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Abstract. Stability of nonlinear delay evolution equation with stochastic per-

turbations is considered. It is shown that if the level of stochastic perturbations
fades on the infinity, for instance, if it is given by square integrable function,

then an exponentially stable deterministic system remains to be exponentially

stable (in mean square). Applications of the obtained results to stochastic
reaction-diffusion equations and stochastic 2D Navier-Stokes model are shown.

1. Introduction

It is well known that an asymptotically stable deterministic system remains
asymptotically stable (in mean square) under stochastic perturbations if the level
of stochastic perturbations is small enough (Caraballo & Shaikhet, 2014; Shaikhet,
2013). A new idea is that stochastic perturbations fading at infinity quickly enough
do not violate the asymptotic stability of the initial deterministic system, regardless
of the maximum value of the level of stochastic perturbations. This idea has already
been checked for linear stochastic differential equations and linear stochastic differ-
ence equations (Shaikhet, 2019a, 2019b, 2020). Here a similar statement is proved
for a nonlinear stochastic evolution equation with quickly enough fading stochastic
perturbations. More exactly: if the level of the stochastic perturbation is given by a
continuous and square integrable function, then the zero solution of the considered
exponentially stable deterministic system remains exponentially mean square sta-
ble independently on the maximum magnitude of the stochastic perturbation. The
obtained abstract results are later applied to some important and interesting ap-
plications: stochastic reaction-diffusion equations and stochastic 2D Navier-Stokes
models (Caraballo, Real, & Shaikhet, 2007; Caraballo & Shaikhet, 2014).
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2 STABILITY OF DELAY EVOLUTION EQUATIONS

1.1. Basic notations. Let U, H, K be real, separable Hilbert spaces such that
U ⊂ H ≡ H∗ ⊂ U∗, where U∗ is the dual of U and the injections are continuous
and dense. It is assumed also that U and U∗ are uniformly convex.

Let ‖ · ‖ , | · | and ‖ · ‖∗ denote the norms in U , H and U∗, respectively; 〈·, ·〉
denote the duality product between U∗, U , and (·, ·) the scalar product in H .

Let β be the constant satisfying the inequality

(1) |u| ≤ β‖u‖, u ∈ U.

Let L(K,H) be the space of all bounded linear operators from K into H and ‖G‖2
be the Hilbert-Schmidt norm of an operator G ∈ L(K,H).

Let W (t) be a Q-valued Wiener process on a complete probability space (Ω,F, P )
which takes values in the separable Hilbert space K, where Q ∈ L(K,K) is a
symmetric nonnegative operator, EW (t) = 0, Cov(W (t)) = tQ (for more details,
see Caraballo & Shaikhet, 2014; Da Prato & Zabczyk, 1992).

We denote by Ft, t ≥ 0 the σ-algebra generated by {W (s), 0 ≤ s ≤ t} which make
W (t) be a martingale relative to the family (Ft)t≥0.

Given h ≥ 0, and T > 0, we denote by Ip(−h, T ; U), p > 0, the space of all
U–valued processes (x(t))t∈[−h,T ] (we will write x(t) for short) measurable (from
[−h, T ]× Ω into U), and satisfying:

1. x(t) is Ft-measurable almost surely in t, where we set Ft = F0 for t ≤ 0;

2.
∫ T
−h E‖x(t)‖p dt < +∞.

It is not difficult to check that the space Ip(−h, T ; U) is a closed subspace of Lp(Ω×
[−h, T ],F⊗B([−h, T ]), dP ⊗ dt; U), where B([−h, T ]) denotes the Borel σ–algebra
on [−h, T ]. We also write L2(Ω; C(−h, T ;H)) instead of L2(Ω,F, dP ; C(−h, T ;H)),
where C(−h, T ; H) denotes the space of all continuous functions from [−h, T ] into
H.

Let CH = C([−h, 0], H) be the space of all continuous functions from [−h, 0]
into H with sup-norm ‖ψ‖C = sup−h≤s≤0 |ψ(s)|, ψ ∈ CH , L2

H = L2([−h, 0]; H).

