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Abstract

The Lyapunov approach is one of the most effective and efficient methods for the inves-
tigation of the stability of stochastic systems. Several authors analyzed the stability and
stabilization of stochastic differential equations via Lyapunov techniques. Nevertheless, few
results are concerned with the stability of stochastic systems based on the knowledge of the
solution of the system explicitly. The originality of our work is to investigate the problem of
stabilization of stochastic perturbed control–bilinear systems based on the explicit solution
of the system by using the integral inequalities of the Gronwall type in particular Gami-
dov’s inequality. Namely, under some restrictions on the perturbed term, and based on the
method of integral inequalities, we prove that the stochastic system can be stabilized by
constant feedback. Further, we study the problem of stabilization of stochastic perturbed
control affine systems based on the use of bilinear approximation. Different examples are
provided to verify the effectiveness of the proposed results.
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1 Introduction

Gronwall’s inequality was first proposed and proved as its differential form in 1911 by the Swedish
mathematician Thomas Hacon Gronwall [19]. Later on, the integral form was proved in 1943 by
the American mathematician Bellmen [8]. Since then, many authors introduced several general-
izations of this inequality, see [6, 7, 15, 20, 22].

Gronwall Lemmas are very useful in many analysis problems. In particular, it is an essen-
tial tool in the analysis of the problem of boundedness, uniqueness, and other aspects of the
qualitative behavior of solutions of differential and stochastic equations.

As it is well known, environmental noise exists and cannot neglect it in many dynamical
systems. Indeed, it is essential to analyze whether the presence of some random terms in the
equations of the models may produce a very different behavior of their solutions. Although there
exists a wide literature on this topic, see [1, 21], [23]-[25].

The result is related to the relation between a perturbed stochastic system and the associated
unperturbed one. Given two solutions to the perturbed stochastic system and the associated
unperturbed one with initial conditions that are close at the same value of time, these solutions
will remain close over the entire time interval and not just at the initial time.

Different intrinsic variants to Lyapunov’s original concepts of practical stability were proposed
in [4, 16]. In the case that the origin is not an equilibrium point, we can investigate the stability of
the SDEs in a small neighborhood of the origin in terms of convergence of solution in probability
to a small ball. This property is defined as ”Practical Stability”. The practical stability, in the
sense introduced in [2, 5, 9, 17, 18, 26]. In fact, it is very important and very useful for analyzing
the stability or for designing practical controllers of dynamical systems since controlling system
to an idealized point are either expensive or impossible in the presence of disruptions and the
best which we can hope in such situations is to use practical stability. In practice, we may only
need to stabilize a system into the region of phase space in which the implementation is still
acceptable. It is well known that asymptotic stability is more important than stability. Also,
the desired system may oscillate near the origin. Thus, the notion of practical stability is more
suitable in several situations than asymptotic stability. In this case, all state trajectories are
bounded and approach a sufficiently small neighborhood of the origin. One also desires that the
state approaches the origin (or some sufficiently small neighborhood of it) in a sufficiently fast
manner especially in presence of perturbations. In general, we know some information on the
upper bound of the term of perturbation whose size influences the size of the ball.

The Lyapunov method is one of the most effective ones for the investigation of the stability
of stochastic systems, without knowing the explicit solution form of the system. The Lyapunov
stability has attracted the attention of many authors. There exists a huge amount of work on this
subject, see [10, 11, 12, 13, 14]. However, the construction of a suitable Lyapunov function is still
a difficult task. The novelty of our work is to develop the problem of stability and stabilization
of stochastic perturbed control-bilinear systems based on the explicit solution formed through
integral inequalities of the Gronwall type, in particular Gamidov’s inequality.

The qualitative behavior of the solutions of perturbed stochastic systems is usually studied
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by considering a Lyapunov function candidate for the unperturbed system and using it as an
appropriate Lyapunov function candidate for the stochastic perturbed system. Nevertheless,
unlike the linear case, the construction of a suitable Lyapunov function is still a difficult task
for nonlinear stochastic differential equations. This motivates us to investigate the problem of
stability of stochastic perturbed systems by using integral inequalities of Gronwall type under
some restrictions on the perturbation term. The usual property of the solutions that can be
deduced for such systems is ultimate boundedness. That means that the solutions remain in some
neighborhoods of the origin after a sufficiently large time, (see [3], [10]-[13]). In different cases,
the linearized system is independent of the control. Therefore, we can study the stabilization
problem for such systems via a bilinear system.

The organization of this paper is as follows: In Section 2, we investigate the stability of linear
time–invariant stochastic perturbed systems via non linear–integral inequalities. In Section 3,
we analyze the problem of stabilization of stochastic perturbed control–bilinear systems under
some restrictions on the bound of perturbations. In Section 4, we prove that the problem of
stabilization of stochastic perturbed affine system can be performed by considering a bilinear
approximation. Further, we display some illustrative examples to exhibit the applicability of our
abstract theory. In Section 5, some conclusions are included.

2 Linear time–invariant stochastic perturbed systems

Consider the following linear time–invariant system:

dx(t) = Ax(t)dt, (2.1)

where x ∈ Rn, A is a constant matrix (n× n) .

Assume that some parameters are excited or perturbed by Brownian motion, and the linear
time-invariant stochastic perturbed system is expressed by the following form:

dx(t) = Ax(t)dt+ φ(t, x(t))dBt, (2.2)

where φ : R+×Rn −→ Rn×m, Bt = (B1(t), ..., Bm(t))T is an m-dimensional Brownian motion de-
fined on a complete probability space (Ω,F ,P). In the sequel, ||·|| represents the Euclidean norm.

We will study the asymptotic behaviors of the solutions of the stochastic perturbed system
(2.2) in the sense that all state trajectories are bounded and approach a sufficiently small neigh-
borhood of the origin. In this objective, we recall the following definitions, see [10, 11, 12, 13].

Let’s consider the following stochastic system :

dx(t) = F (t, x(t))dt+G(t, x(t))dBt, t ≥ 0, (2.3)
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where x ∈ Rn, F : R+×Rn → Rn, G : R+×Rn → Rn×m, and Bt is an m-dimensional Brownian
motion.

