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Abstract. In this paper, it is first addressed the well-posedness of weak solutions to a nonlo-
cal partial differential equation with long time memory, which is carried out by exploiting the

nowadays well-known technique used by Dafermos in the early 70’s. Thanks to this Dafermos

transformation, the original problem with memory is transformed into a nondelay one for which
the standard theory of autonomous dynamical system can be applied. Thus, some results about

the existence of global attractors to the transformed problem are provided. Particularly, when the

initial values have higher regularity, the solutions of both problems (the original and the trans-
formed ones) are equivalent. Nevertheless, the equivalence of global attractors for both problems

is still unsolved due to the lack of enough regularity of solutions in the transformed problem, it
is therefore proved the existence of global attractors of the transformed problem. Eventually, it

is highlighted how to proceed to obtain meaningful results about the original problem, without

performing any transformation, but working directly with the original delay problem.
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1. Introduction. Many physical phenomena are properly described by (systems of) partial dif-
ferential equations whose dynamics is influenced by the past history of one or more variables (see
[1, 6, 2, 7, 11, 13] and the references therein). Also, in recent decades, nonlocal problems have been
investigated with great interest due to their wide applications in the real world (see, [3, 4, 5, 6] and
the references therein).

There is a significant amount of literature studying partial differential equations with long time
memory. For example, the authors in [6] introduced the following semilinear problem describing
the heat flow in a rigid, isotropic, homogeneous heat conductor with linear memory,

c0∂tθ − k0∆θ −
∫ t

−∞
k(t− s)∆θ(s)ds+ g(θ) = h,

θ(x, t) = 0,

θ(x, t) = θ0(x, t),

in Ω× R+,

on ∂Ω× R+,

in Ω× (−∞, 0],

(1)

where Ω ⊂ RN is a fixed bounded domain with regular boundary occupied by a rigid heat conductor,
θ : Ω × R → R is the temperature variation field relative to the equilibrium reference value,
k : R+ → R is the heat flux memory kernel, the constants c0 and k0 denote the specific heat and
the instantaneous conductivity, respectively (R+ denotes the open interval (0,+∞)). To handle (1)
successfully, the authors considered this problem as a non-delay one by making the past history of
θ from −∞ to 0− be part of the forcing term given by the causal function f , which is defined by,

f(x, t) = h(x, t) +

∫ 0

−∞
k(t− s)∆θ(x, s)ds, x ∈ Ω, t ≥ 0.

In this way, (1) becomes an initial value problem without delay or memory,
c0∂tθ − k0∆θ −

∫ t

0

k(t− s)∆θ(s)ds+ g(θ) = f,

θ(x, t) = 0,

θ(x, 0) = θ0(x, 0),

in Ω× R+,

on ∂Ω× R+,

in Ω.

(2)

Amongst the many notable results regarding the nonlocal differential equations, it is worth
mentioning the pioneer work [9], in which the authors examined one model of single-species dynamics
incorporating nonlocal effects, comparing with the standard approach to model a single-species
domain Ω of “Kolmogorov” type,

∂tu = ∆u+ λug(u), in Ω, t > 0.

If we take into account the following backgrounds: (i) a population in which individuals compete
for a shared rapidly equilibrate resource; (ii) a population in which individuals communicate either
visually or by chemical means, then the most straightforward way of introducing nonlocal effects is
to consider, instead of g(u), a “crowding” effect of the form g(u, ū), where

ū(x, t) =

∫
Ω

G(x, y)u(y, t)dy,

and G(x, y) is some reasonable kernel. Heuristically, Chipot et al. studied in [5] the behavior of
a population of bacteria with nonlocal term a(

∫
Ω
u) in a container. Later, Chipot et al. extended

this term to a general nonlocal operator a(l(u)) (cf. [3, 4, 5]), where l ∈ L(L2(Ω);R), for instance,
if g ∈ L2(Ω),

l(u) = lg(u) =

∫
Ω

g(x)u(x)dx.
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Inspired by the above work, the dynamics of the following non-autonomous nonlocal partial
differential equations with delay and memory was investigated in [17] by using the Galerkin method
and energy estimations,

∂u
∂t − a(l(u))∆u = f(u) + h(t, ut),

u = 0,

uτ (x, t) = ϕ(x, t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω× (−ρ, 0],

(3)

where Ω ⊂ RN is a bounded open set, τ ∈ R, function a ∈ C(R;R+) is locally Lipschitz, f ∈ C(R)
and h contains hereditary characteristics involving delays, and ut : (−∞, 0] → R is a segment of
the solution given by ut(x, s) = u(x, t+ s), s ≤ 0, which essentially is the history of the solution up
to time t. Moreover, 0 < ρ ≤ ∞, which implies that the authors considered both cases, bounded
and unbounded delays, for this model. However, the technique applied in this paper to deal with
memory terms is limited, since only exponential kernels can be contained in the delay terms. For

instance, h(t, ut) =
∫ t
−∞ k(t− s)∆u(x, s)ds, where k(·) is nonsingular and of sub-exponential type

(e.g., k(t) = k1e
−d0t, k1 ∈ R, d0 > 0), for more details, see [1]. Whereas, this technique fails to deal

with various important models with memory, whose kernels have singularities.
Consequently, it is not surprising that very recently a new discussion has started concerning the

following long time memory differential equation associated with nonlocal diffusion,
∂u
∂t − a(l(u))∆u−

∫ t

−∞
k(t− s)∆u(s)ds+ f(u) = g,

u(x, t) = 0,

u(t+ τ) = u0(t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω× (−∞, 0],

(4)

where Ω ⊂ RN is a fixed bounded domain with regular boundary, a ∈ C(R;R+) satisfies

0 < m ≤ a(r), ∀r ∈ R, (5)

k : R+ → R is the memory kernel, with or without singularities, whose properties will be specified
later, g ∈ L2(Ω) which is independent of time. Notice that, thanks to a change of variable, the long
time memory term in problem (4) can be interpreted as an infinite delay term,∫ t

−∞
k(t− s)∆u(x, s)ds =

∫ 0

−∞
k(−s)∆u(x, t+ s)ds =

∫ 0

−∞
k(−s)∆ut(x, s)ds := h(ut). (6)