Given a stochastic process u(t) ∈ I2(−h, T ;U) ∩ L2(Ω; C(−h, T ; H)), we associate
it with an L2

U ∩ CH -valued stochastic process ut : Ω→ L2
U ∩ CH , t ≥ 0, by setting

ut(s)(ω) = u(t+ s)(ω), s ∈ [−h, 0].
The aim of this paper is to analyze the stability properties of nonlinear stochastic

evolution equation

(2)
du(t) =

(
A(t, u(t)) +

m∑
i=1

Fi(t, u(t− hi(t)))

)
dt+B(t, u(t− τ))dW (t),

hi(t) ∈[0, h0i], h0 = max
i
h0i, u(s) = ψ(s), s ∈ [−h, 0], h = max(h0, τ).

Here A(t, ·), Fi(t, ·) : U → U∗ are appropriate partial differential operators, B(t, ·) :
H → L(K,H), W (t) is a Q-Wiener process, hi(·) are continuously differentiable
functions, and ψ is an appropriate initial datum.

The analysis of the existence and uniqueness of solutions for this model has al-
ready been carried out, for instance, by Caraballo, Garrido-Atienza, & Real (2003),
Caraballo, Liu, & Truman (2000), and we will not insist in this point here. How-
ever, we will explain now which is the concept of solution to be used in our stability
analysis.

For a fixed T > 0, given an initial value ψ ∈ I2(−h, 0;U) ∩ L2(Ω;CH) , a (varia-
tional) solution of (2) is a process u(·) = u(·;ψ) ∈ I2(−h, T ;U)∩L2(Ω;C(−h, T ;H))
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such that

(3)

u(t) =ψ(0) +

∫ t

0

[A(s, u(s)) + f(s, us)] ds

+

∫ t

0

B(s, us) dW (s) P − a.s., ∀t ∈ [0, T ],

u(t) =ψ(t), P − a.s., ∀t ∈ [−h, 0],

f(s, us) =

m∑
i=1

Fi(s, u(s− hi(s))), B(s, us) = B(s, u(s− τ)),

where the first equality is understood in U∗.
From now on, as we will be interested in the long-time behavior of solutions to

(2), we will assume that (3) possesses solutions for all T > 0.

1.2. Definitions and auxiliary statements. As we mentioned above, let u(t) =
u(t, ψ) denote the solution of equation (2) corresponding to the initial condition ψ.
We first establish the definitions of stability that we will use in our analysis.

Definition 1.1. The zero solution of equation (2) is said to be mean square stable
if for any ε > 0 there exists δ > 0 such that E|u(t;ψ)|2 < ε for all t ≥ 0 if
‖ψ‖2CH = sups∈[−h,0] E|ψ(s)|2 < δ.

Definition 1.2. The zero solution of equation (2) is said to be exponentially mean
square stable if it is stable and there exists a positive constant λ such that for any
ψ ∈ C(−h, 0, U) there exists C (which may depend on ψ) such that E|u(t;ψ)|2 ≤
Ce−λt for t > 0.

Consider a functional V (·, ·) : [0,∞)×CH → R+ that can be represented in the
form V (t, ϕ) = V (t, ϕ(0), ϕ(θ)), θ < 0 and for ϕ(θ) = u(t+ θ) = ut put

(4)
Vϕ(t, u) = V (t, ϕ) = V (t, u, ϕ(θ)),

u = ϕ(0) = u(t), θ < 0.

Denote by D the set of functionals, for which the function Vϕ(t, u) defined by (4)
has a continuous derivative with respect to t and two continuous derivatives with
respect to u.

To calculate the stochastic differential of the process η(t) = V (t, ut), where
V (·, ·) ∈ D and u(t) is a solution of equation (2), the Itô formula is used (see
[?, ?])