We assume that both functions F and G satisfy the following conditions:

||F (t, x)||2 + ||G(t, x)||2 ≤ α1

(
1 + ||x||2

)
, for all t ≥ 0, x ∈ Rn,

||F (t, x)− F (t, y)|| ∨ ||G(t, x)−G(t, y)|| ≤ α2||x− y||, for all t ≥ 0, x, y ∈ Rn,

where α1 and α2 are given positive real constant, then under the precedent assumptions, there
exists a unique global solution x(t) corresponding to the initial condition x0 ∈ Rn (see Mao [25]).

We assume that there exists t such that F (t, 0) 6= 0 or G(t, 0) 6= 0, i.e., the stochastic differ-
ential equation (2.3) does not have the trivial solution x ≡ 0.

The study of the exponential stability of the solutions of the stochastic system (2.3) leads to
analyze the stability behavior of a ball centered at the origin:

Br := {x ∈ Rn : ||x|| ≤ r} , r > 0.

Definition 2.1.

i) The ball Br is said to be almost surely globally uniformly exponentially stable, if there
exists a pair of positive constants µ1 and µ2, such that for all x0 ∈ Rn, the following
inequalities are satisfied:

||x(t)|| ≤ µ1||x0||e−µ2t + r, a.s., ∀t ≥ 0. (2.4)

ii) The stochastic system (2.3) is said to be almost surely globally practically uniformly ex-
ponentially stable, if there exists r > 0 such that Br is almost surely globally uniformly
exponentially stable.

Eq.(2.4) implies that x(t) will be bounded by a small bound r > 0, that is ||x(t)|| will
be small for sufficiently large t. It means that the solution given in (2.4) will be uniformly
ultimately bounded for sufficiently large t. This means that solution given in (2.4) will be
uniformly ultimately bounded for sufficiently large t. The factor µ2 in Eq.(2.4) is called the
convergence speed, whereas the factor µ1 is called the transient estimate.

It is also worth noticing that, in the previous definition, if we take r = 0, then we recover the
standard concept of the global exponential stability of the origin considered as an equilibrium
point. Further, we out to investigate the asymptotic behavior of a small ball centered at the
origin for 0 ≤ ||x(t)|| − r, ∀t ≥ 0, so that the initial conditions are taken outside the ball Br. If
r is small enough, the trajectories tend to the origin when t goes to infinity.
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Our main objective in this section is to state sufficient conditions ensuring the almost sure
practical uniform exponential stability of the linear time–invariant stochastic system (2.2). If we
suppose that the perturbation term is bounded, then the origin is not necessarily an equilibrium
point of the stochastic perturbed system (2.2). That’s why, we will study the convergence of the
solutions toward a neighborhood of origin.

Remark 2.1. Different authors tackle the problem of practical stability of stochastic differential
equations via Lyapunov functions, see [10, 11, 12, 13, 14]. The construction of appropriate
Lyapunov functions is not always possible, which motivates us to look for another method. Our
approach in this paper is to analyze the stability and stabilization of stochastic perturbed control
bilinear systems by using the explicit solution form and it is based on integral inequalities of the
Gronwall type.

We suppose that the matrix A is asymptotically stable. A basic result in systems theory is
that

σ(A) ⊂ C−,
where σ(A) denotes the set of eigenvalues of a the matrix A. With this condition, we have
Reλ(A) < 0, where Reλ(A) denotes the real parts of the eigenvalues of matrix A. A simple
result for the asymptotic stability is that the eigenvalues of the matrix (all of which are real)
remain strictly in the left-half complex plane: Reλ(A) < 0.

First, we suppose the following assumption required for the stability purposes.

(H1) We assume that, Reλ(A) < 0. Note that, the assumption (H1) implies that

||etA|| ≤ ke−γt, ∀t ≥ 0,

for a certain k > 0 and
γ ≤ min

1≤i≤n
|Reλi(A)|.

(H2) There exists a continuous nonnegative known function ξ(t), such that

||φ(t, x)|| ≤ ξ(t), ∀x ∈ Rn, ∀t ≥ 0,

where lim
t→+∞

ξ(t) = 0.

Theorem 2.2. Under assumptions (H1) and (H2) the linear time–invariant stochastic perturbed
system (2.2) is almost surely globally practically uniformly exponentially stable.

In order to prove Theorem 2.2, we need to recall the following lemma.

Lemma 2.3. [25] Let G = (G1, ...., Gn) ∈ L2(R+,Rn), T, a, b be any positive numbers.
Then,

P
(

sup
0≤t≤T

[∫ t

0

G(s)dBs −
a

2

∫ t

0

||G(s)||2ds
]
> b

)
≤ e−ab.
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Proof of Theorem 2.2. The solution with initial condition x0 of the linear time–invariant
stochastic perturbed system is the following:

x(t) = etA x0 +

∫ t

0

e(t−s)A φ(s, x(s))dBs.

Assign ε ∈]0, 1[ arbitrarily, and let n = 1, 2, · · · . Then, using Lemma 2.3, we obtain

P
{

sup
0≤t≤n

[∫ t

0

e(t−s)A φ(s, x(s))dBs −
ε

2

∫ t

0

||e(t−s)A||2 ||φ(s, x(s))||2ds
]
>

2

ε

ln(n)

n

}
≤ e

1
n

n2
.

By an application of the well known Borel-Cantelli lemma, we see that for almost all ω ∈ Ω,
there exists an integer n0 = n0(ω), such that if n ≥ n0, it yields that

∫ t

0

e(t−s)A φ(s, x(s))dBs ≤
2

ε

ln(n)

n
+
ε

2

∫ t

0

||e(t−s)A||2 ||φ(s, x(s))||2ds, for all 0 ≤ t ≤ n. (2.5)

Based on inequality (2.5), one obtains

||x(t)|| ≤ ||etA|| ||x0||+
ε

2

∫ t

0

||e(t−s)A||2 ||φ(s, x(s))||2ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Taking into account assumption (H1) and inequality (3.6), one deduce

||x(t)|| ≤ k||x0||e−γt +
ε

2

∫ t

0

k2e−2γ(t−s)||φ(s, x(s))||2ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Using assumption (A2), one obtains

||x(t)|| ≤ k||x0||e−γt +
ε

2
k2e−2γt

∫ t

0

e2γsξ2(s)ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Since ξ(·)→ 0 as t→ +∞, then there exists ξ̄ > 0, such that

ξ(t) ≤ ξ̄, ∀t ≥ 0.

||x(t)|| ≤ k||x0||e−γt +
ε

2
k2e−2γt

∫ t

0

e2γsξ̄2ds+
2

ε

ln(n)

n

≤ k||x0||e−γt +
ε

2
k2e−2γt

∫ t

0

e2γsξ̄2ds+
2

ε

ln(n)

n

≤ k||x0||e−γt +
ε

2

ξ̄2

2γ
k2e−2γt(e2γt − 1) +

2

ε

ln(n)

n

≤ k||x0||e−γt +
ε

2

ξ̄2

2γ
k2 +

2

ε

ln(n)

n
for all 0 ≤ t ≤ n, n ≥ n0.
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Further, sine
ln(n)

n
→ 0 as n→ +∞, then there exists α > 0, such that

ln(n)

n
≤ α, ∀n ≥ n0. (2.6)

Then, one obtains

||x(t)|| ≤ k||x0||e−γt +
ξ̄2

4γ
εk2 +

2

ε
α, for all 0 ≤ t ≤ n, n ≥ n0.