In this way, it is obvious that we are working on an autonomous nonlocal partial differential equation.
Problem (4) was analyzed in [1] when a(·) is a constant function (local problem) and the ker-

nel k is of special type mentioned above. It is proved that the problem generates a dynamical
system in the phase space L2

H1
0

given by the measurable functions ϕ : (−∞, 0] → H1
0 (Ω), such

that
∫ 0

−∞ eγs‖ϕ(s)‖2
H1

0
ds < +∞. Under the construction of this phase space, there exists a global

attractor to this problem (in fact, the problem in [1] is non-autonomous and the attractor is of
pullback type). Notice that, for this kind of delay problems, in which the initial value at zero may
not be related to the values for negative times, the standard phase space to construct a dynamical
system is the cartesian product L2(Ω)× L2

H1
0
. In such a way, for any initial values u0 ∈ L2(Ω) and
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ϕ ∈ L2
H1

0
, there exists a unique solution to the following problem,

∂u
∂t − a∆u−

∫ t

−∞
k(t− s)∆u(s)ds+ f(u) = g,

u(x, t) = 0,

u(x, 0) = u0(x),

u(x, t) = ϕ(x, t),

in Ω× (0,∞),

on ∂Ω× R,
in Ω,

in Ω× (−∞, 0).

(7)

According to the regularity of solutions to the above equation, one can define a dynamical system
S(t) : L2(Ω)× L2

H1
0
→ L2(Ω)× L2

H1
0

by the relation

S(t)(u0, ϕ) := (u(t; 0, u0, ϕ), ut(·;u0, ϕ)),

where u(·; 0, u0, ϕ) denotes the solution of problem (7) (see [2] for more details on this set-up). We
emphasize that the two components of the dynamical system are the current state of the solution
and the past history up to present, respectively, what is sensible in a problem with delays or memory.
By using this framework, the method in [1] can be successfully applied to prove the existence of
attractors to problem (7) when k is of exponential type. As for much more realistic cases, an
alternative method based on the Dafermos transformation can provide us some ideas to study the
long time behavior of the problem.

The idea to bypass problem (4) is to redefine g as

g +

∫ τ

−∞
k(t− s)∆u(x, s)ds,

hence, the new external term g includes the memory or history of the problem. Then, a way to
associate a semigroup with such equation is to view the past history of u (in integrated form) as a
new variable of the system, which will be ruled by a supplementary equation, ηtt = −ηts + u. This
idea goes back to the seventies, and it was first introduced by Dafermos [8] for linear viscoelasticity.
We define the new variables,

ut(x, s) = u(x, t− s), s ≥ 0, t ≥ τ,
and

ηt(x, s) =

∫ s

0

ut(x, r)dr =

∫ t

t−s
u(x, r)dr, s ≥ 0, t ≥ τ. (8)

Assuming k(∞) = 0, a change of variable and a formal integration by parts yield∫ t

−∞
k(t− s)∆u(s)ds = −

∫ ∞
0

k′(s)∆ηt(s)ds.

Here and in the sequel, the prime denotes derivation with respect to the variable s. Setting

µ(s) = −k′(s),
the original equation (4) turns into the following autonomous system without delay,

∂u

∂t
− a(l(u))∆u−

∫ ∞
0

µ(s)∆ηt(s)ds+ f(u) = g, in Ω× (τ,∞),

ηtt(s) = −ηts(s) + u(t), in Ω× (τ,∞)× R+,

u(x, t) = ηt(x, s) = 0, on ∂Ω× R× R+

u(x, τ) = u0(0), in Ω,

ητ (x, s) = η0(s), in Ω× R+.

(9)



NONLOCAL PDE WITH LONG TIME MEMORY 5

where, ηts denotes the distributional derivative of ηt(s) with respect to the internal variable s. It
follows from the definition of ηt(x, s) (see (8)) that

η0(s) =

∫ τ

τ−s
u(r)dr =

∫ τ

τ−s
u0(r − τ)dr =

∫ 0

−s
u0(r)dr, (10)

which is the initial integrated past history of u with vanishing boundary. Consequently, any solution
to (4) is solution to (9) for the corresponding initial values (u0(0), η0) given by (10). It is worth
emphasizing that problem (9) can be solved for arbitrary initial values (u0, η0) in a proper phase
space L2(Ω) × L2

µ(R+;H1
0 (Ω)) (see Section 2), i.e., the second component ηt does not need to

depend on u0. This allows us to construct a dynamical system in this phase space and prove the
existence of global attractors. However, the transformed equation (9) is in fact a generalization
of problem (4), which means, not every solution to equation (9) possesses a corresponding one to
(4). In fact, both problems are equivalent if and only if the initial value η0 belongs to a proper
subset of L2

µ(R+;H1
0 (Ω)), which coincides with the domain of the distributional derivative with

respecto to s, denoted by D(T) (for more details, see [11]). In this paper, when we work on (9)
assuming η0 ∈ D(T), we will prove existence and uniqueness of solution to problem (9), and this also
provides us the existence of solution to problem (4). However, when η0 does not necessarily belong
to D(T), we may not have any corresponding solution to the original problem. Once we construct
the dynamical system in the phase space L2(Ω) × L2

µ(R+;H1
0 (Ω)), the existence of absorbing sets

and an asymptotic compactness property ensuring the existence of global attractor for the problem
(9) can be shown, but we are not able to prove that such an attractor exists in a more regular phase
space (related to D(T) for the second component of the dynamical system), so that we could have
the complete equivalent information for the initial problem (4). This is also the case in the papers
dealing with local problems (see [6, 7, 11]).

The content of this paper is as follows. In Section 2, we recall some preliminaries and notations
which are necessary for our analysis. Section 3 is devoted to proving the existence and uniqueness
of solution to problem (9) as well as some necessary regularity results and continuous dependence
on the initial values. The main techniques are the Faedo-Galerkin scheme and some compactness
results. The nonlocal term introduces some technical difficulties which are successfully overcome.
Next, in Section 4, it is first proved the existence of absorbing sets in two phase spaces and the
asymptotic compactness of the dynamical system, which ensure the existence of global attractors.
Eventually, in Section 5, some conclusions and further comments for future investigations are in-
cluded.

