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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• NIR LOCAL models improve accuracy in 
estimating nutritional value of elephant 
grass. 

• Adequate configuration of parameters 
for LOCAL calibrations reduces 
computing time. 

• Appropriate graph display allows de
cisions about LOCAL algorithm 
configuration. 

• Nutritive evaluation of forages by NIRS 
could avoid the use of fistulated 
animals.  
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A B S T R A C T   

Elephant grass is a tropical forage widely used for livestock feed. The analytical techniques traditionally used for its 
nutritional evaluation are costly and time consuming. Alternatively, Near Infrared Spectroscopy (NIRS) technology 
has been used as a rapid analysis technique. However, in crops with high variability due to genetic improvement, 
predictive models quickly lose accuracy and must be recalibrated. The use of non-linear models such as LOCAL 
calibrations could mitigate these issues, although a number of parameters need to be optimized to obtain accurate 
results. The objective of this work was to compare the predictive results obtained with global NIRS calibrations and 
with LOCAL calibrations, paying special attention to the configuration parameters of the models. 

The results obtained showed that the prediction errors with the LOCAL models were between 1.6 and 17.5 % 
lower. The best results were obtained in most cases with a low number of selected samples (n = 100–250) and a 
high number of PLS terms (n = 20). This configuration allows a reduced computation time with high accuracy, 
becoming a valuable alternative for analytical determinations that require ruminal fluid, which would improve 
the welfare of the animals by avoiding the need to surgically prepare animals to estimate the nutritional value of 
the feeds.  
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1. Introduction 

Determining the nutritional characteristics of the feed supplied to 
livestock is essential for decision-making when planning feed manage
ment on farms. However, this activity entails frequent analyses, espe
cially for forages, since their composition can undergo significant 
variations depending on the growth stage, type of management carried 
out, climate conditions, season and fertilization [1]. 

Elephant grass (Pennisetum purpureum Schum.) is a type of forage 
widely produced in countries with a tropical climate in Africa and South 
America, where it is consumed by grazing animals or provided by cut- 
and-carry system, or preserved as silage [2]. This species is even used 
for biofuel production [3]. The main parameters used for evaluating the 
quality of elephant grass forage are crude protein (CP), acid detergent 
fibre (ADF), neutral detergent fibre (NDF) and total digestible nutrients 
(TDN) [4], together with in vitro dry matter digestibility (IVDMD). Most 
of those analytical determinations are expensive, time consuming and 
require the use of chemical reagents, which could lead to environmental 
and operator health risks. Furthermore, it is worth mentioning that ef
forts have been made by the scientific community to develop methods 
that reduce the time and cost of research, and at the same time minimize 
the use of cannulated animals in the rumen, in order to ensure their 
welfare. In this sense, the use of predictive models that allow estimating 
the nutritional value of feed accurately, without having to use ruminal 
fluid extracted from fistulated animals, would be of great help to 
improve the animal welfare of experimental animals. As an alternative, 
NIRS technology (near infrared reflectance spectroscopy) could be 
considered an interesting analytical method for the quality of this forage 
as it presents a high analysis speed, lower cost, it is not polluting since it 
does not use chemical reagents, in addition to making it possible to 
dispense with the use of surgically prepared animals usually required for 
indigestible neutral detergent fibre (iNDF) or IVDMD determinations 
[5]. 

The basis of this spectroscopic method is the absorption of radiation 
at specific wavelengths by certain molecular bonds in the near infrared 
(NIR) region (1100–2500 nm): O–H, C–H, N–H, and C–O. Due to the 
presence of these kind of molecular bonds in agricultural products, NIRS 
technology has been successfully used for the evaluation of quality of 
food [6,7], forage [5,8] and, particularly, for nutritive value and/or 
ethanol conversion yield of kikuyu and elephant grass [3,9,10]. 

Most of the published works on the use of NIRS in forage analysis 
have been developed with global calibrations, using linear models (such 
as Partial Least Squares Regression, PLSR) that work properly when the 
calibration group for the studied product is homogeneous and the 
number of samples is relatively low. For this purpose, Shenk et al. [11] 
recommended creating a training data set including all possible sources 
of variation that might be encountered during prediction. However, 
although this strategy generally increases the robustness of the cali
brations, it tends to decrease their precision if the collective is highly 
variable and/or very broad. This decrease in the precision of the cali
brations is especially significant for highly variable crops due to 
breeding programs, such as elephant grass, where year after year the 
concentrations of the constituents of interest increase, resulting in a non- 
linear adjustment for the highest values [12]. In this sense, Barton et al. 
[13] proposed three approaches to deal with highly variable and large 
sample populations: 1) accept the loss of precision or develop specific 
calibrations for subsets within the general population, 2) use artificial 
neural networks for regression purposes dealing with non-linearity, 3) 
use of local approaches based on the development of specific calibra
tions for each one of the samples to be predicted. Regarding the third of 
these mentioned options, Berzaghi et al. [14] stated that the use of the 
LOCAL algorithm [11] would avoid the need to choose between preci
sion and robustness of a calibration. 