Letting ε→ 1, we deduce that

||x(t)|| ≤ k||x0||e−γt +
ξ̄2k2

4γ
+ 2α, a.s.

Thus, the ball Br with r =
ξ̄2k2

4γ
+ 2α is almost surely globally uniformly exponentially stable.

Then, the stochastic perturbed system (2.2) is almost sure globally practically uniformly expo-
nentially stable. 2

A simple extension can be done, if we replace the assumption (H2) by the following assump-
tion on the perturbed term.

(H′2) There exist a continuous positive functions λ1(t) and λ2(t), such that

||φ(t, x)||2 ≤ e−µ2t (λ1(t)||x||q + λ2(t)) , 0 < q < 1, ∀x ∈ Rn, t ≥ 0,

where λ1 satisfies
λ1(t) ≤ m, ∀t ≥ 0, (2.7)

and the function λ2 satisfies the following∫ +∞

0

eµ2sλ2(s)ds = λ̄2 < +∞. (2.8)

Theorem 2.4. Under assumptions (H1) and (H′2), the stochastic perturbed system (2.2) is al-
most surely globally practically uniformly exponentially stable.

The proof of Theorem 2.4 is based on the generalized integral inequality of the Gamidov type
[20].

Lemma 2.5. If

V (t) ≤ ε(t) + C

∫ t

0

Φ(s)V q(s)ds,
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where all functions are continuous and nonnegative on [0, T ), 0 < q < 1 and T,C > 0.
Then, there exists a constant ρ > 0, such that

V (t) ≤ ε(t) + Cρq
(∫ t

0

Φ
1

1−q (s)ds

)1−q

.

Taking into account the above integral inequality, we can prove the almost sure global prac-
tical uniform exponential stability of the stochastic perturbed system (2.2).
Proof of Theorem 2.4 The solution with initial condition x0 of the stochastic perturbed system
(2.2) is:

x(t) = etA x0 +

∫ t

0

e(t−s)A φ(s, x(s))dBs. (2.9)

Using assumption (H1) and Lemma 2.3, it yields that

||x(t)|| ≤ k||x0||e−γt +
ε

2

∫ t

0

k2e−2γ(t−s)||φ(s, x(s))||2ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Based on (H′2), we obtain

||x(t)|| ≤ k||x0||e−γt +
ε

2

∫ t

0

k2e−2γ(t−s)e−γs (λ1(s)||x(s)||q + λ2(s)) ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Thus, one obtains

||x(t)|| ≤ k||x0||e−γt +
ε

2
k2e−2γt

∫ t

0

eγs (λ1(s)||x(s)||q + λ2(s)) ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Multiplying both sides by eγt, it yields that

||x(t)||eγt ≤ k||x0||+
ε

2
k2e−γt

∫ t

0

eγs (λ1(s)||x(s)||q + λ2(s)) ds+
2

ε

ln(n)

n
eγt

≤ k||x0||+
ε

2
k2

∫ t

0

eγs (λ1(s)||x(s)||q + λ2(s)) ds+
2

ε

ln(n)

n
eγt,

for all 0 ≤ t ≤ n, n ≥ n0.
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Using (2.6) and (2.7), we obtain

||x(t)||eγt ≤ k||x0||+
ε

2
k2e−γt

∫ t

0

eγs (m||x(s)||q + λ2(s)) ds+
2

ε
αeγt

≤ k||x0||+
ε

2
k2m

∫ t

0

eγs||x(s)||qds+
ε

2
k2

∫ +∞

0

eγsλ2(s)ds+
2

ε
αeγt,

for all 0 ≤ t ≤ n, n ≥ n0.

Let V (t) = eγt||x(t)||, and using (4.10), we have

V (t) ≤ k||x0||+
2

ε
αeγt +

ε

2
k2λ̄2 +

ε

2
k2m

∫ t

0

e(1−q)γsV q(s)ds,

for all 0 ≤ t ≤ n, n ≥ n0.

Thus,

V (t) ≤ ε(t) + C

∫ t

0

e(1−q)γsV q(s)ds,

where ε(t) = k||x0||+
2

ε
αeγt +

ε

2
k2λ̄2, C =

ε

2
k2m.

By the application of the Gamidov inequality (Lemma 2.5), it follows that

V (t) ≤ ε(t) + Cρq
(∫ t

0

exp

(
1− q
1− q

γs

)
ds

)1−q

≤ ε(t) + Cρq
(∫ t

0

eγsds

)1−q

= ε(t) + Cρq
(

1

γ

)1−q

eγ(1−q)t.

for all 0 ≤ t ≤ n, n ≥ n0.

Consequently, we obtain

||x(t)|| ≤ k||x0||e−γt +
2

ε
α +

ε

2
k2λ̄2 +

ε

2
k2mρq

(
1

γ

)1−q

,

for all 0 ≤ t ≤ n, n ≥ n0.

Letting ε→ 1, we deduce that

||x(t)|| ≤ k||x0||e−γt + 2α +
1

2
k2λ̄2 +

1

2
k2mρq

(
1

γ

)1−q

.
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As a consequence, the ball Br, with r = 2α+ 1
2
k2λ̄2 + 1

2
k2mρq

(
1

γ

)1−q

, is almost surely globally

uniformly exponentially stable, which in turn gives the linear time–invariant stochastic perturbed
system (2.2) is almost sure globally uniformly practically exponentially stable. 2

3 Application to stochastic perturbed bilinear systems

Let us consider the following bilinear system:

dx(t) = (Ax(t) + uBx(t)) dt, (3.1)

where x ∈ Rn is the state vector, u ∈ R is the control input vector, A, B ∈ Rn×n are constant
matrices.