2. Preliminaries. The purpose of this section is to state assumptions on µ and f , which allow us
to prove properly the well-posedness and asymptotic behavior of problem (9). In addition, some
notations will be introduced so that we can study our problem in suitable phase spaces. At last,
we will establish several lemmas and corollaries for the supplementary equation.

2.1. Assumptions. Suppose the nonlinear term, f : R → R, is a polynomial of odd degree with
positive leading coefficient,

f(u) =

2p∑
k=1

f2p−ku
k−1, p ∈ N. (11)
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Remark 1.

(a) In fact, to prove the main results of this paper, we can consider, more generally, a continuously
differentiable function f on R satisfying
(i) |f(u)| ≤ k1(1 + |u|β),

(ii) u · f(u) ≥ −k2 + k3|u|β+1,
(iii) f ′(u) ≥ −k4,
for some β > 0 and kj ≥ 0, j = 1, 2, 3, 4. The proofs of main results in this paper do not have
significant changes with assumptions (i)-(iii) comparing to (11).

(b) Comparing with assumptions (2.3)-(2.4) to nonlinear term f(u) in Section 2 in [17], here, (11)
is the quite weaker condition which has less restrictions on f(u). We also want to emphasize
if condition (11) were adopted in [17] instead of (2.3)-(2.4), the method to prove main results
of [17] can not be used successfully.

In view of the evolution problem (9), the variable µ is required to verify the following hypotheses,

(h1) µ ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+;
(h2) µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+, for some δ > 0.

Remark 2. (i) Restriction (h1) is equivalent to assuming k(s) is a bounded, positive, non-increasing,
convex function of class C2 vanishing at infinity. Moreover, from (h1) it easily follows that

k(0) =

∫ ∞
0

µ(s)ds is finite and nonegative.

(ii) Observe that, by the Gronwall inequality, (h2) implies µ(s) decays exponentially, i.e.,

µ(s) ≤ µ(s0)e−δ(s−s0), ∀s ≥ s0 > 0. (12)

2.2. Notations. Throughout this manuscript, we make use of several notations introduced in what
follows. Let | · |p denotes the Lp-norm for p ≥ 1, let (·, ·) and | · | denote the L2-inner product and
L2-norm, ((·, ·)) and ‖ · ‖ denote the H1

0 -inner product and H1
0 -norm, respectively. Recall that for

every v ∈ H1
0 (Ω), the Poincaré inequality

λ1(Ω)|v|2 ≤ ‖v‖2

holds. If v ∈ H2(Ω) ∩H1
0 (Ω), the Poincaré and Young inequalities yield

λ1(Ω)|∇v|2 ≤ |∆v|2,
where λ1(Ω) is the first eigenvalue of −∆ with zero Dirichlet boundary conditions on Ω. In the
sequel, unless otherwise specified, we write λ1 instead of λ1(Ω) for simplicity. To simplify the
presentation, from now on, the space L2(Ω) is denoted by H, H1

0 (Ω) is denoted by V and H1
0 (Ω)∩

H2(Ω) is denoted by D(A). As usual, V ∗ is the dual space of V , whose norm is denoted by ‖ · ‖∗.
In view of system (9) and (h1), it is necessary to introduce suitable Banach spaces, which aims at

capturing the essence of the problem. Let L2
µ(R+;H) be the Hilbert space of functions w : R+ → H

endowed with the inner product,

(w1, w2)µ =

∫ ∞
0

µ(s)(w1(s), w2(s))ds,

and let | · |µ denote the corresponding norm. In a similar way, we introduce the inner products
((·, ·))µ, (((·, ·)))µ and corresponding norms ‖·‖µ, ||| · |||µ on L2

µ(R+;V ), L2
µ(R+;D(A)), respectively.

It follows then

((·, ·))µ = (∇·,∇·)µ and (((·, ·)))µ = (∆·,∆·)µ.



NONLOCAL PDE WITH LONG TIME MEMORY 7

We also define the Hilbert spaces,

H = H × L2
µ(R+;V ) and V = V × L2

µ(R+;D(A)),

which are respectively endowed with inner products,

(w1, w2)H = (w1, w2) + ((w1, w2))µ,

and

(w1, w2)V = ((w1, w2)) + (((w1, w2)))µ,

where wi ∈ H or V (i = 1, 2). The norms induced on H and V are the so-called energy norm, which
read,

‖(w1, w2)‖2H = |w1|2 +

∫ ∞
0

µ(s)‖w2(s)‖2ds,

and

‖(w1, w2)‖2V = ‖w1‖2 +

∫ ∞
0

µ(s)‖∇w2(s)‖2ds.

Let T be the linear operator with domain

D(T) =
{
η(·) ∈ L2

µ(R+;V ) | ηs(·) ∈ L2
µ(R+;V ), η(0) = 0

}
,

defined by

Tη = −ηs, η ∈ D(T).

Indeed, T is the infinitesimal generator of the right-translation semigroup on L2
µ(R+;V ), see [11].

Eventually, we introduce the following space

E = {η(·) ∈ L2
µ(R+;D(A)) | η(·) ∈ D(T), sup

r≥1
r£η(r) <∞}.

Here, £η is the tail function of η(·), which is given by

£η(r) =

∫
(0,1/r)∪(r,∞)

µ(s)‖η(s)‖2ds, r ≥ 1.

It is straightforward to see (cf. [10]) that E is a Banach space endowed with the norm

‖η‖2E = ‖η‖2L2
µ(R+;D(A)) + ‖Tη‖2L2

µ(R+;V ) + sup
r≥1

r£η(r).

At this point, an immediate generalization of a compactness result is presented in [15, Lemma 3.1].

Lemma 3. Let K ⊂ L2
µ(R+;V ), satisfying

sup
η∈K

[
‖η‖L2

µ(R+;D(A)) + ‖ηs‖L2
µ(R+;V ∗)

]
<∞ and lim

r→∞

[
sup
η∈K

£η(r)

]
= 0.

Then K is relatively compact in L2
µ(R+;V ).