The LOCAL algorithm was developed to manage very large spectral 
libraries. In a first step, it looks for similar spectra to the unknown 
sample using the correlation between the spectrum of that sample and 

the rest of spectra in the library and, then, it develops a specific PLS 
regression for the sample, dealing with non-linearity. This algorithm has 
proven to be very useful for improving the precision in calibrations 
developed for a series of agricultural products and analytical parame
ters, among which we can highlight compound feeds [15–17], fruits 
[18–22], vegetables [12,23], multi-product data bases [14] and even 
forages [24,25]. 

However, for the correct operation of the LOCAL algorithm, it is 
necessary to configure a series of previous settings, not only for the math 
pretreatments that are applied to spectral data, such as derivatives, but 
also for the minimum number of samples that will be selected for the 
development of calibrations, the maximum number of PLS terms, and 
the number of first PLS factors to be removed [17,26]. In this sense, one 
of the outstanding drawbacks of this method is the need to perform a 
regression with some selected samples to predict each unknown sample. 
It is possible that not enough samples similar to the sample to be pre
dicted will be found to provide an acceptable estimate, which can cause 
the NIRS application to fail [15]. Despite the high power of modern 
computers used in calculations, when the number of samples in the 
spectral library is very high, the time consumed in processing the in
formation can be significantly prolonged [26]. Therefore, it would be 
very useful to have precise information on the most appropriate range of 
these parameters to obtain precise estimates for the desired parameters 
in various types of products. For this reason, the present study was 
conducted in which the prediction errors of models developed to esti
mate nutritive values in elephant grass with global calibrations and with 
the LOCAL algorithm will be compared, selecting the most appropriate 
configuration to optimize the results with the non-linear model. A 
graphical approach will be tested for decision making on the optimiza
tion of the configuration parameters of the LOCAL algorithm. 

2. Materials and methods 

2.1. Characterization of sites, experiments and samples 

A total of 993 elephant grass forage samples from different trials (1, 2 
and 3) were used. The trials were carried out in two locations during two 
different seasons: rainy (October to April) and dry (May to September). 
The first and third trial were carried out at the Experimental Farm of the 
Federal University of Mato Grosso, in Santo Antônio de Leverger-MT, 
located at 15◦51′ South Latitude and 56◦04′ West Longitude of Green
wich, 140 m altitude. The second experiment was carried out in the 
Experimental Field of the Mato Grosso Rural Research, Assistance and 
Extension Company (EMPAER), in Cáceres MT, located at 16◦09′04′′

South Latitude; 57◦38′03′′ West Longitude; altitude of 157 m. The 
climate in both places, according to the Köppen classification, is of the 
Aw type, that is, a megathermic tropical climate, characterized by two 
well-defined seasons: rainy and dry. 

In trial 1 (2017–2018), the cultivar BRS Canará, launched by 
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) in 2012, was 
used. There, 168 forage samples were collected from weekly cuts at 21 
ages (from 21 to 161 days), along two seasons (rainy and dry), with four 
repetitions. 

In trial 2 (2018–2019), 13 cultivars were used (BRS Canará, 
Cameroon, Napier, Vruckwona, Guaçu, Taiwn A-25, Porto Rico, Cubano 
Pinda, Piracicaba 241, Cuba 116, Mercker, CNPGL clones 93–41-1 and 
91–25-1), making cuts in the rainy season at 15 ages (16; 30; 45; 58; 74; 
86; 98, 105; 115; 130; 143; 171; 186; 200; 215 days) with three repe
titions, totalling 585 samples. 

In trial 3 (2018–2019), five cultivars (Vruckwona, BRS Capiaçu, 
Napier, BRS Canará and Cameron) were used, making cuts in the rainy 
and dry seasons at 6 ages (30; 45; 60; 75; 90; 105 days) with four rep
etitions, totalling 240 samples. 