Assume that some parameters are excited or perturbed by Brownian motion, and the per-
turbed stochastic bilinear system is expressed by the following form:

dx(t) = (Ax(t) + uBx(t)) dt+ G(t, x(t))dBt, (3.2)

where G : R+ × Rn −→ Rn×m, Bt = (B1(t), ..., Bm(t))T is an m-dimensional Brownian motion
defined on a complete probability space (Ω,F ,P).

The associated closed–loop stochastic system with a constant feedback u = ū is given by:

dx(t) = (Ax(t) + ūBx(t)) dt+ G(t, x(t))dBt. (3.3)

Our main objective in this section is to state sufficient conditions ensuring the almost sure
practical uniform exponential stability of the stochastic perturbed bilinear system (3.2). If we
suppose that the perturbation term is bounded, then the origin is not necessarily an equilibrium
point of the stochastic perturbed bilinear system (3.2). That’s why, we will study the conver-
gence of the solutions toward a neighborhood of origin.

Let us now state some assumptions, which we will impose it later on:

(A1) There exists a stabilizing constant feedback ū, such that Reλ (A+ ūB) < 0.
(Reλ(A) denotes the real parts of the eigenvalues of matrix A).

(A2) There exists a continuous nonnegative known function ϕ(t), such that

||G(t, x)|| ≤ ϕ(t), ∀x ∈ Rn, ∀t ≥ 0.
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The bounds of the nonlinearities must be in general related to the dynamic of the nominal
system, and in our situation, they should be small enough. A restriction on the function ϕ(t)
will be imposed to study the asymptotic behavior of the stochastic perturbed bilinear system
(3.2).

(A3) The continuous nonnegative function ϕ(t) satisfies∫ +∞

0

ϕ2(s)ds < +∞,

or
ϕ(t) ≤ ϕ̃ < +∞, ∀t ≥ 0.

Theorem 3.1. Under assumptions (A1)− (A3) the stochastic perturbed bilinear system (3.3) is
almost surely globally practically uniformly exponentially stable.

Proof of Theorem 3.1. Let Ā = A + ūB, then the solution with initial condition x0 of the
closed–loop stochastic system (3.3) expressed by the following:

x(t) = etĀ x0 +

∫ t

0

e(t−s)Ā G(s, x(s))dBs. (3.4)

Assign ε ∈]0, 1[ arbitrarily, and let n = 1, 2, · · · . Then, using Lemma 2.3, we obtain

P
{

sup
0≤t≤n

[∫ t

0

e(t−s)Ā G(s, x(s))dBs −
ε

2

∫ t

0

||e(t−s)Ā||2 ||G(s, x(s))||2ds
]
>

2

ε

ln(n)

n

}
≤ e

1
n

n2
.

By an application of the well known Borel-Cantelli lemma, we see that for almost all ω ∈ Ω,
there exists an integer n0 = n0(ω), such that if n ≥ n0, it yields that

∫ t

0

e(t−s)Ā G(s, x(s))dBs ≤
2

ε

ln(n)

n
+
ε

2

∫ t

0

||e(t−s)Ā||2 ||G(s, x(s))||2ds, for all 0 ≤ t ≤ n. (3.5)

Based on assumption (A1), since Ā + ūB the state feedback stabilization problem reduces to
designing ū to assign the eigenvalues of Ā+ ūB in the open left-half complex plane. This yields
that there exist two nonnegative constants µ1 and µ2, such that

||eĀt|| = ||e(A+ūB)t|| ≤ µ1e
−µ2t, (3.6)

where µ2 ≤ min
1≤i≤n

|Re (λi(A+ ūB)) |.

Using inequality (3.5), we have

||x(t)|| ≤ ||etĀ|| ||x0||+
ε

2

∫ t

0

||e(t−s)Ā||2 ||G(s, x(s))||2ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.
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This together with (3.6), implies

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2

∫ t

0

µ2
1e
−2µ2(t−s)||G(s, x(s))||2ds+

2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Using assumption (A2), one obtains

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2
µ2

1e
−2µ2t

∫ t

0

e2µ2sϕ2(s)ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Since the nonnegative continuous function ϕ(t) satisfies condition (A3), then there exists m > 0,
such that

e−2µ2t

∫ t

0

e2µ2sϕ2(s)ds ≤ m, ∀t ≥ 0,

where m = min

(
ϕ̃2

2µ2

, ||ϕ||22
)

. Using (2.6), one obtains

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2
µ2

1m+
2

ε
α, for all 0 ≤ t ≤ n, n ≥ n0.

Letting ε→ 1, we deduce that

||x(t)|| ≤ µ1||x0||e−µ2t +
µ2

1m

2
+ 2α, a.s.

Finally, the ball Br with r =
µ2

1m

2
+ 2α is almost surely globally uniformly exponentially stable.

That is, the stochastic perturbed bilinear system (3.2) is almost sure globally practically uni-
formly exponentially stable. 2

A simple extension can be done, if we replace the assumption (A2) by the following assump-
tion on the perturbed term.

(A′2) There exist a nonnegative µ and a continuous positive function ϕ̄(t), such that

||G(t, x)||2 ≤ e−µ2t (µ||x||q + ϕ̄(t)) , 0 < q < 1, ∀x ∈ Rn, t ≥ 0,

where ϕ̄ satisfies ∫ +∞

0

eµ2sϕ̄(s)ds = % < +∞. (3.7)

Theorem 3.2. Under assumptions (A1) and (A′2), the stochastic perturbed bilinear system (3.2)
is almost surely globally practically uniformly exponentially stable.
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Proof of Theorem 3.2. The solution with initial condition x0 of the closed–loop stochastic
system (3.3) expressed by the following:

x(t) = etÃx0 +

∫ t

0

e(t−s)ÃG(s, x(s))dBs.

