutions for equation (1.4) , it is natural
to assume that ri, aij , bij , cij ∈ C (R+,R+) are all ω−periodic functions (ω > 0)
with respect to t,

aij (t+ ω) = aij (t) , τ ij (t+ ω) = τ ij (t) , Dij (t+ ω, s+ ω) = Dij (t, s) ,

bij (t+ ω) = bij (t) and cij (t+ ω) = cij (t) (1.5)

for, i, j = 1, 2, ..., n, with τ ij being scalar functions, continuous, and τ ij (t) ≥
τ∗ij > 0 with

r̂i =
1

ω

∫ ω

0

ri(s)ds > 0,

âij =
Tj
ω

∫ ω

0

aij(s)ds ≥ 0,

b̂ij =
Fj
ω

∫ ω

0

bij(s)ds ≥ 0, ĉij =
RjEij
ω

∫ ω

0

cij(s)ds ≥ 0,

β̂ik =
1

ω

∑
0≤tk<ω

λik (tk) ≥ 0, k ∈ Z+, (1.6)

for i, j = 1, 2, ..., n, where Tj , Fj and λik, Rj , Eij are given in (H1) − (H5).
We also assume that the functions Dij ∈ C (R+ × R+,R+) and fi, gi, hi ∈
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C (R+,R+) , i, j = 1, 2, ..., n,

f(x (t)) = [f1 (x1(t)) , f2 (x2(t)) , ..., fn (xn(t))]
T ∈ Rn+,

g(x (t)) = [g1 (x1(t)) , g2 (x2(t)) , ..., gn (xn(t))]
T ∈ Rn+,

h(x (t)) = [h1 (x1(t)) , h2 (x2(t)) , ..., hn (xn(t))]
T ∈ Rn+,

are positive and continuous in their respective arguments.

Throughout this paper, we will assume the following hypotheses:

(H1) There exist nonnegative constants T j , Tj , such that for all x ∈ R+,

T jx ≤ hj (x) ≤ Tjx, j = 1, 2, ..., n. (1.7)

(H2) There exist nonnegative constants F j , Fj such that for all x ∈ R+,

F jx ≤ fj (x) ≤ Fjx, j = 1, 2, ..., n. (1.8)

(H3) There exist nonnegative constants Rj , Rj such that for all x ∈ R+,

Rjx ≤ gj (x) ≤ Rjx, j = 1, 2, ..., n. (1.9)

(H4) There exist nonnegative constants Eij , Eij such that for all t ∈ R+,

Eij ≤
∫ t

−∞
Dij(t, s)ds ≤ Eij , i, j = 1, 2, ..., n. (1.10)

(H5) There exists an integer q > 0 such that tk+q = tk + ω, Ii(k+q) = Iik,
k ∈ Z+, where

[0, ω] ∩ {tk, k = 1, 2, ...} = {t1, t2, ..., tq} . (1.11)

For convenience, we introduce the notion

fM = max
t∈[0,ω]

{|f (t)|} , δi = e−
∫ ω
0
ri(t)dt, i = 1, 2...,

where f is a continuous and ω−periodic function.

The paper is organized as follows. In Section 2, we recall some results which
are necessary for our analysis. The existence of positive periodic solutions of
system (1.4) by using the Krasonoselskii fixed point theorem is proved in Section
3. Finally, in Section 4, we exhibit an example to show the validity of our result.

2 Preliminaries

Throughout this paper, a vector x = (x1, x2, ..., xn)T ∈ Rn is said to be positive
if xi ≥ 0, 1 ≤ i ≤ n.
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First, we recall the following definitions. Let I ⊂ R be an interval, and denote
by PC(I,Rn) the set of operators x : I → Rn which are continuous for t ∈ I,
t 6= tk and have discontinuities of the first kind at the points tk ∈ I, (k ∈ Z+)
but are continuous from the left at these points.

The proofs of the main results in this paper are based on an application of
Krasnoselskii’s fixed point theorem in cones. Firstly, we need to introduce some
definitions and lemmas.

Definition 2.1 (See [10, 18]) A function xi : R → (0,+∞) is said to be a
positive solution of (1.4), if the following conditions are satisfied

1) xi (t) is absolutely continuous on each (tk, tk+1) ;
2) for each k ∈ Z+, xi

(
t+k
)

and xi
(
t−k
)

exist and xi
(
t−k
)

= xi (tk) ;
3) xi (t) satisfies the first equation of (1.4) for almost everywhere in R and

xi (tk) satisfies the second equation of (1.4) at impulsive point tk, k ∈ Z+.

Definition 2.2 Let X be a Banach space and let K be a closed, nonempty
subset of X. K is a cone if

i) αx+ βy ∈ K for all x, y ∈ K and all α, β ≥ 0;
ii) x,−x ∈ K imply x = 0.