At last, with standard notations, Dc(I;X) is the space of infinitely differentiable X-valued func-
tion with compact support in I ⊂ R, whose dual space is the distribution space on I with values in
X∗ (dual of X), denoted by D′(I;X∗).
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2.3. The representation formula and some useful lemmas. We recall the following definitions
and properties of the supplementary equation, for more details, see [7, 11] and references therein.
Assume that u is a given function belonging to L1(τ, T ;V ) for every T > τ . Then, for every
η0 ∈ L2

µ(R+;V ), the Cauchy problem{
d
dtη

t(s) = Tηt(s) + u, t ≥ τ,
η0 = η0, t < τ, s ≥ 0,

has a unique solution η· ∈ C(τ,∞;L2
µ(R+;V )), which has the explicit expression formula (see [11]),

ηt(s) =


∫ t

t−s
u(r)dr, 0 < s ≤ t,

η0(s− t) +

∫ t

0

u(t− r)dr, s > t.

(13)

We next show estimates for the functions ηt belonging to E , since they play an important role
in the proof of the asymptotically compact theorem.

Lemma 4. Let η0 ∈ D(T), assume that ‖u(t)‖ ≤ ρ, for some ρ > 0 and every t ≥ τ . Then

‖Tηt‖2L2
µ(R+;V ) ≤ e

−δt‖Tη0‖2L2
µ(R+;V ) + ρ2‖µ‖L1 .

Lemma 5. Let η0 ∈ D(T), assume that ‖u(t)‖ ≤ ρ, for some ρ > 0 and t ≥ τ . Then

sup
r≥1

r£ηt(r) ≤ sup
r≥1

r£η0(r)Ψ(t) + Πρ2,

where Ψ(t) = 2(t+ 2)e−δt and Π = 2

∫ ∞
0

sµ(s)ds+ 2

∫ ∞
1

s3µ(s)ds, which is finite.

Obviously, if we only require that ‖u(t)‖ ≤ ρ for every t ∈ [τ, T ], then the results above are true
on [τ, T ]. Therefore, a straightforward consequence of Lemmas 4 and 5 is:

Corollary 6. If η0 ∈ D(T) and u ∈ L∞(τ, T ;V ) for every T > τ . Then ηt ∈ D(T) for all t > τ .

Lemma 7. ([7, Lemma 3.7]) Let ϕ be a nonnegative absolutely continuous function on [0,∞)
satisfying, for some ν > 0 and 0 ≤ σ < 1, the differential inequality

d

dt
ϕ+ νϕ ≤ g(1 + ϕσ),

where g is a nonnegative function fulling

sup
t≥0

∫ t+1

t

g(y)dy <∞.

Then there exists a constant C = C(σ, ν, g) such that,

ϕ(t) ≤ 1

1− σ
ϕ(0)e−νt + C, ∀t ≥ 0.
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3. Existence of solutions to nonlocal differential equations with memory. As we did in
the previous sections, in order to set up equation (4) in the framework of dynamical systems, we
actually study transformed equation (9) by Dafermos. One natural question might be whether this
procedure is consistent, namely, whether there is a link between equations (4) and (9). Indeed,
it turns out that they are equivalent, or, to be more precise, the transformed equation (9) is in
fact a generalization of the original equation (4), for more explanation, see [11]. Especially, when
η0 ∈ D(T), problems (4) and (9) are the same.

By denoting

z(t) = (u(t), ηt), and z0 = (u0, η0),

setting

Lz =

(
a(l(u))∆u+

∫ ∞
0

µ(s)∆η(s)ds, u+ Tη

)
,

and

G(z) = (−f(u) + g, 0).

Then problem (9) can be written in the following compact form,
zt = Lz + G(z),

z(x, t) = 0,

z(x, τ) = z0,

in Ω× (τ,∞),

on ∂Ω× (τ,∞),

in Ω.

(14)

We are now ready to state the main result in this section.

Theorem 8. Suppose (5), (11) and (h1)-(h2) hold true, let g ∈ H. In addition, assume that a(·)
is locally Lipschitz, and there exists a positive constant m̃ such that,

a(s) ≤ m̃, ∀s ∈ R. (15)

Then:

(i) For any z0 ∈ H, there exists a unique solution z = (u, η) to problem (14) which satisfies

u ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V ) ∩ L2p(τ, T ;L2p(Ω)), ∀T > τ,

η ∈ L∞(τ, T ;L2
µ(R+;V )), ∀T > τ.

Furthermore, z ∈ C(τ, T ;H) for every T > τ , and the mapping F : z0 ∈ H → z(t) ∈ H is
continuous for every t ∈ [τ, T ];

(ii) For any z0 ∈ V, the unique solution z = (u, η) to problem (14) satisfies

u ∈ L∞(τ, T ;V ) ∩ L2(τ, T ;D(A)), ∀T > τ,

η ∈ L∞(τ, T ;L2
µ(R+;D(A))), ∀T > τ.

In addtion, z ∈ C(τ, T ;V) for every T > τ .

Proof. (i) The proof is divided into 5 steps.
Step 1. (Faedo-Galerkin method) Recall that there exists a smooth orthonormal basis {wj}∞j=1

in H which is also orthogonal in V . In fact, it is a complete set of normalized eigenfunctions for
−∆ in V such that −∆wj = λjwj , where λj is the eigenvalue corresponding to wj . Meanwhile, we
choose an orthonormal basis {ζj}∞j=1 of L2

µ(R+;V ) which also belongs to D(R+;V ).
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Then, for every fixed T > τ and a given integer n, we look for a function zn(·) = (un(·), η·n) of
the form

un(t) =

n∑
j=1

bj(t)wj and ηtn(s) =

n∑
j=1

cj(t)ζj(s),

satisfying {
(∂tzn, (wk, ζj))H = (Lzn, (wk, ζj)) + (G(z), (wk, ζj)),

zn|t=0 = (Pnu0, Qnη0),

k, j = 0, · · · , n,
(16)

for a.e. τ ≤ t ≤ T , where Pn and Qn denote the projections on the subspaces V and L2
µ(R+;V ),

respectively, w0 and ζ0 are the zero vectors in each subspace. Taking (wk, ζ0) and (w0, ζk) in (16),
applying the divergence theorem, we derive a system of ODE in the variables

d
dtbk(t) = −λka(l(

∑n
j=1 bi(t)wj))bk −

∑n
j=1 cj((ζj , wk))µ − (f(

∑n
j=1 bj(t)wj), wk) + (g, wk),

d
dtck(t) =

∑n
j=1 bj((wj , ζk))µ −

∑n
j=1 cj((ζ

′
j , ζk))µ,

(17)

fulfilling the initial values,

bk(τ) = (u0, wk), ck(τ) = ((η0, ζk))µ. (18)

According to standard existence theory for ODE, there exists a continuous solution of (17)-(18) on
some interval (τ, Tn). Moreover, a priori estimation implies Tn =∞, for more details, see [17].