(5) dη(t) = LV (t, ut)dt+ 〈V ′ϕu(t, u(t)), B(t, u(t− τ))dW (t)〉,

where the generator L of equation (2) has the form

(6)
LV (t, ut) =V ′ϕt(t, u(t)) +

〈
V ′ϕu(t, u(t)), A(t, u(t)) +

m∑
i=1

Fi(t, u(t− hi(t)))

〉
+

1

2
Tr[V ′′ϕuu(t, u(t))B(t, u(t− τ))QB∗(t, u(t− τ))].

The following theorem provides a sufficient condition for the exponential mean
square stability in terms of a functional from D (Caraballo & Shaikhet, 2014;
Shaikhet, 2013).
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Theorem 1.1. Assume that there exists a functional V (·, ·) ∈ D and some positive
numbers c1, c2, λ, such that the following conditions hold for any solution u(·) =
u(·, ψ) of equation (2)

EV (t, ut) ≥ c1e
λtE|u(t)|2, t ≥ 0

EV (0, u0) ≤ c2‖ψ‖2CH ,(7)

ELV (t, ut) ≤ 0, t ≥ 0.

Then the zero solution of equation (2) is exponentially mean square stable.

2. Main result

We can now state and prove our main stability result in this paper. The technique
is the method of Lyapunov functionals construction (see Caraballo et al., 2007;
Caraballo & Shaikhet, 2014; Shaikhet, 2013) which has proven to be a very powerful
technique over the past years.

Theorem 2.1. Assume that operators in equation (2) satisfy the conditions

(8)

〈A(t, u), u〉 ≤ −γ‖u‖2, γ > 0, u ∈ U,
Fi : U → U∗, ‖Fi(t, u)‖∗ ≤ αi‖u‖, u ∈ U,
‖B(t, u)‖2 ≤ σ(t)|u|, u ∈ H, t ≥ 0,

where σ(t) is a continuous, bounded, square-integrable function, i.e.,

(9)

∫ ∞
0

σ2(s)ds <∞,

and such that

(10) σ2(t+ τ) ≤ σ2(t) ≤ C.

If

(11) 0 ≤ ḣi(t) ≤ h1i < 1, γ >

m∑
i=1

αi√
1− h1i

,

then the zero solution of equation (2) is exponentially mean square stable.

Proof. Following the procedure of Lyapunov functionals construction ([?, ?, ?])Caraballo
et al., 2007; Caraballo & Shaikhet, 2014; Shaikhet, 2013), we will construct a Lya-
punov functional V for equation (2) in the form V = V1 + V2 + V3, where V1 is
defined as

(12) V1(t, ut) = eλt−
∫ t
0
σ2(s)ds|ut(0)|2 = eλt−

∫ t
0
σ2(s)ds|u(t)|2,

and the additional functionals V2, V3 will be defined below. The parameter λ > 0
in V1 will also be chosen below.

Notice that via (9), the functional V1 satisfies the first condition from (7) with

c1 = e−
∫∞
0
σ2(s)ds > 0.

Thanks to (6), for the functional (12) and equation (2), using (8) and (1), we have

LV1(t, ut) = eλt−
∫ t
0
σ2(s)ds(λ− σ2(t))|u(t)|2 + eλt−

∫ t
0
σ2(s)ds‖B(t, u(t− τ))‖22

+2eλt−
∫ t
0
σ2(s)ds

〈
A(t, u(t)) +

m∑
i=1

Fi(t, u(t− hi(t))), u(t)

〉
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≤ eλt−
∫ t
0
σ2(s)ds

[
(λ− σ2(t))|u(t)|2 + σ2(t)|u(t− τ)|2

+2

〈
A(t, u(t)) +

m∑
i=1

Fi(t, u(t− hi(t))), u(t)

〉]

≤ eλt−
∫ t
0
σ2(s)ds

[
λβ2‖u(t)‖2 + σ2(t)(|u(t− τ)|2 − |u(t)|2)

+2

(
−γ‖u(t)‖2 +

m∑
i=1

αi‖u(t− hi(t))‖‖u(t)‖

)]
.