Theorem 2.1. (Krasnoselskii, [13]). Let X be a Banach space, and let K ⊂ X
be a cone in X. Assume that Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1,
Ω1 ⊂ Ω2 and let

Φ : K ∩
(
Ω2 \ Ω1

)
→ K,

be a completely continuous operator such that either
a) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2; or
b) ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2.
Then Φ has a fixed point in K ∩

(
Ω2 \ Ω1

)
.

3 Existence of positive periodic solutions

As we mentioned previously, one of our main objectives in this paper is to
improve the work carried out in [25], and to extend it to investigate a wider class
of differential equations with impulsive effects presented in (1.4). In particular,
by using Kranoselskii’s fixed point theorem on cones, we will establish a sufficient
condition ensuring the existence of positive ω−periodic solutions of equation
(1.4). This section will be splitted into two parts: in the first one, we will focuse
on the existence of positive periodic solutions when we use subquadratic impulse
functions, while in the second part, we will consider the case in which the impulse
effects are sublinear (most frequently used in the published literature).

Let us start by obtaining an equivalent formulation for our problem (1.4).

Lemma 3.1. The function x(·) is an ω−periodic solution of equation (1.4) if
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and only if x(·) is an ω−periodic solution of the following equation:

xi (t) =

∫ t+ω

t

Gi (t, s)xi(s)×

 n∑
j=1

aij(s)hj (xj(s))

+

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds (3.1)

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk)) ,

where

Gi (t, s) =
e−

∫ s
t
ri(ξ)dξ

1− e−
∫ ω
0
ri(ξ)dξ

, s ∈ [t, t+ ω] , i = 1, 2, ..., n, (3.2)

and we assume
e−

∫ ω
0
ri(ξ)dξ 6= 1.

Proof. Unlike the procedure carried out in [25], where the authors used the
variation of constants formula to rewrite the original equation as an integral
equation, we have to proceed in a very different way which is motivated and
justified by the appearance of the impulsive terms in our problem. Assume that
x = (x1, x2, ..., xn)

T ∈ X, is a periodic solution of equation (1.4) . Then, we
have

d

dt

[
xi(t) exp

(
−
∫ t

0

ri (s) ds

)]
= exp

(
−
∫ t

0

ri (s) ds

)
xi(t)

×

−
n∑
j=1

aij(t)hj(xj(t))−
n∑
j=1

bij(t)fj (xj(t− τ ij (t)))

−
n∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s)) ds

 , (3.3)

t 6= tk, i = 1, 2, ..., n.
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Integrating the above equation over [t, t+ ω], we have

xi(s)e
−

∫ s
0
ri(ξ)dξ

∣∣∣tm1
+nω

t

+xi(s)e
−

∫ s
0
ri(ξ)dξ

∣∣∣tm2
+nω

tm1
+nω + ...

+xi(s)e
−

∫ s
0
ri(ξ)dξ

∣∣∣t+ωtmq+nω

=

∫ t+ω

t

xi(s) exp

(
−
∫ s

0

ri (ξ) dξ

)−
n∑
j=1

aij(s)hj (xj(s))

−
n∑
j=1

bij(s)fj (xj(s− τ ij (s))−
n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z)) dz

 ds,

where tmk +nω ∈ (t, t+ ω) , mk ∈ {1, 2, ..., q} , k = 1, 2, ..., q, n ∈ Z+. Therefore,

xi(t)e
−

∫ t
0
ri(ξ)dξ

[
1− e−

∫ t+ω
t

ri(ξ)dξ
]

+
∑

t≤tk<t+ω

∆xi (tmk) e−
∫ tmk+nω

0 ri(ξ)dξ

=

∫ t+ω

t

xi(s) exp

(
−
∫ s

0

ri (ξ) dξ

)

×


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z)) dz

 ds,

which can be transformed into

xi(t) =

∫ t+ω

t

Gi (t, s)xi(s)

×


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z)) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk)) , i = 1, 2, , ..., n. (3.4)

Thus, xi is a periodic solution of (3.1). If x = (x1 (t) , x2 (t) , ..., xn (t))
T ∈ K, is
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a periodic solution of (3.1), for any t = tk, from (3.1) we obtain

x′i (t) = Gi (t, t+ ω)xi(t+ ω)

×

 n∑
j=1

aij(t+ ω)hj (xj(t+ ω)) +

n∑
j=1

bij(t+ ω)fj (xj(t+ ω − τ j (t+ ω))

+

n∑
j=1

cij(t+ ω)

∫ t+ω

−∞
Dij(t+ ω, s)gj (xj(s))ds


−Gi (t, t)xi(t)

 n∑
j=1

aij(t)hj (xj(t)) +

n∑
j=1

bij(t)fj (xj(t− τ ij (t))

+

n∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s))ds

+ ri(t)xi(t)

= xi(t)

ri(t)− n∑
j=1

aij(t)hj (xj(t))−
n∑
j=1

bij(t)fj (xj(t− τ ij (t))

−
n∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s))ds

 .