Similar to the proof of Theorem 3.1, under assumption (A1) and Lemma 2.3, we obtain

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2

∫ t

0

µ2
1e
−2µ2(t−s)||G(s, x(s))||2ds+

2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Taking into account assumption (A′2), it yields that

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2

∫ t

0

µ2
1e
−2µ2(t−s)e−µ2s (µ||x(s)||q + ϕ̄(s)) ds+

2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

That is,

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2
µ2

1e
−2µ2t

∫ t

0

e2µ2se−µ2s (µ||x(s)||q + ϕ̄(s)) ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Hence, it yields that

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2
µ2

1e
−2µ2t

∫ t

0

eµ2s (µ||x(s)||q + ϕ̄(s)) ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Multiplying both sides by eµ2t, it follows that

||x(t)||eµ2t ≤ µ1||x0||+
ε

2
µ2

1e
−µ2t

∫ t

0

eµ2s (µ||x(s)||q + ϕ̄(s)) ds+
2

ε

ln(n)

n
eµ2t

≤ µ1||x0||+
ε

2
µ2

1

∫ t

0

eµ2s (µ||x(s)||q + ϕ̄(s)) ds+
2

ε

ln(n)

n
eµ2t,

for all 0 ≤ t ≤ n, n ≥ n0.

13



Using (2.6), it comes that

||x(t)||eµ2t ≤ µ1||x0||+
ε

2
µ2

1µ

∫ t

0

eµ2s||x(s)||qds+
ε

2
µ2

1

∫ t

0

eµ2sϕ̄(s)ds+
2

ε
αeµ2t

≤ µ1||x0||+
ε

2
µ2

1µ

∫ t

0

eµ2s||x(s)||qds+
ε

2
µ2

1

∫ +∞

0

eµ2sϕ̄(s)ds+
2

ε
αeµ2t,

for all 0 ≤ t ≤ n, n ≥ n0.

Using (3.7), it follows that

||x(t)||eµ2t ≤ µ1||x0||+
2

ε
αeµ2t +

ε

2
µ2

1%+
ε

2
µ2

1µ

∫ t

0

eµ2s||x(s)||qds,

for all 0 ≤ t ≤ n, n ≥ n0.

Setting V (t) = eµ2t||x(t)||, we see that

V (t) ≤ µ1||x0||+
2

ε
αeµ2t +

ε

2
µ2

1%+
ε

2
µ2

1µ

∫ t

0

e(1−q)µ2sV q(s)ds.

That is,

V (t) ≤ ε(t) + C

∫ t

0

e(1−q)µ2sV q(s)ds,

where ε(t) = µ1||x0||+
2

ε
αeµ2t +

ε

2
µ2

1%, C =
ε

2
µ2

1µ.

Applying the Gamidov inequality (Lemma 2.5), it yields that

V (t) ≤ ε(t) + Cρq
(∫ t

0

exp

(
1− q
1− q

µ2s

)
ds

)1−q

≤ ε(t) + Cρq
(∫ t

0

eµ2sds

)1−q

= ε(t) + Cρq
(

1

µ2

)1−q

eµ2(1−q)t,

for all 0 ≤ t ≤ n, n ≥ n0.

That is, one obtains

eµ2t||x(t)|| ≤ ε(t) + Cρq
(

1

µ2

)1−q

eµ2(1−q)t,

for all 0 ≤ t ≤ n, n ≥ n0.
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As a consequence, it yields that

||x(t)|| ≤ ε(t)e−µ2t + Cρq
(

1

µ2

)1−q

e−qµ2t ≤ ε(t)e−µ2t + Cρq
(

1

µ2

)1−q

,

for all 0 ≤ t ≤ n, n ≥ n0.

Hence, we see that

||x(t)|| ≤ µ1||x0||e−µ2t +
2

ε
α +

ε

2
µ2

1%e
−µ2t +

ε

2
µ2

1µρ
q

(
1

µ2

)1−q

e−µ2t

≤ µ1||x0||e−µ2t +
2

ε
α +

ε

2
µ2

1%+
ε

2
µ2

1µρ
q

(
1

µ2

)1−q

,

for all 0 ≤ t ≤ n, n ≥ n0.

Letting ε→ 1, we deduce that

||x(t)|| ≤ µ1||x0||e−µ2t + 2α +
µ2

1%

2
+
µ2

1µρ
q

2

(
1

µ2

)1−q

, a.s.

As a consequence, the ball Br, with r = 2α +
µ2

1%

2
+
µ2

1µρ
q

2

(
1

µ2

)1−q

, is almost sure globally

uniformly exponentially stable, which in turn gives the stochastic perturbed bilinear system (3.3)
is almost sure globally uniformly practically exponentially stable. 2

Now, we will impose another class of the stochastic perturbed bilinear system (3.3) that can
be stabilizable by constant feedback.

(A′3) There exists a continuous nonnegative known function ζ(t), such that

||G(t, x)||2 ≤ e−µ2tζ(t)||x||, x ∈ Rn, t ≥ 0, (3.8)

where ζ(t) satisfies the following condition:∫ +∞

0

ζ(t) ≤ Θ. (3.9)

Theorem 3.3. Under assumptions (A1) and (A′3), the stochastic perturbed bilinear system (3.2)
is almost surely globally practically uniformly exponentially stable.

In order to prove Theorem 3.3 we need to recall the following integral inequality.
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Lemma 3.4. [15] Let a(t), b(t), c(t), u(t) be continuous functions for t ≥ 0, and b(t) be nonneg-
ative for t ≥ 0, suppose that

u(t) ≤ a(t) +

∫ t

0

[b(s)u(s) + c(s)] ds.

Then,

u(t) ≤ a(t) +

∫ t

0

[a(s)b(s) + c(s)] exp

(∫ t

s

b(τ)dτ

)
ds.

Corollary 3.5. [15] For a(t) ≡ a, we have

u(t) ≤ a exp

(∫ t

0

b(τ)dτ

)
+

∫ t

0

c(s) exp

(∫ t

s

b(τ)dτ

)
ds.

Proof of Theorem 3.3. The solution with initial condition x0 of the closed–loop stochastic
system (3.3) expressed by the following:

x(t) = etĀ x0 +

∫ t

0

e(t−s)Ā G(s, x(s))dBs. (3.10)

Using Lemma 2.3, it follows that

||x(t)|| ≤ ||etĀ|| ||x0||+
ε

2

∫ t

0

||e(t−s)Ā||2 ||G(s, x(s))||2ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Using assumption (A1), one obtains

||eĀt|| = ||e(A+ūB)t|| ≤ µ1e
−µ2t, (3.11)

where µ2 ≤ min
1≤i≤n

|Re (λi(A+ ūB)) |.

Based on (3.11) and assumption (A′3), one obtains

||x(t)|| ≤ µ1||x0||e−µ2t +
ε

2
µ2

1e
−2µ2t

∫ t

0

eµ2sζ(s)||x(s)||ds+
2

ε

ln(n)

n
, for all 0 ≤ t ≤ n, n ≥ n0.