Using the simple inequality 2ab ≤ εa2 +ε−1b2, where a, b, ε are positive parameters,
we obtain

(13)

LV1(t, ut) ≤eλt−
∫ t
0
σ2(s)ds

[(
λβ2 − 2γ +

m∑
i=1

αi
εi

)
‖u(t)‖2

+

m∑
i=1

αiεi‖u(t− hi(t))‖2 + σ2(t)(|u(t− τ)|2 − |u(t)|2)

]
.

For the additional functional

V2(t, ut) =

m∑
i=1

ri

∫ 0

−hi(t)
eλ(s+t+h0i)−

∫ s+t+hi(t)
0 σ2(τ)dτ‖ut(s)‖2ds

=

m∑
i=1

ri

∫ t

t−hi(t)
eλ(s+h0i)−

∫ s+hi(t)
0 σ2(τ)dτ‖u(s)‖2ds, ri > 0,

we have

LV2(t, ut) =

m∑
i=1

ri

[
eλ(t+h0i)−

∫ t+hi(t)
0 σ2(τ)dτ‖u(t)‖2

− (1− ḣi(t))eλ(t−hi(t)+h0i)
∫ t
0
σ2(τ)dτ‖u(t− hi(t))‖2

− ḣi(t)
∫ t

t−hi(t)
σ2(s+ hi(t))e

λ(s+h0i)−
∫ s+hi(t)
0 σ2(τ)dτ‖u(s)‖2ds

]
.

From here, thanks to (11), it follows

LV2(t, ut) ≤
m∑
i=1

ri

[
eλ(t+h0i)−

∫ t+hi(t)
0 σ2(τ)dτ‖u(t)‖2

−(1− ḣi(t))eλ(t−hi(t)+h0i)−
∫ t
0
σ2(τ)dτ‖u(t− hi(t))‖2

]
= eλt−

∫ t
0
σ2(τ)dτ

m∑
i=1

ri

[
eλh0i−

∫ t+hi(t)
t σ2(τ)dτ‖u(t)‖2(14)

−(1− ḣi(t))eλ(h0i−hi(t))‖u(t− hi(t))‖2
]

≤ eλt−
∫ t
0
σ2(τ)dτ

m∑
i=1

ri
[
eλh0i‖u(t)‖2 − (1− h1i)‖u(t− hi(t))‖2

]
.
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For the next additional functional

V3(t, ut) =

∫ 0

−τ
eλ(s+t+τ)−

∫ s+t+τ
0

σ2(ν)dνσ2(s+ t+ τ)|ut(s)|2ds

=

∫ t

t−τ
eλ(s+τ)−

∫ s+τ
0

σ2(ν)dνσ2(s+ τ)|u(s)|2ds

we have

LV3(t, ut) = eλ(t+τ)−
∫ t+τ
0

σ2(ν)dνσ2(t+ τ)|u(t)|2

−eλt−
∫ t
0
σ2(ν)dνσ2(t)|u(t− τ)|2

≤ eλt−
∫ t
0
σ2(ν)dν

[
eλτσ2(t+ τ)|u(t)|2 − σ2(t)|u(t− τ)|2

]
.(15)

From (13), (14) and (15) we deduce for the functional V = V1 + V2 + V3

LV (t, ut) ≤ eλt−
∫ t
0
σ2(s)ds

[(
λβ2 − 2γ +

m∑
i=1

αi
εi

)
‖u(t)‖2

+

m∑
i=1

αiεi‖u(t− hi(t))‖2

+

m∑
i=1

ri
[
eλh0i‖u(t)‖2 − (1− h1i)‖u(t− hi(t))‖2

]
+eλτσ2(t+ τ)|u(t)|2 − σ2(t)|u(t)|2

]

= eλt−
∫ t
0
σ2(s)ds

[(
λβ2 − 2γ +

m∑
i=1

(
αi
εi

+ ri

)