For any t = tj , j ∈ Z+, we have from (3.1) that

xi(t
+
j )− xi (tj) =

∫ tj+ω

tj

[
Gi
(
t+j , s

)
−Gi (tj , s)

]
xi(s)

×


n∑
j=1

aij(s)hj (xj(s))

+

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t+j ≤tk<tj+ω

Gi
(
t+j , tk

)
Iik (tk, xi (tk))

−
∑

tj≤tk<tj+ω

Gi (tj , tk) Iik (tk, xi (tk))

= Iik (tk, xi (tk)) .

Hence xi is a positive ω−periodic solution of (1.4). Thus, the proof of Lemma
3.1 is completed.
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Define now

PC (R,Rn) =
{
x = (x1, x2, ..., xn)

T
(3.5)

: R→ Rn | x ∈ C ((tk, tk+1) ,Rn) , such that

x
(
t−k
)
, x
(
t+k
)

exist and x
(
t−k
)

= x (tk) , k ∈ Z+

}
.

To apply Theorem 2.1, we need to define a Banach space Cω, a closed subset S
of Cω and construct one mapping. Thus, we let (Cω, ‖.‖) = (X, ‖.‖) where

Cω =
{
x = (x1, x2, ..., xn)

T
: x ∈ PC (R,Rn) , x(t+ ω) = x(t), t ∈ R

}
, (3.6)

with the norm

‖x‖ =

n∑
i=1

|xi|0 , |xi|0 = max
t∈[0,ω]

|xi(t)| , i = 1, 2, ..., n, ∀x ∈ Cω. (3.7)

Then, Cω with the norm ‖.‖ is a Banach space.
We denote θ = min (1, θ1, θ2, θ3), where

θ1 = min
j=1,n

(
T j
Tj

)
, θ2 = min

j=1,n

(
F j
Fj

)
, θ3 = min

j=1,n

{
min
i=1,n

(
Eij
Eij

)
Rj
Rj

}
,

and
σ = min

{
e−r̂iω, i = 1, 2, . . . , n

}
.

Let K be the cone in Cω defined by

K =
{
x(·) = (x1, x2, ..., xn)

T ∈ Cω : xi(t) ≥ σ |xi|0 , i = 1, 2, ..., n, ∀t ∈ R
}
.

Use (3.1) to define the operator Φ : Cω → Cω by

(Φx)(t) := [(Φ1x) (t) , (Φ2x) (t) , ..., (Φnx) (t)]
T
,

where

(Φix) (t) =

∫ t+ω

t

Gi (t, s)xi(s)


n∑
j=1

aij(s)hj (xj(s))

+

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk)) , (3.8)
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Gi (t, s) =
e−

∫ s
t
ri(ξ)dξ

1− e−
∫ ω
0
ri(ξ)dξ

, s ∈ [t, t+ ω] , i = 1, 2, ..., n.

It is clear that Gi (t+ ω, s+ ω) = Gi (t, s) , (∂Gi (t, s) /∂t) = ri (t)Gi (t, s) ,
Gi (t, t+ ω)−Gi (t, t) = −1, and

Ai :=
δi

1− δi
≤ Gi (t, s) ≤ 1

1− δi
=: Bi, t, s ∈ R, i = 1, 2, ..., n. (3.9)

By (2.6), it is easy to check that x ∈ Cω is an ω−periodic solution of equation
(1.4) provided x is a fixed point of Φ.

Lemma 3.2. Assume that (H1)− (H5) hold, then Φ : K → K defined by Equa-
tion (3.8) is well defined, namely, ΦK ⊂ K.

Proof. From (3.8) it is easy to verify that (Φx) (·) is continuous in (tk, tk+1) ,
and (Φx)

(
t+k
)

and (Φx)
(
t−k
)

exist, and (Φx)
(
t−k
)

= (Φx) (tk) for k ∈ Z+.
Moreover, for any x ∈ K,

(Φix) (t+ ω)

=

∫ t+2ω

t+ω

Gi (t+ ω, s)xi(s)


n∑
j=1

aij(s)hj (xj(s))

+

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t+ω≤tk<t+2ω

Gi (t, tk) Iik (tk, xi (tk))

=

∫ t+ω

t

Gi (t+ ω, s+ ω)xi(s+ ω)×

×


n∑
j=1

aij(s+ ω)hj (xj(s+ ω)) +

n∑
j=1

bij(s+ ω)fj (xj(s+ ω))

+

n∑
j=1

cij(s+ ω)

∫ s+ω

−∞
Dij(s+ ω, z)gj (uj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk))
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=

∫ t+ω

t

Gi (t, s)xi(s)


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk))

= (Φix) (t) , i = 1, 2, ..., n.