Multiplying both sides by eµ2t, it comes that

||x(t)||eµ2t ≤ µ1||x0||+
ε

2
µ2

1e
−µ2t

∫ t

0

eµ2sζ(s)||x(s)||ds+
2

ε

ln(n)

n
eµ2t,

≤ µ1||x0||+
ε

2
µ2

1

∫ t

0

eµ2sζ(s)||x(s)||ds+
2

ε

ln(n)

n
eµ2t, for all 0 ≤ t ≤ n, n ≥ n0.
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Let U(t) = eµ2t||x(t)||, then we see that

U(t) ≤ µ1||x0||+
ε

2
µ2

1

∫ t

0

ζ(s)U(s)ds+
2

ε

ln(n)

n
eµ2t, for all 0 ≤ t ≤ n, n ≥ n0.

Using (2.6), it yields that

U(t) ≤ µ1||x0||+
ε

2
µ2

1

∫ t

0

ζ(s)U(s)ds+
2

ε
αeµ2t,

= µ1||x0||+
ε

2
µ2

1

∫ t

0

ζ(s)U(s)ds+
2

ε

α

µ2

∫ t

0

eµ2sds, for all 0 ≤ t ≤ n, n ≥ n0.

Applying the Gronwall inequality (Corollary 3.5), it yields that

U(t) ≤ µ1||x0|| exp

(∫ t

0

ε

2
µ2

1ζ(s)ds

)
+

∫ t

0

2

ε

α

µ2

eµ2s exp

(∫ t

s

ε

2
µ2

1ζ(τ)dτ

)
ds

≤ µ1||x0|| exp

(∫ +∞

0

ε

2
µ2

1ζ(s)ds

)
+

∫ t

0

2

ε

α

µ2

eµ2s exp

(∫ +∞

0

ε

2
µ2

1ζ(τ)dτ

)
ds,

for all 0 ≤ t ≤ n, n ≥ n0.

Taking into account (3.9), it follows that

U(t) ≤ µ1||x0|| exp
(ε

2
µ2

1Θ
)

+

∫ t

0

2

ε

α

µ2

eµ2s exp
(ε

2
µ2

1Θ
)
ds

≤ µ1||x0|| exp
(ε

2
µ2

1Θ
)

+
2

ε

α

µ2
2

eµ2t exp
(ε

2
µ2

1Θ
)
.

Thus, one obtains

eµ2t||x(t)|| ≤ µ1||x0|| exp
(ε

2
µ2

1Θ
)

+
2

ε

α

µ2
2

eµ2t exp
(ε

2
µ2

1Θ
)
,

for all 0 ≤ t ≤ n, n ≥ n0.

Then, it follows that

||x(t)|| ≤ µ1 exp
(ε

2
µ2

1Θ
)
e−µ2t||x0||+

2

ε

α

µ2
2

exp
(ε

2
µ2

1Θ
)
,

for all 0 ≤ t ≤ n, n ≥ n0.

Letting ε→ 1, it yields that

||x(t)|| ≤ µ1 exp

(
µ2

1Θ

2

)
e−µ2t||x0||+

2α

µ2
2

exp

(
µ2

1Θ

2

)
, a.s.
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Finally, the ball Br with r =
2α

µ2
2

exp

(
µ2

1Θ

2

)
, is almost sure globally uniformly exponentially

stable, that is the stochastic perturbed bilinear system (3.3) is almost sure globally practically
uniformly exponentially stable. 2

Example 3.6. Let consider the following stochastic perturbed bilinear system:

dx(t) = (Ax(t) + uBx(t))dt+ G(t, x(t))dBt, (3.12)

where x = (x1, x2) ∈ R2.

A =

(
2 0
0 −1

)
, B =

(
−1 0
0 0

)
, G(t, x) =

(
G1(t, x)
G2(t, x)

)
,

with {
G1(t, x) = sin(x2)e−ςt

G2(t, x) = e−ςt, ς > 0.

The stochastic system (3.12) can be regarded as a bilinear perturbed system of:

dx(t) = (Ax(t) + uBx(t))dt. (3.13)

The unperturbed nominal system is globally exponentially stabilizable by the constant feedback
ū(x) = σ, σ > 2, since the closed–loop system dx(t) = (A+ ūB)xdt satisfies Reλ(Ã) < 0, as we
can see in the following Fig.1, for σ = 3.

Figure 1: Time evolution of the states x1(t) and x2(t) of the bilinear system (3.13)
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On the other side, we have

||G(t, x)||2 = G2
1(t, x) + G2

2(t, x).

That is, we have
||G(t, x)||2 = sin2(x2)e−2ςt + e−2ςt ≤ 2e−2ςt.

It is clear, that assumption (A3) is satisfied with ϕ(t) =
√

2e−ςt.
Hence, all conditions of Theorem (3.1) are satisfied. Thus, the stochastic perturbed bilinear
system (3.12) is almost sure globally practically uniformly exponentially stable, as we can see
Fig.2 and Fig.3, for ς = 1.

Figure 2: Time evolution of the state x1(t) of the stochastic perturbed bilinear system (3.12),
with five different Brownian motions
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Figure 3: Time evolution of the state x2(t) of the the stochastic perturbed bilinear system (3.12),
with five different Brownian motions

4 Stabilization within a bilinear approximation

In this section, we prove the almost sure local uniform exponential stability to a small ball for
stochastic perturbed affine system. We will investigate the asymptotic behavior of the solutions
in the sense that the trajectories converge to a small ball centered at the origin Br(0, r), r > 0
small enough in such away B(0, r) ⊂ B(0, η) and for all solutions starting from B(0, η) \ B(0, r),
will approach exponentially to B(0, r) for t large enough. We consider the stochastic perturbed
affine system in closed–loop with the constant feedback ū for t large enough.

Let’s consider the following affine system:

dx = (f(x) + ug(x)) dt, (4.1)

where x ∈ Rn is the state vector, u ∈ Rn is the control input vector, f, g are two smooth
functions defined on Rn, with f(0) = 0, g(0) = 0.

Assume that some parameters are excited or perturbed by Brownian motion, and the per-
turbed stochastic system system is given by the following form:

dx(t) = (f(x) + ug(x)) dt+ G(t, x(t))dBt. (4.2)
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where G : R+ × Rn −→ Rn×m, Bt = (B1(t), ..., Bm(t))T is an m-dimensional Brownian
motion defined on a complete probability space (Ω,F ,P). We assume that there exist t such
that G(t, 0) 6= 0.