Step 2. (Energy estimation) Multiplying the first equation of (17) by bk and the second one by
ck, summing over k (k = 1, 2, · · · , n) and adding the results, we have

1

2

d

dt
‖zn‖2H = (Lzn, zn)H + (G(zn), zn)H. (19)

By the divergence theorem,(∫ ∞
0

µ(s)∆ηtn(s)ds, un

)
= −

∫ ∞
0

µ(s)

∫
Ω

∇ηtn(s) · ∇un(s)dxds = −((un, η
t
n))µ,

therefore,

(Lzn, zn)H = −a(l(un))|∇un|2 − (((ηtn)′, ηtn))µ. (20)

On the other hand, using the Young inequality, from (11) we know there exists a positive constant
a0, such that

f(u)u ≥ 1

2
f0u

2p − a0,

hence,

(G(zn), zn)H = (−f(un) + g, un) ≤ −1

2
f0|un|2p2p + a0|Ω|+ (g, un). (21)

From (5), (19)-(21) and the Young and Poincaré inequalities, it follows

d

dt
‖zn‖2H + 2m|∇un|2 + 2(((ηtn)′, ηtn))µ + f0|un|2p2p ≤ 2a0|Ω|+

1

mλ1
|g|2 +m|∇un|2. (22)

Integration by parts and (h1) yield,

2(((ηtn)′, ηtn))µ = −
∫ ∞

0

µ′(s)|∇ηtn(s)|2ds ≥ 0, (23)
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thus the third term of the right hand side of (22) can be neglected. We obtain

d

dt
‖zn‖2H +m|∇un|2 + f0|un|2p2p ≤ 2a0|Ω|+

1

mλ1
|g|2.

Integrating the above inequality between τ and t, t ∈ (τ, T ], we have

‖zn(t)‖2H +

∫ t

τ

[
m‖un‖2 + f0|un|2p2p

]
ds ≤ ‖z0‖2H + Λ(T − τ), (24)

where we have used the notation Λ := 2a0|Ω|+ 1
mλ1
|g|2. Therefore, it arrives at

un is bounded in L∞(τ, T ;H) ∩ L2(τ, T ;V ) ∩ L2p(τ, T ;L2p(Ω)),

ηn is bounded in L∞(τ, T ;L2
µ(R+;V )).

Passing to a subsequence, there exists a function z = (u, η) such that
un ⇀ u weak-star in L∞(τ, T ;H);

un ⇀ u weakly in L2(τ, T ;V );

un ⇀ u weakly in L2p(τ, T ;L2p(Ω));

ηn ⇀ η weak-star in L∞(τ, T ;L2
µ(R+;V )).

(25)

Step 3. (Pass to limit) For a fixed integer m, choose a function

v = (σ, π) ∈ D((τ, T );V ∩ L2p(Ω))×D((τ, T );D(R+;V ))

of the form

σ(t) =

m∑
j=1

b̃j(t)wj and πt(s) =

m∑
j=1

c̃j(t)ζj(s),

where {b̃j}mj=1 and {c̃j}mj=1 are given functions in D(τ, T ). Obviously, (16) holds with (σ, π) in place
of (ωk, ζj).

We aim at proving problem (14) has a solution in the weak sense. To this end, let us pick up
v = (σ, π) ∈ D(τ, T ) as a test function, so that the following equality∫ t

τ

(∂szn, v)Hds =

∫ t

τ

[
− a(l(un))(∇un,∇σ)− ((ηtn, σ))µ − (f(un), σ)

+ (g, σ) + ((un, π
t))µ− � (ηtn)′, πt �

]
ds,

(26)

holds in the sense of D′(τ, T ). Here, denoting by � ·, · � the duality map between H1
µ(R+;V ) and

its dual space.
Firstly, using the same argument as [17, Theorem 2.7] and (25)2, we know∫ t

τ

a(l(un))(∇un,∇σ)ds→
∫ t

τ

a(l(u))(∇u,∇σ)ds as n→∞.

Analogously, by means of (25)4 and (25)2, we have∫ t

τ

((ηtn, σ))µds→
∫ t

τ

((ηt, σ))µds as n→∞,

and ∫ t

τ

((un, π
t))µds→

∫ t

τ

((u, πt))µds as n→∞,
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respectively.
Secondly, we now show that

lim
n→∞

� (ηtn)′, πt �=� (ηt)′, πt � .

Indeed, for every υ ∈ L2
µ(R+;V ), making use of integration by parts, we derive

� υ′, πt �= −
∫ ∞

0

µ′(s)(∇υ(s),∇πt(s))ds−
∫ ∞

0

µ(s)(∇υ(s),∇(πt)′(s))ds. (27)

Replacing υ by ηn in (27), together with (25)4, it is clear the right hand side of (27) converges to
� η′, πt � as n→∞.

Thirdly, we are going to prove that

lim
n→∞

∫ T

τ

∫
Ω

|f(un)σ|dxdt =

∫ T

τ

∫
Ω

|f(u)σ|dxdt.

Based on the dominated convergence theorem, it is sufficient to show

f(un(t, x))→ f(u(t, x)) for a.e. (t, x) ∈ (τ, T )× Ω,

and

|f(un)|Lq((τ,T )×Ω) ≤ C,
where q = 2p

2p−1 ∈ (1, 2), which is the conjugate exponent of 2p and the constant C is independent

of n. Observe that

‖∂tun‖L2(τ,T ;V ∗)+Lq(τ,T ;Lq(Ω)) ≤ ‖a(l(un))∆un‖L2(τ,T ;V ∗) +

∥∥∥∥∫ ∞
0

µ(s)∆ηtn(s)ds

∥∥∥∥
L2(τ,T ;V ∗)

+ ‖g‖V ∗ + ‖f(un)‖Lq(τ,T ;Lq(Ω)).