That is (Φix) (t+ ω) = (Φix) (t) , t ∈ [0, ω] . Thus Φx ∈ Cω. Moreover, from
(3.8) and (3.9), we have for x ∈ K

|(Φix)|0 ≤ 1

1− δi

∫ ω

0

xi(s)


 n∑
j=1

aij(s)hj (xj(s))

+

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds
+

∑
t≤tk<t+ω

Iik (tk, xi (tk))

 ,

and

(Φix) ≥ δi
1− δi

∫ ω

0

xi(s)


 n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds
+

∑
t≤tk<t+ω

Iik (tk, xi (tk))


≥ Ai

Bi
|(Φix)|0

≥ σ |(Φix)|0 , i = 1, 2, ..., n.

Hence, ΦK ⊂ K. This completes the proof of Lemma 3.2.
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3.1 The case of subquadratic impulses.

In this section we consider subquadratic impulse functions.

Lemma 3.3. In addition to conditions (H1) − (H5), we further assume the
following one:

(H6) There exist nonnegative functions λik, λik ∈ C (R+,R+) such that for
all x ∈ R+,

λik (t)x2 ≤ Iik (t, x) ≤ λik (t)x2, i = 1, 2, ..., n, k = 1, 2, ...

Then Φ : K → K defined by equation (3.8) is completely continuous.
Proof. Set

Γi (t, x) (t) = xi(t)

 n∑
j=1

aij(t)hj (xj(t)) +

n∑
j=1

bij(t)fj (xj(t− τ ij (t)))

+

n∑
j=1

cij(t)
∫ t
−∞Dij(t, s)gj (xj(s))ds

 , t ∈ R.

(3.10)

We first show that Φ is continuous. Since h, f, g and I are continuous in x,
it follows that, for any L0 > 0 and ε > 0, there exists µ1 > 0 such that for
‖x‖ ≤ L0, ‖y‖ ≤ L0, and ‖x− y‖ < µ1 it follows

|Γi (s, x) (s)− Γi (s, y) (s)| < ε

2nBω
, s ∈ R+, i = 1, 2, ..., n, (3.11)

where B = max
1≤i≤n

Bi. For any L0 > 0 and ε > 0, there exists µ2 > 0 such that

for ‖x‖ ≤ L0, ‖y‖ ≤ L0, and ‖x− y‖ < µ2

|Iik (tk, xi (tk))− Iik (tk, yi (tk))| < ε

2qBn
, q ∈ Z+ i = 1, 2, ..., n. (3.12)

Therefore, if x, y ∈ Cω with ‖x‖ ≤ L0, ‖y‖ ≤ L0, and ‖x− y‖ ≤ µ, where
µ = min (µ1, µ2) then, from (3.8) , (3.9) , (3.11) and (3.12) ,

|(Φix)− (Φiy)|0 ≤ B

∫ t+ω

t

|Γi (s, x) (s)− Γi (s, y) (s)| ds

+
∑

t≤tk<t+ω

|Gi (t, tk)| |Iik (tk, xi (tk))− Iik (tk, yi (tk))|

≤ B
ωε

2nBω
+Bq

ε

2qBn

<
ε

n
, i = 1, 2, ..., n.

This yields

‖Φx− Φy‖ =

n∑
i=1

|(Φix)− (Φiy)|0 < ε,

12



which implies that Φ is continuous on K.
We let

S = {x(·) = (x1 (·) , x2 (·) , ..., xn (·))T ∈ Cω : ||x|| ≤ L },
where L is a non-negative constant. For any x ∈ S, it follows from (3.8) and
(3.9) that

(Φix) (t) =

∫ t+ω

t

Gi (t, s)xi(s)


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk))

≤ L2

1− δi

ω∫
0

 n∑
j=1

Ajaij(s) +

n∑
j=1

Fjbij(s) +

n∑
j=1

RjEijcij(s)

 ds
+

L2

1− δi

∑
t≤tk<t+ω

λik (tk)

:= B∗i , i = 1, 2, ..., n,

and, consequently,

‖Φx‖ =

n∑
i=1

|(Φix)|0 ≤
n∑
i=1

B∗i , ∀x ∈ S.

This shows that Φ (S) is uniformly bounded.

To show that Φ (S) is equicontinuous, let x ∈ S, we calculate
d

dt
(Φix) (t)

and show that it is uniformly bounded. Indeed, by taking derivative in (3.8) we
have

∣∣(Φix)
′
(t)
∣∣ ≤ |ri (t) (Φix) (t)− xi(t)

 n∑
j=1

aij(t)hj (xj(t))

+

n∑
j=1

bij(t)fj (xj(t− τ ij (t)))

+

n∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s) ds

∣∣∣∣∣∣
≤ rMi B

∗
i + L2

n∑
j=1

(
Aja

M
ij + Fjb

M
ij + EijRjc

M
ij

)
,

i = 1, 2, ..., n,
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and

‖ (Φx)
′ ‖ ≤

n∑
j=1

rMi B∗i + L2
n∑
j=1

(
Aja

M
ij + Fjb

M
ij + EijRjc

M
ij

) .
Hence, ΦS ⊂ Cω is a family of uniformly bounded and equi-continuous func-

tions. By the Ascoli-Arzelà Theorem, the operator Φ is compact, and therefore
completely continuous. The proof is complete.