The associated closed–loop stochastic system with a constant feedback u = ū is expressed by
the following:

dx(t) = (f(x) + ūg(x)) dt+ G(t, x(t))dBt. (4.3)

Since f and g are smooth functions, locally on a certain neighborhood of the origin V(0),
then we can write f(x) and g(x) as the following:

f(x) = Ax+ χ1(x), and g(x) = Bx+ χ2(x),

with

lim
x→0

||χ1(x)||
||x||

= 0, lim
x→0

||χ2(x)||
||x||

= 0.

Then, the closed–loop stochastic system (4.3) can be written as the following:

dx(t) = (Ax+ ūBx) dt+ (χ1(x) + ūχ2(x))dt+ G(t, x(t))dBt, ∀x ∈ V(0). (4.4)

Let χ(x) = χ1(x) + ūχ2(x), then the stochastic system (4.4) can be regarded as follow:

dx = (Ax+ ūBx+ χ(x)) dt+ G(t, x(t))dBt. (4.5)

(A4) There exist two continuous positive functions ϕ1(t) and ϕ2(t), such that

||G(t, x)||2 ≤ e−µ2t (ϕ1(t)||x||+ ϕ2(t)) , ∀x ∈ Rn, t ≥ 0,

where ϕ1 and ϕ2 satisfy, the following condition:∫ +∞

0

ϕ1(s)ds = ϕ̄1 < +∞, (4.6)

and ∫ +∞

0

eµ2sϕ2(s)ds = ϕ̄2 < +∞. (4.7)

Theorem 4.1. Under assumptions (A1) and (A4) the stochastic perturbed affine system (4.3) is
almost surely practically uniformly exponentially stable.

Proof. The solution of the stochastic system (4.5) with initial condition x0 is given by the
following:

x(t) = etĀ x0 +

∫ t

0

e(t−s)Āχ(x(s))ds+

∫ t

0

e(t−s)Ā G(s, x(s))dBs. (4.8)
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Similar to the proof of Theorem (3.1), under assumption (A1) and Lemma 2.3, we obtain

||x(t)|| ≤ µ1||x0||e−µ2t +

∫ t

0

µ1e
−µ2(t−s)χ(x(s))ds+

ε

2

∫ t

0

µ2
1e
−2µ2(t−s)||G(s, x(s))||2ds+

2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Since, lim
x→0

||χ(x)||
||x||

= 0, then for a given constant δ > 0, there exists η0 > 0, such that ∀x ∈

B(0, η0) ⊂ B(0, η), for all t ≥ 0, one obtains

||χ(x)|| ≤ δ||x||.

For δ =
θµ2

µ1

, it yields that

||χ(x)|| ≤ θµ2

µ1

, 0 < θ < 1.

Taking into account assumption (A4), we have

||x(t)|| ≤ µ1||x0||e−µ2t + µ1

∫ t

0

e−µ2(t−s) θµ2

µ1

||x(s)||ds+
ε

2

∫ t

0

µ2
1e
−2µ2(t−s)

× e−µ2s (ϕ1(s)||x(s)||+ ϕ2(s)) ds+
2

ε

ln(n)

n

= µ1||x0||e−µ2t + θµ2e
−µ2t

∫ t

0

eµ2s||x(s)||ds

+
ε

2
µ2

1e
−2µ2t

∫ t

0

eµ2s (ϕ1(s)||x(s)||+ ϕ2(s)) ds+
2

ε

ln(n)

n
,

for all 0 ≤ t ≤ n, n ≥ n0.

Multiplying both sides by eµ2t, one obtains

eµ2t||x(t)|| ≤ µ1||x0||+ θµ2

∫ t

0

eµ2s||x(s)||ds+
ε

2
µ2

1e
−µ2t

∫ t

0

eµ2s (ϕ1(s)||x(s)||+ ϕ2(s)) ds+
2

ε

ln(n)

n
eµ2t

≤ µ1||x0||+ θµ2

∫ t

0

eµ2s||x(s)||ds+
ε

2
µ2

1

∫ t

0

eµ2s (ϕ1(s)||x(s)||+ ϕ2(s)) ds+
2

ε

ln(n)

n
eµ2t,

for all 0 ≤ t ≤ n, n ≥ n0.

Let Ṽ (t) = eµ2t||x(t)||, we see that

Ṽ (t) ≤ µ1||x0||+ θµ2

∫ t

0

Ṽ (s)ds+
ε

2
µ2

1

∫ t

0

ϕ1(s)Ṽ (s)ds+
ε

2
µ2

1

∫ t

0

eµ2sϕ2(s)ds+
2

ε

ln(n)

n
eµ2t,
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for all 0 ≤ t ≤ n, n ≥ n0.

Using (2.6), we obtain

V̄ (t) ≤ µ1||x0||+
∫ t

0

(
θµ2 +

ε

2
µ2

1ϕ1(s)
)
Ṽ (s)ds+

ε

2
µ2

1

∫ t

0

eµ2sϕ2(s)ds+
2

ε
αeµ2t

≤ µ1||x0||+
∫ t

0

(
θµ2 +

ε

2
µ2

1ϕ1(s)
)
Ṽ (s)ds+

ε

2
µ2

1

∫ +∞

0

eµ2sϕ2(s)ds+
2

ε
αeµ2t,

for all 0 ≤ t ≤ n, n ≥ n0.

Now, using condition (4.7), it yields that

V (t) ≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
+

∫ t

0

(
θµ2 +

ε

2
µ2

1ϕ1(s)
)
Ṽ (s)ds+

2

ε

α

µ2

∫ t

0

eµ2sds,

for all 0 ≤ t ≤ n, n ≥ n0.

Applying, the Gronwall lemma 3.5, one obtains

V̄ (t) ≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
exp

(∫ t

0

θµ2 +
ε

2
µ2

1ϕ1(s)ds

)
+

∫ t

0

2

ε

α

µ2

eµ2s exp

(∫ t

s

θµ2 +
ε

2
µ2

1ϕ1(τ)dτ

)
ds,

for all 0 ≤ t ≤ n, n ≥ n0.

Thus, we have

V̄ (t) ≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
exp(θµ2t) exp

(
ε

2
µ2

1

∫ +∞

0

ϕ1(s)ds

)
+

∫ t

0

2

ε

α

µ2

eµ2se(t−s)θµ2 exp
(ε

2
µ2

1ϕ̄1

)
ds,

for all 0 ≤ t ≤ n, n ≥ n0.