Each parcel was 5.00 m long and 4.00 m wide, with a line spacing of 
1.00 m. The usable area was the central 4.00 m of the two lines in the 
middle of each plot (Fig. 1). The cultivars were harvested at the 
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recommended ages, and the cut was made with a machete near the 
ground. After cutting, the material was chopped to a size of 2 cm. Then, 
forage samples were placed in paper bags and dried in a forced venti
lation oven at 55 ± 5 ◦C for 72 h. The previously dried samples were 
weighed and ground in a Wiley mill with a 1.0 mm screen, and stored in 
polyethylene containers to evaluate their bromatological composition. 

The contents in mineral matter (Ash) and CP were evaluated, ac
cording to Helrich [27]; neutral (NDIP) and acid detergent insoluble 
protein (ADIP), according to Licitra et al. [28]; NDF and ADF, according 
to Van Soest [29]; iNDF, according to Cochran et al. [30]; neutral and 
acid detergent fiber corrected for ash and protein (NDFap; ADFap) and 
ash insoluble in neutral and acid detergent (NDFA; ADFA), according to 
Detmann et al. [31]. The hemicellulose content was determined by the 
difference between NDF and ADF. 

The contents of TDN, net lactation energy (NLE) and in vitro organic 
matter digestibility (IVOMD) were estimated, according to Cappelle 
et al. [32] (Equations 1, 2 and 3):  

TDN = 88.9 - (ADF × 0.779);(1)                                                             

NLE = 2.39 - (ADF × 0.028).(2)                                                              

IVOMD = 84.86 - (NDF × 0.41).(3)                                                         

2.2. Spectra collection 

Reflectance spectra of dried and ground forage samples were ob
tained on a Foss-NIRSystems 6500 SY-II monochromator (Foss NIRSys
tems, Silver Spring, MD), from 400 to 2498 nm, every 2 nm (spectral 
bandpass 10 nm ± 1 nm). Analysis was performed using a transport 
module. Samples were scanned using a ¼ rectangular cup (4.6 cm wide 
and 5.7 cm long), being the spectrum of each sample the average of two 
forage sub-samples. 

All spectra were manipulated and processed, and all calibration 
equations were obtained using WINISI software version 1.5 (Infrasoft 
International, State College, PA). 

2.3. Selection of training and external validation data sets 

Appropriate selection of representative samples for calibration and 
validation is crucial, as both of them should include all the variables 
affecting spectral attributes, they have to be placed at boundary of the 
category and filling the group space uniformly [33]. When the LOCAL 
regression method is used, the stability of the predictions is achieved 
using large spectral libraries that cover all the expected variability for 
the product and parameter analysed [26]. 

In this work, samples for training and validation sets were chosen 

using a structured selection based on the Global Mahalanobis (GH) 
distance of each sample to the centre of the spectral population, after 
spectral pre-treatment with Standard Normal Variate (SNV) and Detrend 
and first derivative 1,5,5,1 – where the first digit indicates the order of 
the derivative; the second is the derivative gap; the third is the 
smoothing segment and the fourth is the second smoothing segment 
[34]. Then, once all samples were sorted from lower to higher GH 
values, it was selected one of every-four samples for the validation set 
and the remaining samples for calibration. The composition of the 
training and validation sets is showed in Table 1. 

2.4. Development of global calibration models based on Visible-NIR and 
external validation 

The study was performed in the Vis-NIR spectral range (400–2498 
nm). Predictive models for each variable were developed using Modified 
Partial Least Squares Regression (MPLSR) [35] with the PLS1 algorithm 
for comparison purposes. Cross validation was used to determine the 
ideal number of factors for the regression models and to avoid over
fitting. Validation errors were combined to obtain a standard cross 
validation error (SECV). 

Spectral dispersion was corrected using the Standard Normal Variate 
(SNV) and Detrending (Dt) spectral pre-treatments [36]. Six spectral 
derivatives (1,5,5,1; 1,10,5,1; 1,10,10,1; 2,5,5,1; 2,10,5,1; 2,10,10,1) 
were also applied. 

Outliers were identified and removed during the calibration process, 
as they could affect model performance and decrease precision for most 
samples. A maximum of two outliers deletion passes (T and H) were 
performed before completing the final calibration [37]. T outliers cor
responded to samples with significant differences between their pre
dicted and laboratory values, while H outliers were samples with 
extreme spectral distances (H greater than 3) to the center of the cali
bration group [35]. 

MPLSR models were evaluated in terms of their calibration statistics, 
namely standard error of calibration (SEC), calibration determination 
coefficient (R2), SECV and determination coefficient for cross validation 
(r2). 