We can now state and prove our main result in this paper.

Theorem 3.1. Assume hypotheses (H1)− (H6) and the next one as well:
(H7) The linear system

n∑
j=1

(
âij + b̂ij + ĉij

)
xj + β̂ikxi = r̂i, i = 1, 2, ..., n, k = 1, 2, ...

possesses a unique positive solution. Then, system (1.4) possesses at least one
positive ω−periodic solution.

Proof. Let
x∗ = (x∗1, x

∗
2, ..., x

∗
n)
T

with x∗i > 0, i = 1, 2, ..., n, be a positive solution of (1.12). Set

m0 = min
1≤i≤n

{r̂iAi} ,

M0 = max
1≤i≤n

{r̂iBi} .

Then 0 < m0 < M0 < +∞. Choose a constant M ≥ M0 such that
1

Mω
< 1.

Let α1 =
1

Mω
and

Ω1 =
{
x(t) = (x1 (t) , x2 (t) , ..., xn (t))

T ∈ Cω : |xi|0 < α1x
∗
i , i = 1, 2, ..., n

}
.

If x ∈ K ∩ ∂Ω1, then

σ |xi|0 ≤ xi (t) ≤ |xi|0 = α1x
∗
i , i = 1, 2, ..., n,

14



and

(Φix) (t) ≤ Bi

∫ ω

0


xi(s) n∑

j=1

aij(s)hj (xj(s))

+xi(s)

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+ xi(s)

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds
+

∑
t≤tk<t+ω

Iik (tk, xi (tk))


≤ Bi

∫ ω

0

|xi|0
n∑
j=1

Tjaij(s) |xj |0 ds+Bi

∫ ω

0

|xi|0
n∑
j=1

Fjbij(s) |xj |0 ds

+Bi

∫ ω

0

|xi|0
n∑
j=1

RjEijcij(s) |xj |0 ds+Bi |xi|0
∑

t≤tk<t+ω

λi (tk) |xi|0

≤ α1Biω |xi|0
n∑
j=1

âijx
∗
j + α1Biω |xi|0

n∑
j=1

b̂ijx
∗
j

+α1Biω |xi|0
n∑
j=1

ĉijx
∗
j + α1Biω |xi|0 β̂ikx

∗
i

= α1Biω |xi|0

 n∑
j=1

(
âij + b̂ij + ĉij

)
x∗j + β̂ikx

∗
i


= (Bir̂i)α1ω |xi|0
≤ α1M0ω |xi|0
≤ |xi|0 , i = 1, 2, ..., n.

Hence for any x ∈ K ∩ ∂Ω1

‖Φx‖ =

n∑
i=1

|(Φixi)|0 ≤
n∑
i=1

|xi|0 = ‖x‖ .

On the other hand, choose 0 < m ≤ m0 such that
1

σ2mθω
> 1. Let α2 =

1

σ2mθω
and

Ω2 = {x ∈ Cω : |xi|0 < α2x
∗
i , i = 1, 2, ..., n} .

If x ∈ K ∩ ∂Ω2, then σ |xi|0 ≤ xi (t) ≤ |xi|0 = α2x
∗
i , i = 1, 2, ..., n, and, conse-
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quently

(Φix) (t) ≥ Ai

∫ ω

0

xi(s)


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk))

≥ σ2Ai |xi|0
n∑
j=1

ω∫
0

aij(s)Tj

[
min
j=1,n

(
T j
Tj

)]
|xj |0 ds

+σ2Ai |xi|0
n∑
j=1

ω∫
0

Fj

[
min
i=1,n

(
F j
Fj

)]
bij(s) |xj |0 ds

+σ2Ai |xi|0
n∑
j=1

∫ ω

0

EijRj

{[
min
i=1,n

(
Eij
Eij

)]
×
(
Rj
Rj

)}
cij(s) |xj |0 ds

+σ2Ai |xi|0
∑

t≤tk<t+ω

λik (tk) |xi (tk)|0

≥ θ1 × σ2Aiωα2 |xi|0
n∑
j=1

âijx
∗
j + θ2 × σ2Aiωα2 |xi|0

n∑
j=1

b̂ijx
∗
j

+θ3 × σ2Aiωα2 |xi|0
n∑
j=1

ĉijx
∗
j + 1× σ2Aiωα2 |xi|0 β̂ikx

∗
i

≥ θ × σ2Aiωα2 |xi|0
n∑
j=1

âijx
∗
j + θ × σ2Aiωα2 |xi|0

n∑
j=1

b̂ijx
∗
j

+θ × σ2Aiωα2 |xi|0
n∑
j=1

ĉijx
∗
j

+θ × σ2Aiωα2 |xi|0 β̂ikx
∗
i

= θAiωσ
2α2 |xi|0

 n∑
j=1

(
âij + b̂ij + ĉij

)
x∗j + β̂ikx

∗
i


= (Air̂i) θωσ

2α2 |xi|0
≥ m0θωσ

2α2 |xi|0
≥ |xi|0 , i = 1, 2, ..., n,
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and thus