Based on condition (4.6), it yields that

V̄ (t) ≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
exp(θµ2t) exp

( ε
2
µ2

1ϕ̄1

)
+

2

ε

α

µ2

exp
(ε

2
µ2

1ϕ̄1

)
eθµ2t

∫ t

0

eµ2(1−θ)sds

≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
exp(θµ2t) exp

( ε
2
µ2

1ϕ̄1

)
+

2

ε

α

µ2

exp
(ε

2
µ2

1ϕ̄1

) 1

µ2(1− θ)
eθµ2teµ2(1−θ)t,
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for all 0 ≤ t ≤ n, n ≥ n0.

That is, one obtains

V̄ (t) ≤
(
µ1||x0||+

ε

2
µ2

1ϕ̄2

)
exp(θµ2t) exp

( ε
2
µ2

1ϕ̄1

)
+

2

ε

α

µ2

exp
(ε

2
µ2

1ϕ̄1

) 1

µ2(1− θ)
eµ2t,

for all 0 ≤ t ≤ n, n ≥ n0.

As a consequence, we deduce

||x(t)|| ≤ µ1 exp
( ε

2
µ2

1ϕ̄1

)
||x0||e−µ2(1−θ)t +

ε

2
µ2

1ϕ̄2 exp
( ε

2
µ2

1ϕ̄1

)
e−µ2(1−θ)t

+
ε

2

α

µ2

1

µ2(1− θ)
exp

(
2

ε
µ2

1ϕ̄1

)
,

for all 0 ≤ t ≤ n, n ≥ n0.

That is,

||x(t)|| ≤ µ1 exp
( ε

2
µ2

1ϕ̄1

)
||x0||e−µ2(1−θ)t +

ε

2
µ2

1ϕ̄2 exp
( ε

2
µ2

1ϕ̄1

)
+

2

ε

α

µ2

1

µ2(1− θ)
exp

( ε
2
µ2

1ϕ̄1

)
,

for all 0 ≤ t ≤ n, n ≥ n0.

Letting, ε→ 1, it follows that

||x(t)|| ≤ µ1 exp

(
1

2
µ2

1ϕ̄1

)
||x0||e−µ2(1−θ)t +

1

2
µ2

1ϕ̄2 exp

(
1

2
µ2

1ϕ̄1

)
+

2α

µ2
2(1− θ)

exp

(
1

2
µ2

1ϕ̄1

)
, a.s.

Finally, the ball Br with r = 1
2
µ2

1ϕ̄2 exp
(

1
2
µ2

1ϕ̄1

)
+

2α

µ2
2(1− θ)

exp
(

1
2
µ2

1ϕ̄1

)
, is almost sure uni-

formly exponentially stable, thus the stochastic perturbed affine system (4.3) is almost surely
practically uniformly exponentially stable. 2

Example 4.2. Let consider the following stochastic perturbed affine system: dx1(t) = (x1 cos(x1)− u sin(x1)) dt+

(
e−t/2√
ch(t)

√
|x1|+ e−ϑ/2t

)
dBt

dx2(t) = (−x1 − sin(x2) cos(x1)) dt, ϑ > 2.

(4.9)
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The previous system can be written as:

dx(t) = (f(x(t)) + ug(x(t)))dt+ G(t, x(t))dBt, (4.10)

with x = (x1, x2) ∈ R2 is the state of the system, u ∈ R is the input,

f(x) =


x1 cos(x1)

−x1 − sin(x2) cos(x1).
, g(x) =


−2 sin(x1)

0.
,G(t, x) =


e−t/2√
ch(t)

√
|x1|+ e−ϑ/2t

0.

The stochastic system (4.10) can be regarded as a perturbed affine system of the following:

dx(t) = (f(x) + ug(x))dt. (4.11)

The bilinear approximation for the associated nominal system of (4.11) is the following:

dx(t) = (Ax+ uBx) dt, (4.12)

where

A =

(
1 0
−1 −1

)
, B =

(
−1 0
0 0

)
.

Notice that, the previous approximation can be done in a small neighborhood of the origin. It

means that there exists η > 0, such that for all x ∈ B(0, η) the passage from affine system to
bilinear system is possible. The objective is to seek a constant r > 0 small enough in such away
B(0, r) ⊂ B(0, η) and all solutions starting from B(0, η) \ B(0, r), will approach exponentially to
B(0, r) for t large enough. The unperturbed nominal bilinear system (4.12) is globally uniformly
exponentially stabilizable by the constant feedback ū(x) = u0, u0 > 1, since the closed–loop system

dx(t) = (A+ ūB)xdt satisfies Reλ(Ã), as we can see in Fig.4 (for u0 = 2). That is, one has
the following estimation:

||et(A+ūB)|| ≤ µ1e
−µ2t.
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Figure 4: Time evolution of the state x1(t) and x2(t) of the bilinear system (4.12)

In the sequel, we will choose µ2 = 1. On the other side, based on the fact that, (a + b)n ≤
2n−1(an + bn), for all a, b ≥ 0, n ≥ 1, one obtains:

||G(t, x)||2 ≤ 2
e−t

ch(t)
|x1|+ 2e−ϑt

≤ e−t
(

2

ch(t)
||x||+ 2e−(ϑ−1)t

)
= e−t (ϕ1(t)||x||+ ϕ2(t)) ,

where ϕ1(t) =
2

ch(t)
and ϕ2(t) = 2e−(ϑ−1)t, which satisfy both conditions (4.6) and (4.7) of

Theorem 4.1. That is, all conditions of Theorem 4.1 are fulfilled and then stochastic perturbed
affine system (4.9) is almost surely practically uniformly exponentially stable, as shown in Fig.4
and Fig.5, for ϑ = 4.
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Figure 5: Time evolution of the state x1(t) of the stochastic affine system (4.9), with five different
Brownian motions

Figure 6: Time evolution of the state x2(t) of the stochastic affine system (4.9), with five different
Brownian motions
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5 Conclusion

In this paper, we investigate the problem of stabilization of stochastic perturbed control–bilinear
systems under some restrictions on the bound of perturbations. Also, we prove that the problem
of stabilization of stochastic perturbed affine system can be performed by considering a bilin-
ear approximation. The principal technical tool for deriving stabilization results is generalized
Gronwall inequalities. Further, we provide different examples to validate the developed methods.
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