All equations were then evaluated by external validation, through 
the determination of the bias and the standard error of performance bias 
corrected (SEP(C)). 

In this study, the following limits were used for the evaluation of 
calibrations developed with more than 100 samples, with validation sets 
containing more than 9 samples [34]:  

Limit Control for SEP(C) = 1.30 × SEC                                                    

Limit control for Bias = ± 0.60 × SEC                                                    

Another statistic used was the RPD or ratio of the standard deviation 

Fig. 1. Plot design used in the study.  
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of the original data (SD) to SEP [38]. Best calibrations were selected 
based on the higher r2 and RPD values and lower SEP. 

2.5. Development and validation of prediction models using the LOCAL 
algorithm 

In this study, LOCAL algorithm described by Shenk et al. [11] was 
compared with global calibrations using MPLS regression. As it was 
stated before, different parameters must be evaluated in order to opti
mize the LOCAL algorithm. In this work, an optimization design was set 
up by varying the number of samples to select from the spectral library 
(k) from 50 to 300 in steps of 50; the maximum number of PLS terms to 
be used (l) (10, 15 and 20); and the number of predicted values gener
ated with the first PLS terms to be excluded from the calculation of final 
predicted values (m) (2, 3 and 4). In total, 54 combinations of configu
ration parameters were applied to each analytical determination and 
calculated in batch mode. 

Furthermore, for each parameter analysed, the same mathematical 
signal pre-treatments tested with global calibrations were evaluated 
with LOCAL, and results obtained were evaluated using the same sta
tistics described above for the validation of global equations. 

3. Results 

3.1. Calibration and validation data sets 

Selection of samples for the validation data set based on the GH 
values of samples led to a similar distribution for the mean, minimum, 
maximum and standard deviation values for all the analytical parame
ters studied, as shown in Table 1. This configuration is very convenient 
for an accurate estimation of the predictive capacity of the global and 
LOCAL models developed in this work using external validation. 

3.2. Features of the developed global calibrations 

Global calibrations were obtained based on the visible and NIR 
spectra (400–2500 nm) for the estimation of the bromatological 
composition of elephant grass forage (Table 2). Although there is no 
derivative that stands out for its best results in general terms, it can be 
observed that the best predictive models have been obtained with sec
ond derivatives (2,5,5,1 and 2,10,5,1). 

For the evaluation of the performance of the models developed, the 
determination coefficients for cross validation showed excellent values 
for CP and iNDF (0.95 and 0.89, respectively), while for Ash, ADIP, 
NDFA, NDIP and ADFap good values of r2 were obtained (0.85, 0.79, 
0.77, 0.76 and 0.71, respectively). 

Lower r2 values were found for the estimation of ADF and NDF and 

for the parameters calculated from them (Hem, TDN, NLE and IVOMD); 
as well as for ADFA and NDFap. Nevertheless, all of them are above 0.50 
and, according to Shenk and Westerhaus [39], these results enable to 
distinguish between low, medium and high values of these parameters. 

According to RPD values [38], calibration for CP is classified as fair, 
and could be used for screening purposes; Ash and iNDF are classified as 
poor, and could be used for very rough screening; and the rest are 
classified as very poor, with not recommended use. However, this 
classification was designed for calibrations developed for very homo
geneous products, and should be less restrictive for heterogeneous 
products such as forages. 

3.3. Configuration of the LOCAL algorithm for elephant grass calibrations 

Statistics for selected LOCAL calibrations are displayed in Table 3. 
The number of selected samples (k) ranged between 100 and 300, the 
lowest number being associated with the best predictive models. 

The maximum number of PLS terms to be used was the highest 
possible value for most of the selected models (l = 20). Although this is a 
relatively low number of terms, excluding 3–4 of the first terms was 
found to improve predictive results. The number of PLS terms to be 
excluded in the calculations (m) in about half of the selected models 
were 4, although most of them (except iNDF) were the ones with the 
lowest predictive capacity. 

In order to delve into the effect of the configuration parameters of the 
LOCAL algorithm (k, l and m) on the predictive ability of the developed 
models, a graphical approach has been performed for selected parame
ters with excellent (CP), moderate (iNDF and Ash) and poor predictive 
results (NDF). 

Fig. 2 shows the evolution of the SEP(C) values for the estimate of CP 
as a function of the configuration parameters of the LOCAL algorithm (k, 
l and m) and of the derivatives used in the calculation. In most cases, and 
particularly for second derivatives and with l values of 20 PLS terms, a 
minimum value was observed for k = 100. Above this number of selected 
samples, the error values increased significantly. For this parameter, one 
of the best estimated with LOCAL and global calibrations, lower errors 
were observed for high l and low m values. 