‖Φx‖ =

n∑
i=1

|(Φixi)|0 ≥
n∑
i=1

|xi|0 = ‖x‖ ,∀x ∈ K ∩ ∂Ω2.

Obviously, Ω1 and Ω2 are open bounded subsets of Cω with 0 ∈ Ω1 ⊂
Ω1 ⊂ Ω2. Hence, Φ : K ∩ (Ω2\Ω1) → K is a completely continuous operator
and satisfies condition (a) in Theorem 2.1. By Krasnoselskii’s Theorem, there

exists a fixed point x∗ (·) = (x∗1 (·) , x∗2 (·) , ..., x∗n (·))T ∈ K ∩ (Ω2\Ω1) such that
x∗(·) = (Φx∗)(·), i.e., x∗ is a positive ω− periodic solution of system (1.4). The
proof is completed.

3.2 The case of sublinear impulse functions

In the case of sublinear impulses we can prove similar results for system (1.4).

Theorem 3.2. Assume that (H1)− (H5) hold , assume further that :
(H8) There exist nonnegative functions λik, λik ∈ C (R+,R+) such that for all
x ∈ R+,

λik (t)x ≤ Iik (t, x) ≤ λik (t)x, i = 1, 2, ..., n, k = 1, 2, ...

(H9) The linear system

n∑
j=1

(
âij + b̂ij + ĉij

)
xj = r̂i, i = 1, 2, ..., n, k = 1, 2, ...

possesses a unique positive solution. Then, system (1.4) possesses at least one
positive ω−periodic solution.

Proof. To prove that Φ : K → K is completely continuous is similar to the
corresponding proof in Lemma 3.2. We only need to prove (a) in Theorem 2.1.
Let

x∗ = (x∗1, x
∗
2, ..., x

∗
n)
T

with x∗i > 0, i = 1, 2, ..., n, be a positive solution of (1.12). Set

m̃0 = min

{
min

1≤i≤n
{r̂iAi} , min

1≤i≤n

{
Aiβ̂ik

}}
,

M̃0 = max

{
max
1≤i≤n

{r̂iBi} , max
1≤i≤n

{
Biβ̂ik

}}
.

Choose a constant M̃ ≥ M̃0 such that 0 <
1− M̃ω

M̃ω
< 1 where 0 < M̃ω < 1.

Let η1 =
1− M̃ω

M̃ω
and

Ω̂1 =
{
x(t) = (x1 (t) , x2 (t) , ..., xn (t))

T ∈ Cω : |xi|0 < η1x
∗
i , i = 1, 2, ..., n

}
.
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If x ∈ K ∩ ∂Ω̂1, then

σ |xi|0 ≤ xi (t) ≤ |xi|0 = η1x
∗
i , i = 1, 2, ..., n,

and

(Φix) (t) ≤ Bi

∫ ω

0


xi(s) n∑

j=1

aij(s)hj (xj(s))

+xi(s)

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+ xi(s)

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds
+

∑
t≤tk<t+ω

Iik (tk, xi (tk))


≤ Bi

∫ ω

0

|xi|0
n∑
j=1

Tjaij(s) |xj |0 ds+Bi

∫ ω

0

|xi|0
n∑
j=1

Fjbij(s) |xj |0 ds

+Bi

∫ ω

0

|xi|0
n∑
j=1

RjEijcij(s) |xj |0 ds+Bi |xi|0
∑

t≤tk<t+ω

λi (tk) |xi|0

≤ η1Biω |xi|0
n∑
j=1

âijx
∗
j + η1Biω |xi|0

n∑
j=1

b̂ijx
∗
j

+η1Biω |xi|0
n∑
j=1

ĉijx
∗
j +Biωβ̂ik |xi|0

= η1Biω |xi|0


n∑
j=1

(
âij + b̂ij + ĉij

)
x∗j

+Biωβ̂ik |xi|0

= ω (Bir̂i) η1 |xi|0 + ω
(
Biβ̂ik

)
|xi|0

≤ η1M̃0ω |xi|0 + M̃0ω |xi|0
≤ |xi|0 , i = 1, 2, ..., n.