+

m∑
i=1

ri
(
eλh0i − 1

))
‖u(t)‖2

+

m∑
i=1

(αiεi − ri(1− h1i))‖u(t− hi(t))‖2

+(eλτ − 1)σ2(t+ τ)|u(t)|2 + (σ2(t+ τ)− σ2(t))|u(t)|2
]
.(16)

To get rid of the term with ‖u(t−hi(t))‖2, we put ri = αiεi(1−h1i)−1 and then, to
minimise αiε

−1
i + αiεi(1 − h1i)−1, we choose εi =

√
1− h1i. Besides of this, using

conditions (1) and (10), we obtain

LV (t, ut) ≤ eλt−
∫ t
0
σ2(s)ds

[
λβ2 − 2γ + 2

m∑
i=1

αi√
1− h1i

+
m∑
i=1

ri(e
λh0i − 1) + C(eλτ − 1)β2

]
‖u(t)‖2

= −eλt−
∫ t
0
σ2(s)ds

[
2

(
γ −

m∑
i=1

αi√
1− h1i

)
− ρ(λ)

]
‖u(t)‖2,(17)
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where ρ(λ) = (λ+ C(eλτ − 1))β2 +
m∑
i=1

ri(e
λh0i − 1) ≥ 0. Since ρ(·) is a continuous

function and ρ(0) = 0, then by condition (11), there exists λ > 0, small enough,

such that 2

(
γ −

m∑
i=1

αi√
1− h1i

)
≥ ρ(λ).

From here and (17) it follows that ELV (t, ut) ≤ 0. Therefore, the functional
V (t, ut) constructed above satisfies conditions (7) of Theorem 1.1, which implies
that the zero solution of equation (2) is exponentially mean square stable. The
proof is complete. �

Remark 2.1. If, in particular, hi(t) ≡ h0i then h1i = 0 and thus condition (11)

takes the form γ >
m∑
i=1

αi.

Remark 2.2. If the stochastic term does not contain any delay, i.e., τ = 0, then
condition (10) trivially holds true and the functional V3 is not necessary for the
proof.

Remark 2.3. It is possible to weaken assumption (10) but imposing a more re-
strictive condition in (11). More precisely, the thesis of Theorem 2.1 holds true if
we replace assumption (10) by

(18) σ2(t) ≤ C,

and assumption (11) by

(19) 0 ≤ ḣi(t) ≤ h1i < 1, 2

(
γ −

m∑
i=1

αi√
1− h1i

)
> Cβ2.

Indeed, the proof follows in a similar way but taking into account the following
computations. Eq. (16) becomes

LV (t, ut) ≤ eλt−
∫ t
0
σ2(s)ds

[(
λβ2 − 2γ +

m∑
i=1

(
αi
εi

+ ri

)

+

m∑
i=1

ri
(
eλh0i − 1

))
‖u(t)‖2

+

m∑
i=1

(αiεi − ri(1− h1i))‖u(t− hi(t))‖2

+(eλτ − 1)σ2(t+ τ)|u(t)|2 + (σ2(t+ τ)− σ2(t))|u(t)|2
]

≤ eλt−
∫ t
0
σ2(s)ds

[(
λβ2 − 2γ +

m∑
i=1

(
αi
εi

+ ri

)

+

m∑
i=1

ri
(
eλh0i − 1

))
‖u(t)‖2

+

m∑
i=1

(αiεi − ri(1− h1i))‖u(t− hi(t))‖2 + eλτCβ2‖u(t)‖2
]
.(20)



8 STABILITY OF DELAY EVOLUTION EQUATIONS

From here we deduce a similar expression for Eq. (17), where now the function ρ(λ)
is given by

ρ(λ) = (λ+ Ceλτ )β2 +

m∑
i=1

ri(e
λh0i − 1) ≥ 0.

As ρ(0) = Cβ2, and ρ is continuous and increasing (ρ′(λ) > 0 for λ ≥ 0), thanks
to Eq. (20), we deduce that for a positive value of λ (small enough)

2

(
γ −

m∑
i=1

αi√
1− h1i

)
≥ ρ(λ),

and the proof is finished.