The models developed for estimation of Ash showed a different 
behaviour (Fig. 3). It is clear that these are more complex models that 
require a greater number of PLS terms to be able to make correct pre
dictions, although it was also necessary to exclude a greater number of 
the first PLS terms in order to optimize results. For this constituent, 
depending on the derivative used, minimum error values were obtained 
by selecting between 100 and 200 samples. 

The models developed for iNDF (Fig. 4) had a different response to 
those already described. Regardless of the derivative used, the starting 
point was high error values for a low number of selected samples and, 

Table 1 
Composition of calibration (n = 705) and validation (n = 235) data sets.   

Calibration data set Validation data set  

Min Max Mean SD Min Max Mean SD 

Ash (%)  3.29  21.18  9.97  2.70  3.19  18.89  10.18  2.64 
CP (%)  1.00  16.59  5.44  3.24  1.79  15.88  5.59  3.50 
NDF (%)  54.98  87.74  71.54  4.64  56.52  82.30  71.37  4.62 
ADF (%)  30.08  63.35  49.67  6.41  29.32  62.81  49.30  6.71 
HEM (%)  5.58  39.56  21.87  5.65  11.18  39.96  22.06  6.07 
TDN (%)  39.55  62.13  49.78  4.18  39.97  62.13  49.97  4.25 
NLE (Mcal.kg− 1)  0.62  1.55  1.00  0.18  0.63  1.57  1.01  0.19 
IVOMD (%)  41.35  63.56  51.53  4.30  41.76  63.56  51.72  4.37 
NDIP (%)  0.69  3.74  1.63  0.64  0.70  3.52  1.60  0.62 
ADIP (%)  0.45  2.67  1.07  0.43  0.39  2.57  1.06  0.43 
NDFA (%)  0.11  6.85  3.40  1.29  0.72  6.60  3.45  1.20 
ADFA (%)  0.63  5.60  2.49  0.87  0.69  4.56  2.46  0.82 
NDFap (%)  51.98  82.54  66.56  4.90  53.12  79.95  66.26  4.50 
ADFap (%)  27.83  59.02  45.59  6.32  27.58  59.12  44.93  6.50 
iNDF (%)  12.62  60.20  32.08  8.32  14.74  54.30  32.62  8.41  
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above 100 samples, a level was reached where the variations were 
minimal, with a slight upward trend with the first derivatives. With k 
values greater than 150, lower errors were obtained when the number of 
PLS terms was higher and a greater number of terms were excluded (m 
> 3). 

The results for the models developed for NDIP (data not shown) were 
similar to those already described for CP, while those obtained for ADIP 
were similar to those discussed for iNDF. 

The magnitude of the differences found in the errors, as a function of 
the LOCAL configuration parameters used, were much higher when the 
predictive capacity of the models was lower, as can be seen for the 
calibrations obtained for NDF (Fig. 5). For this constituent, the best re
sults were obtained with first derivatives, k = 150, l = 20 and m > 2. 

3.4. External validation of global and LOCAL models 

External validation of global calibrations (Table 4) confirmed that 
for some of the parameters with the worst calibration statistics (NDF, 
Hem, TDN, IVOMD and NDFap) the quality criteria defined by Shenk 
et al. [34] for coefficient of determination values were not met. How
ever, the specific quality criteria (maximum value for SEP(C) = 1.30 ×
SEC and Bias limits =± 0.60 × SEC) did not indicate any nonconformity 
for the selected equations. 

Validation statistics for best LOCAL models selected from the 54 
combinations of configuration parameters for each of the 6 derivatives 
implemented are showed in Table 3. The influence on the predictive 
results of the pretreatments used as well as the LOCAL configuration 
parameters is particularly relevant. In general, there was no coincidence 

in the derivative that provided better results in global and local cali
brations, although most models with better statistics in LOCAL were 
usually obtained with a second derivative (2,5,5,1). 

It was evident the decrease in predictive errors with LOCAL cali
brations compared to global ones. In Table 5 it can be observed that the 
improvements imply reductions in the SEP(C) between 1.62 and 17.55 
%, with an average value of 9.53 %. 