(28)

It follows from (11), there exists a constant K > 0 such that

|f(un)|q ≤ K(1 + |un|2p). (29)

Together with (15), (25) and the assumption g ∈ H, we know that {∂tun} is bounded in L2(τ, T ;V ∗)+
Lq(τ, T ;Lq(Ω)). Thus, up to a subsequence, we infer

∂tun ⇀ ũ weakly in L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)). (30)

By a standard argument we infer that ũ = ut. Since

L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)) ⊂ Lq(τ, T ;V ∗ + Lq(Ω))

and

L2(τ, T ;V ) ⊂ Lq(τ, T ;V ),

by (25) and (30), we deduce

un ⇀ u weakly in W 1,q(τ, T ;V + Lq(Ω)) ∩ Lq(τ, T ;V ). (31)

Applying a compactness argument [14], it derives the injection

W 1,q(τ, T ;V ∗ + Lq(Ω)) ∩ Lq(τ, T ;V ) ↪→ Lq(τ, T ;Lq(Ω))

is compact. Therefore, (31) implies that

un → u strongly in Lq(τ, T ;Lq(Ω)).
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By the continuity of f we obtain that (up to a subsequence),

f(un(t, x))→ f(u(t, x)) for a.e. (t, x) ∈ (τ, T )× Ω. (32)

By (29) we obtain

|f(un)|qLq((τ,T )×Ω) =

∫ T

τ

∫
Ω

|f(un)|qdxdt ≤ K|Ω|(T − τ) +K

∫ T

τ

|un|2p2pdt,

which is bounded uniformly with respect to n.
Eventually, by a standard argument, we derive

∂tzn → zt in D′(τ, T ;V ∩ L2p)×D′(τ, T ;D(R+;V )).

Pass to the limit in both sides of equality (26), combine with the previous statements, it is proved
z(t) = (u(t), ηt) is a weak solution of problem (14).

Step 4. (Continuity of solution) By (27) and (28), it is immediate to see that zt = (ut, ηt) fulfills

ut ∈ L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω));

ηt ∈ L2(τ, T ;H−1
µ (R+;V )),

where L2(τ, T ;V ∗) + Lq(τ, T ;Lq(Ω)) is the dual space of L2(τ, T, V ) ∩ L2p(τ, T ;L2p(Ω)). Using a
slightly modified version of [16, Lemma III.1.2], together with (25), we infer that u ∈ C(τ, T ;H).

As for the second component, by means of the same argument as [6, Theorem, Section 2], we
obtain that ηt ∈ C(τ, T ;L2

µ(R+;V )). Thus, z(τ) makes sense, and the equality z(τ) = z0 follows
from the fact that (Pnu0, Qnη0) converges to z0 strongly.

Step 5. (Continuity with respect to the initial value and uniqueness) Let z1 = (u1, η1) and z2 =
(u2, η2) be the two solutions of (14) with initial data z10 and z20, respectively. Due to the a priori
estimates on the first component of solutions u (see (24)) together with the fact that u ∈ C(τ, T ;H),
we can ensure that there exists a bounded set S ⊂ H, such that ui(t) ∈ S for all t ∈ [τ, T ] and
i = 1, 2. In addition, taking into account that l ∈ L(H;R), we have {l(ui(t))}t∈[τ,T ] ⊂ [−R,R] for
i = 1, 2, for some R > 0. Therefore, let z̄ = z1− z2 = (ū, η̄) = (u1− u2, η1− η2) and z̄0 = z10− z20,
thanks to (5), the locally Lipschitz continuity of function a with Lipschitz constant La(R) and the
Poincaré inequality, we have

d

dt
‖z̄‖2H ≤ 2a(l(u1))|∇ū|2 + 2La(R)|l||ū||∇u2||∇ū|

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ −2m|∇ū|2 + 2La(R)|l||ū||∇u2||∇ū|

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ −2m|∇ū|2 + 2m|∇ū|2 +
1

2m
L2
a(R)|l|2|ū|2‖u2‖2

− 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ

≤ 1

2m
L2
a(R)|l|2‖z̄‖2H‖u2‖2 − 2 < f(u1)− f(u2), ū >Lp,q −2(((η̄)′, η̄))µ,

(33)

where < ·, · >Lp,q is the duality between L2p and Lq. The previous calculation is obtained formally
taking the product in H between z̄ and the difference of (14) with z1 and z2 in place of z, and it
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can be made rigorous with the use of mollifier, see [6, Theorem, Section 2]. In fact, integrating by
parts and by the fact that µ′ < 0, we have

2(((η̄)′, η̄))µ = − lim
s→0

µ(s)|∇η̄t(s)|2 −
∫ ∞

0

µ′(s)|∇η̄t(s)|2ds ≥ 0.

Hence, the last term of the right hand side of (33) can be neglected.
At last, from (11) we know that f(u) is increasing for |u| ≥M , for some M > 0. Fix t ∈ (τ, T ],

and let

Ω1 := {x ∈ Ω : |u1(t, x)| ≤M and |u2(t, x)| ≤M},
and

N = 2 sup
|s|≤M

|f ′(s)|.

Let x ∈ Ω1, then we have

2|f(u1(x))− f(u2(x))| ≤ N |ū(x)|.
Then, by the monotonicity of f(u) for |u| ≥M and the Poincaré inequality, it follows that

−2 < f(u1)− f(u2), ū >Lp,q ≤ −2

∫
Ω1

(f(u1(x))− f(u2(x)))ū(x)dx

≤
∫

Ω1

N |ū(x)|2dx

≤ N‖z̄‖2H.

(34)

(33)-(34) imply that

d

dt
‖z̄‖2H ≤

(
1

2m
L2
a|l|2‖u2‖2 +N

)
‖z̄‖2H.

The uniqueness and continuous dependence on initial date of solution to problem (14) follow from
the Gronwall inequality. Till now, we finish the proof of the first assertion.