Hence for any x ∈ K ∩ ∂Ω̂1

‖Φx‖ =

n∑
i=1

|(Φix)|0 ≤
n∑
i=1

|xi|0 = ‖x‖ .

On the other hand, choose 0 < m̃ ≤ m̃0 such that
1− σm̃θω
σ2m̃θω

> 1 where
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0 < σm̃θω < 1. Let η2 =
1− σm̃θω
σ2m̃θω

and

Ω̂2 = {x ∈ Cω : |xi|0 < η2x
∗
i , i = 1, 2, ..., n} .

If x ∈ K ∩ ∂Ω̂2, then σ |xi|0 ≤ xi (t) ≤ |xi|0 = η2x
∗
i , i = 1, 2, ..., n, and, conse-

quently

(Φix) (t) ≥ Ai

∫ ω

0

xi(s)


n∑
j=1

aij(s)hj (xj(s)) +

n∑
j=1

bij(s)fj (xj(s− τ ij (s)))

+

n∑
j=1

cij(s)

∫ s

−∞
Dij(s, z)gj (xj(z) dz

 ds

+
∑

t≤tk<t+ω

Gi (t, tk) Iik (tk, xi (tk))

≥ σ2Ai |xi|0
n∑
j=1

ω∫
0

aij(s)Tj

[
min
j=1,n

(
T j
Tj

)]
|xj |0 ds

+σ2Ai |xi|0
n∑
j=1

ω∫
0

Fj

[
min
i=1,n

(
F j
Fj

)]
bij(s) |xj |0 ds

+σ2Ai |xi|0
n∑
j=1

∫ ω

0

EijRj

{[
min
i=1,n

(
Eij
Eij

)]
×
(
Rj
Rj

)}
cij(s) |xj |0 ds

+σAi
∑

t≤tk<t+ω

λik (tk) |xi (tk)|0

≥ θ1 × σ2Aiωη2 |xi|0
n∑
j=1

âijx
∗
j + θ2 × σ2Aiωη2 |xi|0

n∑
j=1

b̂ijx
∗
j

+θ3 × σ2Aiωη2 |xi|0
n∑
j=1

ĉijx
∗
j + 1× σAiω |xi|0 β̂ik
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≥ θ × σ2Aiωη2 |xi|0
n∑
j=1

âijx
∗
j + θ × σ2Aiωη2 |xi|0

n∑
j=1

b̂ijx
∗
j

+θ × σ2Aiωη2 |xi|0
n∑
j=1

ĉijx
∗
j

+θ × σAiω |xi|0 β̂ik

= θAiωσ
2η2 |xi|0

n∑
j=1

(
âij + b̂ij + ĉij

)
x∗j

+θ × σ
(
Aiβ̂ik

)
ω |xi|0

= (Air̂i) θωσ
2η2 |xi|0 +

(
Aiβ̂ik

)
ωθσ |xi|0

≥ m̃0θωσ
2η2 |xi|0 + m̃0θωσ |xi|0

≥ |xi|0 , i = 1, 2, ..., n,

and therefore

‖Φx‖ =

n∑
i=1

|(Φix)|0 ≥
n∑
i=1

|xi|0 = ‖x‖ ,∀x ∈ K ∩ ∂Ω̂2.

Hence, Φ : K ∩ (Ω̂2\Ω̂1) → K is a completely continuous operator and sat-
isfies condition (a) in Theorem 2.1. Consequently, there exists a fixed point

x∗ (·) = (x∗1 (·) , x∗2 (·) , ..., x∗n (·))T ∈ K ∩ (Ω̂2\Ω̂1) such that x∗(·) = (Φx∗)(·).
Therefore, system (1.4) has a positive ω-periodic solution. The proof is com-
pleted.

Remark 3.1: The method applied in this paper can be used to treat a
more general nonlinear impulse function. For instance, assuming that Iik (·, x)
satisfies

(H10) There exist nonnegative functions λik, λik ∈ C (R+,R+) and z ∈
C
(
Rn+,Rn+

)
such that for all x ∈ Rn+,

λik (t)z (‖x‖) ≤ Iik (t, x) ≤ λik (t)z (‖x‖) , i = 1, 2, ..., n, k = 1, 2, ...

Note that (H6) and (H8) are special cases of condition (H10) which has been
used in [6, 7, 8].

Remark 3.2: Notice that when aij = 0 in the second term on the right
hand side of (1.4), Iik (tk, x (tk)) = 0, fj (xj) = 0, and gj (xj) = xj , we can
easily derive the corresponding results in [25]. Therefore, the results presented
in this paper improve and extend the main results in Ref. [25].