4. Discussion 

Results obtained with global calibrations developed for elephant 
grass forage in this study were similar to those reported by Lobos et al. 
[40]. These authors evaluated the quality of samples of several perma
nent pasture species (Lolium perenne, Agrostis sp, Holcus lanatus, Bromus 
valdivianus, Dactylis glomerata, Medicago sativa, Trifolium pratense and 
T. repens), using NIRS and obtaining values of coefficient of determi
nation suitable for the estimation of the CP content (R2 = 0.99). How
ever, SECV values obtained in the present work were lower than those 
reported for kikuyu grass (SECV = 1.14) [41] and for tropical forages 
(SECV = 0.8) [42] and similar to those obtained for Tifton 85 grass (SEC 
= 0.60) [43]. 

Another of the constituents that was estimated with adequate pre
cision with global calibrations was Ash, despite the fact that it is 
assumed that minerals do not absorb in the NIR region. For this 
parameter, the results could only be compared with those obtained by 
Serafim et al. [43] for Tifton 85 grass (Cynodon spp.), where lower SEC 
values were reported than those of this work (SEC = 0.38; R2 = 0.84). 

The statistics of global calibrations obtained for ADF, NDF and the 

Table 2 
Calibration statistics for selected global equations.  

Constituent N Derivative Mean SD SEC R2 SECV r2 RPD 

ASH (%) 668 2,5,5,1  10.05  2.54  0.89  0.88  0.99  0.85  2.6 
CP (%) 675 2,10,5,1  5.33  3.19  0.64  0.96  0.69  0.95  4.6 
NDF (%) 679 2,5,5,1  71.73  4.29  2.72  0.60  2.91  0.54  1.5 
ADF (%) 702 2,10,5,1  49.69  6.39  3.63  0.68  3.91  0.63  1.6 
HEM (%) 685 2,5,5,1  21.84  5.42  3.47  0.59  3.80  0.51  1.4 
TDN (%) 696 2,10,5,1  49.72  4.13  2.68  0.58  2.88  0.52  1.4 
NLE (Mcal.kg-1) 696 1,5,5,1  1.00  0.18  0.10  0.69  0.11  0.64  1.7 
IVOMD (%) 696 2,10,5,1  51.47  4.26  2.65  0.61  2.84  0.56  1.5 
NDIP (%) 571 2,5,5,1  1.62  0.62  0.28  0.79  0.31  0.76  2.0 
ADIP (%) 637 2,5,5,1  1.03  0.40  0.16  0.83  0.18  0.79  2.2 
NDFA (%) 586 1,10,5,1  3.43  1.27  0.54  0.82  0.60  0.77  2.1 
ADFA (%) 533 2,5,5,1  2.47  0.80  0.50  0.61  0.52  0.58  1.5 
NDFap (%) 511 1,5,5,1  66.60  4.70  2.73  0.66  3.09  0.57  1.5 
ADFap (%) 553 1,5,5,1  45.60  6.24  3.13  0.75  3.39  0.71  1.8 
iNDF (%) 641 1,10,10,1  31.98  8.05  2.58  0.90  2.68  0.89  3.0  

Table 3 
Configuration parameters and validation statistics for selected LOCAL calibrations.  

Constituent Deriv. k l m SEP Bias SEP(C) Slope R2 GH NH 

Ash (%) 1,5,5,1 100 20 3  1.00  0.07  1.00  0.94  0.86  0.89  0.45 
CP (%) 2,10,5,1 100 20 2  0.74  − 0.10  0.73  1.01  0.96  0.87  0.35 
NDF (%) 1,5,5,1 150 20 3  3.11  − 0.19  3.11  0.98  0.55  0.94  0.55 
ADF (%) 2,5,5,1 300 20 4  3.70  − 0.06  3.71  1.07  0.70  0.96  0.46 
HEM (%) 1,5,5,1 100 10 4  3.78  − 0.07  3.79  1.02  0.61  0.92  0.29 
TDN (%) 2,5,5,1 300 20 4  2.81  0.00  2.81  1.07  0.57  0.98  0.48 
NLE (Mcal.kg− 1) 2,5,5,1 300 20 4  0.10  0.00  0.10  1.08  0.70  0.96  0.46 
IVOMD (%) 2,5,5,1 300 20 4  2.77  − 0.01  2.77  1.05  0.60  0.98  0.47 
NDIP (%) 2,5,5,1 150 20 2  0.30  0.00  0.31  0.98  0.76  1.02  0.41 
ADIP (%) 1,5,5,1 200 15 3  0.22  − 0.02  0.22  0.97  0.75  1.68  0.22 
NDFA (%) 2,10,5,1 100 20 2  0.63  − 0.04  0.63  0.95  0.73  1.26  0.62 
ADFA (%) 1,5,5,1 150 20 4  0.54  − 0.04  0.54  0.93  0.56  1.14  0.65 
NDFap (%) 1,10,5,1 150 20 4  3.29  − 0.32  3.29  0.93  0.47  1.36  0.81 
ADFap (%) 1,5,5,1 100 10 2  3.34  − 0.19  3.34  1.06  0.74  1.06  0.28 
iNDF (%) 2,5,5,1 250 20 4  3.32  0.59  3.27  0.99  0.85  1.16  0.40 