(ii) We are going to study further regularity of (u, η). To this end, multiplying (9)1 by −∆u
with respect to the inner product of H, the Laplacian of (9)2 by η with respect to the inner product
of L2

µ(R+;D(A)), and adding the two terms, we obtain

d

dt
‖z‖2V + 2a(l(u))|∆u|2 + 2(((ηt, (ηt)′)))µ = 2(−f(u) + g,∆u). (35)

Since f is a polynomial of odd degree, there exists a constant d0 > 0, such that

f ′(u) ≥ −d0

2
, ∀u ∈ R. (36)

Then, it follows from the above inequality, (11), the Green formula and the Young inequality that

2(f(u),∆u) = 2

∫
Ω

f2p−1∆udx− 2

∫
Ω

f ′(u)∇u · ∇udx

≤ 2

m
f2

2p−1|Ω|+
m

2
|∆u|2 + d0|∇u|2.

Again by the Young inequality, we have

2(g,∆u) ≤ m

2
|∆u|2 +

2

m
|g|2.
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Together with (5), (35) becomes

d

dt
‖z‖2V +m|∆u|2 + 2(((ηt, (ηt)′)))µ ≤ Θ, (37)

where we have used the notation Θ = 2
mf

2
2p−1|Ω|+ d0|∇u|2 + 2

m |g|
2, which belongs to ∈ L1(τ, T ).

Under the suitable spatial regularity assumptions on η, integration by parts in time, and using (h1),
we obtain

(((ηt, (ηt)′)))µ = −
∫ ∞

0

µ′(s)|∆ηt(s)|2ds ≥ 0.

Therefore, the term 2(((ηt, (ηt)′)))µ in (37) can be neglected, we integrate (37) between τ and t,
where t ∈ (τ, T ), which leads to

‖z(t)‖2V +m

∫ t

τ

|∆u(s)|2ds ≤ ‖z(τ)‖2V +

∫ t

τ

Θ(s)ds. (38)

From the above estimation, we conclude that

u ∈ L∞(τ, T, V ) ∩ L2(τ, T ;D(A))

η ∈ L∞(τ, T ;L2
µ(R+;D(A))).

Concerning the assertion (ii) of this theorem, the continuity of u follows again using a slightly
modified version of [16, Lemma III.1.2]. The continuity of η can be proved mimicking the idea of
the proof of Step 4 of (i), with D(A) in place of V . The proof of this theorem is complete. �

Remark 9. The upper bound a(r) ≤ m̃ can be removed to obtain Theorem 8. Indeed, consider the
function a substituted by 

a(M̃) if s ≥ M̃
a(s) if |s| ≤ M̃
a(−M̃) if s ≤ −M̃,

where M̃ := |l|
√

(‖z0‖2H + ΛT ), thanks to the a priori estimation in Step 2 of Theorem 8, cf. (24).

4. Existence of attractor. In this section, we will study the long time behavior of problem (14).
Notice that, Theorem 8 ensures the solution to problem (14) exists globally in time. This fact
entitles us to construct an autonomous dynamical system S(t),

S(t) : H × L2
µ(R+;V )→ H × L2

µ(R+;V ),

defined by,
S(t)(u0, η0) = (u(t; 0, (u0, η0)), ηt(·; 0, (u0, η0))).

According to the construction of problem (14), the above semigroup can be rewritten equivalently,

S(t) : H → H,
given by,

S(t)z0 = z(t; 0, z0),

where z(·) = z(·; 0, z0) is the solution of (14) with initial value z0 = (u0, η0) and initial time
τ = 0. Observe that, on the one hand, S(t) is well-defined as we have proved the solution of (14)
z(·) ∈ C(0, T ;H), for all T > 0 (cf. Theorem 8 (i)). On the other hand, S(t) : V → V is also
well-defined based on the result of Theorem 8 (ii).

In the sequel, we will take τ = 0 in problem (14), and we assume it generates an autonomous
dynamical system S(t) on H and V.
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4.1. Existence of absorbing sets in H and V. We prove the existence of absorbing sets in both
phase spaces, H and V, in this subsection.

Lemma 10. Under assumptions of Theorem 8, it holds:

(i) If the initial value z0 ∈ H, then the solution to problem (14) in the weak sense satisfies,

‖z(t)‖2H ≤ ‖z0‖2He−c1t +
Λ

c1
, ∀t ≥ 0,

where Λ is given in Theorem 8 and c1 = min{mλ1, δ};
(ii) If the initial value z0 ∈ V and c1 > d0 (cf. (36)), then

‖z(t)‖2V ≤ ‖z0‖2Ve−(c1−d0)t +
2

m(c1 − d0)

(
f2

2p−1|Ω|+ |g|2
)
, ∀t ≥ 0.

Proof. We begin by proving (i). By (23) and (h1)-(h2), we obtain

2(((ηt)′, ηt))µ = −
∫ ∞

0

µ′(s)|∇ηt(s)|2ds ≥ δ
∫ ∞

0

µ(s)|∇ηt(s)|2ds = δ‖ηt‖2µ.

Thus, from (22) and the above estimation, together with the Poincaré inequality, we arrive at

d

dt
‖z‖2H +mλ1|u|2 + δ‖ηt‖2µ + f0|u|2p2p ≤ 2a0|Ω|+

1

mλ1
|g|2 = Λ.

Since c1 = min{mλ1, δ}, we have
d

dt
‖z‖2H + c1‖z‖2H ≤ Λ.

By the Gronwall lemma, we obtain the desired result.
(ii) In order to achieve uniform estimation involving the existence of a bounded absorbing set in

V, let us proceed like in the previous proof. Integration by parts and (h1)-(h3) yield,

2(((ηt, (ηt)′)))µ = −
∫ ∞

0

µ′(s)|∆ηt(s)|2ds ≥ δ
∫ ∞

0

µ(s)|∆ηt(s)|2ds = δ|||ηt|||2µ.

Therefore, by means of the Poincaré inequality, (37) can be written as

d

dt
‖z‖2V +mλ1‖u‖2 + δ|||ηt|||2µ ≤

2

m
f2

2p−1|Ω|+ d0‖u‖2 +
2

m
|g|2.

Since c1 > d0, the above inequality becomes

d

dt
‖z‖2V + (c1 − d0)‖z‖2V ≤

2

m
f2

2p−1|Ω|+
2

m
|g|2.