3. Some applications

In this section we will show some interesting applications to illustrate the ob-
tained above result.

3.1. Application to some stochastic reaction-diffusion equations. In this
subsection we will consider several linear reaction-diffusion equations to analyze
their asymptotic behaviors with our theory. We can extend these examples to
nonlinear equations in a straightforward way but we prefer to illustrate our results
in a simple but important case.

Let us then consider the following three problems:

du(t, x) =

(
ν
∂2u(t, x)

∂x2
+

m∑
i=1

µi
∂2u(t− hi(t), x)

∂x2

)
dt

+σ(t)u(t− τ, x)dW (t),(21)

du(t, x) =

(
ν
∂2u(t, x)

∂x2
+

m∑
i=1

µi
∂u(t− hi(t), x)

∂x

)
dt

+σ(t)u(t− τ, x)dW (t),(22)

du(t, x) =

(
ν
∂2u(t, x)

∂x2
+

m∑
i=1

µi u(t− hi(t), x)

)
dt

+σ(t)u(t− τ, x)dW (t),(23)

with the conditions

t ≥ 0, x ∈ [a, b], u(t, a) = u(t, b) = 0,

hi(t) ∈ C1(R), hi(t) ∈ [0, h0i], ḣi(t) ≤ h1i < 1,

σ(t) =
1

(1 + t)α
, α >

1

2
, t ≥ 0,

where ν > 0 µi, i = 1, ...,m, are arbitrary constants and τ > 0 is a constant delay.
For simplicity, we consider W (t) as a scalar Wiener process over a probability space
(Ω,F, P ). Note that in all of these situations we can consider U = H1

0 ([a, b]) and

H = L2([a, b]). The constant β for the injection U ⊂ H becomes β = λ
−1/2
1 ,

where λ1 = π2(b− a)−2 is the first eigenvalue of the operator − ∂2

∂x2
with Dirichlet

boundary conditions. By straightforward computations, it is clear that γ = ν, and

denoting by Fi(t, u) = µi
∂2u

∂x2
for u ∈ U , we obtain that ‖Fi(t, u)‖∗ ≤ |µi|‖u‖.
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Similarly with Fi(t, u) = µi
∂u

∂x
for u ∈ U , it follows ‖Fi(t, u)‖∗ ≤ |µi|λ−1/21 ‖u‖,

and also if Fi(t, u) = µiu for u ∈ U , it follows ‖Fi(t, u)‖∗ ≤ |µi|λ−11 ‖u‖. Therefore,
we can apply Theorem 2.1 to all these examples yielding the following sufficient
conditions (expressed by the corresponding condition (11)) for exponential mean
square stability of the zero solution:
for equation (21)

ν >

m∑
i=1

|µi|√
1− h1i

,

for equation (22)

ν >

m∑
i=1

|µi|√
λ1(1− h1i)

,

and for equation (23)

ν >

m∑
i=1

|µi|
λ1
√

1− h1i
.

Note that in the particular case [a, b] = [0, π] it holds λ1 = 1 and these three
conditions in Theorem 2.1 are the same. It is also remarkable that these results
hold independently of the length of the constant delay τ in the stochastic term, and
also of the fading function σ(t) provided it satisfies the conditions (9), (10), which
confirms that stochastic perturbations fading at infinity do not affect the stability
of the deterministic problem.

3.2. Application to a stochastic 2D Navier-Stokes model. We consider a
stochastic 2D Navier-Stokes model with delay. The deterministic version of this
problem has already been analyzed in details in Caraballo et al. (2007). The
stochastic situation has also been considered in Chen (2012), Wei & Zhang (2009)
when the delay function is the same in the diffusion and driving terms. We will
analyze the case of different delays in both terms.