K: number of samples to select from the spectral library; l: maximum number of PLS terms to be used; m: number of predicted values generated with the first PLS terms 
to be excluded from the calculation of final predicted values; GH: average global H value; NH: average neighbourhood H value. 
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Fig. 2. SEP(C) values for LOCAL calibrations developed for CP according to maximum number of PLS terms and number of excluded terms (l-m) and number of 
selected samples (k) (horizontal axis). a) Derivative 1,5,5,1; b) derivative 1,10,5,1; c) derivative 1,10,10,1; d) derivative 2,5,5,1; e) derivative 2,10,5,1 and f) de
rivative 2,10,10,1. 

Fig. 3. SEP(C) values for LOCAL calibrations developed for Ash according to maximum number of PLS terms and number of excluded terms (l-m) and number of 
selected samples (k) (horizontal axis). a) Derivative 1,5,5,1; b) derivative 1,10,5,1; c) derivative 1,10,10,1; d) derivative 2,5,5,1; e) derivative 2,10,5,1 and f) de
rivative 2,10,10,1. 
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Fig. 4. SEP(C) values for LOCAL calibrations developed for iNDF according to maximum number of PLS terms and number of excluded terms (l-m) and number of 
selected samples (k) (horizontal axis). a) Derivative 1,5,5,1; b) derivative 1,10,5,1; c) derivative 1,10,10,1; d) derivative 2,5,5,1; e) derivative 2,10,5,1 and f) de
rivative 2,10,10,1. 

Fig. 5. SEP(C) values for LOCAL calibrations developed for NDF according to maximum number of PLS terms and number of excluded terms (l-m) and number of 
selected samples (k) (horizontal axis). a) Derivative 1,5,5,1; b) derivative 1,10,5,1; c) derivative 1,10,10,1; d) derivative 2,5,5,1; e) derivative 2,10,5,1 and f) de
rivative 2,10,10,1. 
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parameters calculated from them (Hem, TDN, NLE and IVOMD) were 
lower than those reported in other studies [42,43], while performance 
for NDIP and ADIP models resulted quite similar. These results contrast 
with those published in previous studies for Brachiaria brizantha forage 
samples (240 from marandu grass and 120 from piatã grass), where R2 

values of 0.94, 0.88, 0.86, 0.88 and 0.88 were found for CP, NDF, ADF, 
IVOMD and TDN, respectively [3]. 

Surprisingly, the iNDF estimate was good (r2 = 0.89; SECV = 2.68). 
This is an analytical determination subject to great variability, since it 
depends on the type of fistulated animal, the kind of grass used and the 
time for collection of the bags within the rumen. Furthermore, incuba
tion times to obtain indigestible fractions are quite varied in the rumen 
(in situ) or in vitro, ranging from 144 h [44] to 288 h [31], which implies 
a great advantage for NIRS by reducing the time needed to estimate this 
constituent for elephant grass forage. Moreover, the use of NIRS to es
timate iNDF can be considered as an alternative to the in vitro method, 
which would allow avoiding the use of surgically prepared animals, and 
therefore significantly contributing to animal welfare. 

Regarding the configuration parameters of the predictive models 
developed with LOCAL, one of those that has shown a greater influence 
on the predictive errors is the number of samples to select (k), something 
already highlighted in other published works [26]. For most constitu
ents, a number of samples close to 100 provided the best results. In 
general, it is quite convenient that models developed from a relatively 
low value of k perform better, since the computation time required for 
calculations is minimized. However, in no case the lowest number of 

samples (k = 50) was elected as the most appropriate. 
As previously mentioned, the best validation results were obtained in 

most cases for the highest value of the number of PLS terms in the LOCAL 
models (l = 20). It is likely that the configuration of the LOCAL models 
allowing the inclusion of a higher number of PLS terms would have 
allowed the results to be improved even more, as reported in a study 
carried out with compound feed in which a maximum of 35 terms was 
reached [16]. 