4 An example

In this section, we analyze an example to show the effectiveness of our result.
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Example 4.1. Let us consider the following system:

x′i(t) = xi (t)

ri (t)−
2∑
j=1

bij(t)fj (xj(t− τ ij (t)))

−
2∑
j=1

cij(t)

∫ t

−∞
Dij(t, s)gj (xj(s) ds

 , (4.1)

t 6= tk =
1

2
kπ, k ∈ Z+, t > 0,

xi(t
+
k )− xi(t−k ) = Iik (tk, xi (tk)) =

x2i (tk)

cos (2tk)
(|sinxi (tk)|+ 1) , (4.2)

for i = 1, 2. This model corresponds to system (1.4) when n = 2, ω = 2π. Let

r1(t) =
1

2
(1 + sin 2t) , r2(t) =

1

3
(1 + cos 2t) ,

and τ ij ∈ (R+,R+) be arbitrary continuous functions which satisfy τ ij(t+ω) =
τ ij (t) , i = 1, 2.
We then have

r̂1 =
1

ω

∫ ω

0

r1(t)dt =
1

4π

∫ 2π

0

(1 + sin 2t) dt =
1

2
,

r̂2 =
1

ω

∫ ω

0

r2(t)dt =
1

6π

∫ 2π

0

(1 + cos 2t) dt =
1

3
,

and it is straightforward to check that Ai ≤ Gi (t, s) ≤ Bi, for i = 1, 2, where

Gi (t, s) =
1

1− e−r̂iω
exp

(
−
∫ s

t

ri (ξ) dξ

)
, i = 1, 2,

and

A1 :=
e−r̂1ω

1− e−r̂1ω
=

e−
π

1− e−π
, A2 :=

e−r̂2ω

1− e−r̂2ω
=

e−
2π
3

1− e− 2π
3

,

B1 :=
1

1− e−r̂1ω
=

1

1− e−π
, B2 :=

1

1− e−r̂2ω
=

1

1− e− 2π
3

.

Let

fj (x) =
x

2
e(sin x)+1, gj (x) =

x

3

(
e|cos x| + 1

)
,

Ii (t, x) =
πx2

cos 2t
(|sinx|+ 1) , i, j = 1, 2,

and

Dij (t, s) = es−t (cos t+ 2)× 3

2
, i 6= j = 1, 2,

Dij (t, s) = es−t (sin t+ 4)× 1

3
, i = j = 1, 2.
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Since | sinx| ≤ 1 and | cosx| ≤ 1 for x ∈ R+, we have

F jx ≤ fj (x) ≤ Fjx,
Rjx ≤ gj (x) ≤ Rjx,

and

3

2
= Eij ≤

∫ t

−∞
Dij (t, s) ds ≤ Eij =

9

2
, i 6= j,

1 = Eij ≤
∫ t

−∞
Dij (t, s) ds ≤ Eij =

5

3
, i = j,

and
λi (t)x2 ≤ Ii (t, x) ≤ λi (t)x2,

where Fj =
e2

2
, F j =

1

2
, Rj =

e+ 1

3
, Rj =

2

3
, λi (t) =

π

cos 2t
, λi (t) =

2π

cos 2t
, i, j = 1, 2.

We can choose b11(t) =
(1 + cos 2t)

3F1
, b12(t) =

(1 + sin 2t)

2F2
, b21(t) = 0, b22(t) =

cos (4t), which implies

b̂11 =
F1

ω

∫ ω

0

b11(s)ds =
1

3
, b̂12 =

F2

ω

∫ ω

0

b12(s)ds =
1

2
,

b̂21 =
F1

ω

∫ ω

0

b21(s)ds = 0, b̂22 =
F2

ω

∫ ω

0

b22(s)ds = 0,

and also choose c11(t) = 0, c12(t) =
2 (1 + cos 4t)

E1R12
, c21(t) =

(1 + sin 2t)

E2R21
, c22(t) =

(1 + sin 2t)

2E2R22
, obtaining

ĉ11 =
E1R11

ω

∫ ω

0

c11(s)ds = 0, ĉ12 =
E1R12

ω

∫ ω

0

c12(s)ds = 2,

ĉ21 =
E2R21

ω

∫ ω

0

c21(s)ds = 1, ĉ22 =
E2R22

ω

∫ ω

0

c22(s)ds =
1

2
.

Choosing q = 8, we have

β̂ik =
1

ω

∑
0≤tk<ω

λik (tk) =
1

2π

q∑
k=1

2π

cos 2tk

=
1

2

8∑
k=1

2

cos 2
(
1
2kπ

) = 1, i = 1, 2.

22



Moreover, it is easy to verify that the corresponding system of nonlinear equation
(4.1) , 

2∑
j=1

(
b̂1j + ĉ1j

)
xj + β̂1kx1 = r̂1

2∑
j=1

(
b̂2j + ĉ2j

)
xj + β̂2kx2 = r̂2,

has a unique positive solution x = (x1, x2) =

(
1

6
,

1

9

)
. It is straightforward to

show that all conditions of Theorem 3.1 are fulfilled. Hence, we conclude that
this system possesses at least one positive 2π−periodic solution.
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