Let O ⊂ R2 be an open and bounded set with regular boundary Γ, T > 0 given
but arbitrary, and consider the following functional Navier-Stokes problem:

(24)

du+

(
−ν∆u+

2∑
i=1

ui
∂u

∂xi

)
dt

= (−∇p+ f(t, ut)) dt+ Φ(t, ut)dW (t) in (0, T )×O,
div u = 0 in (0, T )×O,
u = 0 on (0, T )× Γ,

u(0, x) = u0(x), x ∈ O,
u(t, x) = ψ(t, x), t ∈ (−h, 0), x ∈ O,

where we assume that ν > 0 is the kinematic viscosity, u is the velocity field of
the fluid, p the pressure, u0 the initial velocity field, f(t, ut) is an external force
containing some hereditary characteristics, Φ(t, ut)dW (t) represents a stochastic
term, where W (t) is the standard Wiener process as we considered in the previous
sections, and ψ the initial datum in the interval of time [−h, 0], where h is a positive
fixed number.

To begin with, we consider the following usual abstract spaces

U =
{
u ∈ (C∞0 (O))

2
: div u = 0

}
,
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H = the closure of U in (L2(O))2 with the norm |·|, and inner product (·, ·), where
for u, v ∈ (L2(O))2,

(u, v) =

2∑
j=1

∫
O
uj(x)vj(x)dx,

U = the closure of U in (H1
0 (O))2 with the norm ‖·‖ , and associated scalar product

((·, ·)), where for u, v ∈ (H1
0 (O))2,

((u, v)) =

2∑
i,j=1

∫
O

∂uj
∂xi

∂vj
∂xi

dx.

It follows that U ⊂ H ≡ H∗ ⊂ U∗, where the injections are dense and compact.
Now we denote a(u, v) = ((u, v)), and define the trilinear form b on U × U × U by

b(u, v, w) =

2∑
i,j=1

∫
O
ui
∂vj
∂xi

wjdx ∀u, v, w ∈ U.

Assume that the delay terms are given by

f(t, ut) =

n∑
i=1

Fiu(t− hi(t)), Φ(t, ut) = σ(t)Φ̂u(t− τ),

where Fi ∈ L(U,U∗), i = 1, 2, · · · , n, is self-adjoint, Φ̂ ∈ L(H,H), the functions

hi(t) are continuously differentiable with 0 ≤ ḣi(t) ≤ h1i < 1, and σ(t) satisfy
assumptions in the previous reaction diffusion-equations. Then, problem (24) can
be set in the variational formulation:

(25)

d(u(t), v) + (νa(u(t), v) + b(u(t), u(t), v))dt =

n∑
i=1

(Fiu(t− hi(t)), v) dt

+ (σ(t)Φ̂(u(t− τ))dW (t), v),

u(0) =u0, u(t) = ψ(t), t ∈ (−max(h1, h2, · · · , hn, τ), 0), hi(t) ≤ hi,

where equation (25) must be understood in the distributional sense of D′(0, T ).
Observe that equation (25) can be rewritten as equation (2) by denotingA(t, ·), Fi :

U → U∗ the operators defined as

A(t, u) = −νa(u, ·)− b(u, u, ·), Fi(t, u) = Fiu, B(t, u) = σ(t)Φ̂u, u ∈ U.

In the present situation, i.e., for operators Fi ∈ L(U,U∗), Φ̂ ∈ L(H,H) and func-

tions f(t, ut) =
∑n
i=1 Fiu(t − hi(t)), Φ(t, ut) = σ(t)Φ̂u(t − τ(t)) defined above, we

have that γ = ν, α = ‖G‖L(U,U∗), β = λ
−1/2
1 (λ1 is the first eigenvalue of the Stokes

operator) and the assumptions in Theorem 2.1 hold assuming that

(26) ν >

n∑
i=1

‖Fi‖L(U,U∗)√
1− h1i

.

Observe that if Fi ∈ L(H,H), then Fi ∈ L(U,U∗). In addition, we have that

‖Fi‖L(U,U∗) ≤ λ−11 ‖Fi‖L(H,H).