The improvement in predictive results obtained in validation with 
LOCAL models is in line with that described by Berzaghi et al. [14], who 
reported improvements of 10 to 30 %, depending on the spectral di
versity of the samples. The use of LOCAL in this case provides better 
precision and accuracy, and for the further expansion of the models is 
easier to manage in comparison with global models, since in this case it 
is only necessary to add the samples to the spectral library, avoiding 
recalibrations. In the future, the use of multi-products libraries – i.e. 
different types of forages – could be also explored and implemented. 

5. Conclusions 

The predictive models developed for the estimation of nutritional 
parameters in elephant grass provided excellent results for CP, good for 
Ash and iNDF and reasonable for ADIP and ADFap with global and 
LOCAL calibrations. 

The graphical display of the SEP(C) values obtained based on the 
configuration parameters of the LOCAL algorithm allows decision 
making that optimizes the predictive ability of the models. 

An adequate configuration of the spectroscopic derivative and the 
adjustment parameters of the LOCAL models (number of samples to 
select, number of PLS terms and PLS terms to be excluded from the 
models (k, l and m) allowed improvements in the external validation 
errors between 1.6 and 17.5 %. 

Taking all these considerations into account, a rapid nutritional 
assessment of elephant grass samples could be performed with NIRS 
LOCAL models, avoiding the recalibration process from one year to the 
next and minimizing the use of cannulated animals for forage 
evaluation. 
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Table 4 
Validation statistics for selected global calibrations (n = 235. Average global H 
= 1.01. Average neighbourhood H = 0.24).  

Constituent SEP Bias SEP(C) Slope R2 

Ash (%)  1.20  − 0.01  1.20  0.92  0.80 
CP (%)  0.89  − 0.04  0.89  0.99  0.94 
NDF (%)  3.42  − 0.21  3.42  0.94  0.45* 
ADF (%)  4.00  − 0.17  4.01  1.03  0.64 
HEM (%)  4.36  0.13  4.37  1.01  0.48* 
TDN (%)  3.01  0.07  3.02  1.00  0.50* 
NLE (Mcal.kg− 1)  0.11  0.00  0.11  1.01  0.65 
IVOMD (%)  2.96  0.08  2.97  1.00  0.54* 
NDIP (%)  0.36  − 0.01  0.36  0.94  0.67 
ADIP (%)  0.23  0.00  0.23  0.90  0.72 
NDFA (%)  0.73  − 0.05  0.73  0.85  0.65 
ADFA (%)  0.60  − 0.05  0.60  0.91  0.47 
NDFap (%)  3.53  − 0.28  3.53  0.81  0.41* 
ADFap (%)  3.53  − 0.20  3.54  1.01  0.70 
iNDF (%)  3.34  0.40  3.33  0.96  0.85 

* Validation statistics that exceed validation limits. 

Table 5 
Reduction (%) in prediction errors (SEP and SEP(C)) with LOCAL vs global 
calibrations.  

Constituent % SEP % SEP(C) 

Ash (%)  16.94  16.81 
CP (%)  17.55  16.89 
NDF (%)  9.18  9.18 
ADF (%)  7.46  7.52 
HEM (%)  13.25  13.27 
TDN (%)  6.73  6.75 
NLE (Mcal.kg-1)  7.14  8.04 
IVOMD (%)  6.54  6.58 
NDIP (%)  14.80  14.85 
ADIP (%)  5.60  5.60 
NDFA (%)  14.27  14.27 
ADFA (%)  9.36  9.36 
NDFap (%)  6.94  6.80 
ADFap (%)  5.57  5.57 
iNDF (%)  1.62  0.75 
Average improvement  9.53  9.48  
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C. Pérez-Marín, Evaluation of a new local modelling approach for large and 
heterogeneous NIRS data sets, Chemom. Intell. Lab. Syst. 101 (2010) 87–94, 
https://doi.org/10.1016/j.chemolab.2010.01.004. 

[16] E. Fernández-Ahumada, T. Fearn, A. Gómez-Cabrera, J.E. Guerrero-Ginel, D. 
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[21] V. González-Caballero, D. Pérez-Marín, M.I. López, M.T. Sánchez, Optimization of 
NIR spectral data management for quality control of grape bunches during on-vine 
ripening, Sensors. 11 (2011) 6109–6124, https://doi.org/10.3390/s110606109. 

[22] R.G. Dambergs, D. Cozzolino, W.U. Cynkar, L. Janik, M. Gishen, The determination 
of red grape quality parameters using the LOCAL algorithm, J. Near Infrared 
Spectrosc. 14 (2006) 71–79, https://doi.org/10.1255/jnirs.593. 
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