Therefore, if we assume that

νλ1 >

n∑
i=1

‖Fi‖L(H,H)√
1− h1i

,
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it also follows (26) and, consequently, we have the exponential stability of the zero
solution of equation (25).

Notice that a typical example for the forcing term with variable delay can be given
by the Laplacian operator, i.e., we can consider that f(t, ut) = F1(u(t − h1(t))) =
∆u(t − h1(t)). In this case, F1 : U → U∗ and it is straightforward to check that
‖F1‖L(U,U∗) = 1. For the situation in which Fi ∈ L(H,H), we can consider the
forcing term f(t, ut) = F2(u(t− h1(t))) = δu(t− h1(t)), where δ > 0 is a constant,
which provides us with the norm ‖F2‖L(H,H) = δ.

4. Conclusions

It is shown that fading stochastic perturbations do not violate stability of an
asymptotically stable deterministic nonlinear evolution equation by assumption that
the level of stochastic perturbations is given by continuous, square integrable func-
tion. Earlier this idea was implemented for stochastic linear delay differential equa-
tions and for stochastic linear difference equations (Shaikhet, 2019a, 2019b, 2020).
It is shown how the obtained results can be applied to known mathematical models
that are very popular in researches. Consideration of other types of fading stochas-
tic perturbations (for instance, if the function σ(t) converges to zero at infinity but
is not square integrable) is an open problem for future investigations.

Acknowledgements. We would like to thank the referees for the helpful and
interesting suggestions which allow us to improve the presentation of our paper.

References

Caraballo, T., Garrido-Atienza, M.-J., & Real, J. (2003). Asymptotic stability
of nonlinear stochastic evolution equations. Stoch. Anal. Appl. 21, 301–327.

Caraballo, T., Liu, K., & Truman, A. (2000). Stochastic functional partial dif-
ferential equations: existence, uniqueness and asymptotic decay properties. Proc.
Roy. Soc. Lond. A 456, 1775–1802.

Caraballo, T., Real, J., & Shaikhet, L. (2007). Method of Lyapunov functionals
construction in stability of delay evolution equations. J. Math. Anal. Appl. 334(2),
1130-1145.

Caraballo, T., & Shaikhet, L. (2014). Stability of delay evolution equations with
stochastic perturbations. Communications on Pure and Applied Analysis 13(5),
2095–2113.

Chen, H. (2012). Asymptotic behavior of stochastic two-dimensional Navier-
Stokes equations with delays. Proc. Indian Acad. Sci (Math. Sci) 122, 283–295.

Da Prato, G., & Zabczyk, J. (1992). Stochastic equations in infinite dimensions.
Encyclopedia of mathematics and its applications, Cambridge University Press.

Shaikhet, L. (2013). Lyapunov functionals and stability of stochastic functional
differential equations. Springer Science & Business Media.

Shaikhet, L. (2019a). About stability of delay differential equations with square
integrable level of stochastic perturbations. Applied Mathematics Letters 90, 30–35.

Shaikhet, L. (2019b). About stability of difference equations with continuous
time and fading stochastic perturbations. Applied Mathematics Letters 98, 284–
291.

Shaikhet, L. (2020). About stability of difference equations with square summa-
ble level of stochastic perturbations. Journal of Difference Equations and Applica-
tions 26(3), 362–369.



12 STABILITY OF DELAY EVOLUTION EQUATIONS

Wei, M., & Zhang, T., (2009). Exponential stability for stochastic 2D-Navier-
Stokes equations with time delay. Appl. Math. J. Chinese Univ. 24, 493–500 (in
Chinese).

E-mail address: leonid.shaikhet@usa.net

E-mail address: caraball@us.es


	1. Introduction
	1.1. Basic notations
	1.2. Definitions and auxiliary statements

	2. Main result
	3. Some applications
	3.1. Application to some stochastic reaction-diffusion equations
	3.2. Application to a stochastic 2D Navier-Stokes model.

	4. Conclusions
	References