The proof of assertion (ii) is complete thanks to the Gronwall lemma. �

4.2. Asymptotic compactness. Throughout this subsection, we will focus on the asymptotic
compactness of the semigroup S(t) in phase space H. Let us start with the following lemma which
is an immediate consequence of Lemma 10(i).

Theorem 11. Let assumptions of Theorem 8 hold true. Then, there exists a positive constant
RH, such that the ball BH := B(0, RH) is an absorbing set for S(t) on H. Namely, for any given
bounded set B := B(0, R) ⊂ H, there exists tH = tH(B) such that,

‖S(t)z0‖2H ≤ Re−c1t +
Λ

c1
, ∀t ≥ tH.
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Our main purpose is to prove for any zn0 ∈ B ⊂ H, for any sequence tn → ∞ as n → ∞,
zn(tn) := z(tn; 0, zn0 ) = S(tn)zn0 is relatively compact in H. To this end, by the well-known result
that the embedding V ↪→ H is compact, together with the fact in Lemma 3 that E is relatively
compact in L2

µ(R+;V ), it is enough to prove the sequence zn(tn) is bounded in V × E .

Theorem 12. Suppose the conditions of Theorem 8 are true. Then there exists a positive constant
RE > 0, such that the set BE := B(0, RE) is an absorbing set for S(t) on V × E.

Proof. The proof of this theorem is based on the subsequent lemma. �

Lemma 13. Under assumptions of Theorem 8. Then, for any given constants RE0 > 0 and RH0 > 0,
there exist a positive constant C and a positive function Ψ1 vanishing at infinity, such that for any
initial value z0 = (u0, η0) satisfying ‖z0‖2V×E ≤ RE0 and ‖z0‖2H ≤ RH0 , there holds:

‖S(t)z0‖2V×E ≤ RE0 Ψ1 + C, ∀t ≥ 0.

Proof. Thanks to Lemma 10(ii), we have

‖S(t)z0‖2V ≤ RE0 e−(c1−d0)t +
2

m(c1 − d0)

(
f2

2p−1|Ω|+ |g|2
)
, ∀t ≥ 0, (39)

here we used the fact that ‖z0‖2V ≤ ‖z0‖2V×E ≤ RE0 .

It remains to show the required control on the last two terms of the norm of ηt(s) on E . From
(39), we know there exsits t1 = t(RE0 ) > 0, such that ‖u(t)‖2 ≤ c := 1 + 2

m(c1−d0)

(
f2

2p−1|Ω|+ |g|2
)
,

for all t ≥ t1 > 0. Thus, by lemmas 4 and 5, we have

‖Tηt‖2L2
µ(R+;V ) + sup

x≥1
x£ηt(x) ≤

{
RE0
(
e−δt + Ψ(t)

)
+ c, ∀t ≥ t1,

cRE0 , ∀t ∈ [0, t1].
(40)

With the help of Corollary 6, we finish the proof of this lemma. �
In what follows, we need to prove for any bounded set B ⊂ H, distH(S(t)B,BE) → 0 holds as

t→∞.

Theorem 14. Suppose the conditions of Theorem 8 hold. Then, there exists an increasing positive
function Φ, such that, up to (possibly) enlarging the radius RE ,

distH(S(t)B,BE) ≤ Φ(R)e−kt, ∀t ≥ 0,

for every bounded set B := B(0, R) ⊂ H, where k = min{2mλ1, δ}.

In view of Theorem 11, it is enough to show that

distH(S(t)BH, BE) ≤ RHe−kt, ∀t ≥ 0.

The proof of this fact is based on a suitable decomposition of the solutions S(t)z0. Recalling
assumption (11) on f , noticing Remark 1(iii), we set

f0(u) = f(u) + k4u, ∀u ∈ R.

Obviously, f ′0(u) ≥ 0 for every u ∈ R, then, for initial value z0 = (u0, η0) of problem (4), we write
S(t)z0 as the sum

S(t)z0 = L(t)z0 +K(t)z0,
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where L(t)z0 = (v(t), ξt) and K(t)z0 = (w(t), ζt) solves the following problems,
vt − a(l(u))∆v −

∫ ∞
0

µ(s)∆ξt(s)ds+ f0(u)− f0(w) = 0,

ξtt = −ξts + v,

(v(0), ξ0) = (u0, η0),

in Ω× (0,∞),

in Ω× (0,∞)× R+,

in Ω,

(41)

and 
wt − a(l(u))∆w −

∫ ∞
0

µ(s)∆ζt(s)ds+ f0(w)− k4u = g,

ζtt = −ζts + w,

(w(0), ζ0) = (0, 0),

in Ω× (0,∞),

in Ω× (0,∞)× R+,

in Ω.

(42)

Remark 15. Notice that, in general, L(t) and K(t) are not semigroups.

The following lemmas furnish some properties of these two mappings, L and K, respectively.

Lemma 16. Under assumptions of Theorem 8, let L(t)z0 satisfy equation (41). Then, there exists
a constant k = min{2mλ1, δ}, such that,

sup
z0∈B

‖L(t)z0‖2H ≤ RHe−kt, ∀t ≥ 0.

Proof. Multiplying the first and second equations of problem (41) by v and ξt in spaces H
and L2

µ(R+;V ), respectively. Taking into account (5) and (h2), adding the results and using the
Poincaré inequality, it yields,

d

dt

(
|v|2 + ‖ξt‖2µ

)
+ 2mλ1|v|2 + δ‖ξt‖2µ + 2(f0(u)− f0(w), u− w) = 0.

Since f ′0(u) ≥ 0, for all u ∈ R, we have

d

dt
‖L(t)z0‖2H + k‖L(t)z0‖2H ≤ 0.

By the Gronwall lemma, we finish the proof of this lemma. �

Lemma 17. Under assumptions of Theorem 8, let K(t)z0 satisfy equation (42). Then, there holds,

sup
t≥0

sup
z0∈B

‖K(t)z0‖2V×E ≤ C,

for some constant C = C(RH).

Proof. We proceed similarly as in the proof of Lemma 16. Multiplying the first and second
equations of problem (42) by −∆w and ζt in spaces V and L2

µ(R+;D(A)), respectively. Taking
into account (5) and (h2) and adding the results, we have,

d

dt

(
‖w‖2 + ‖|ζt‖|2µ

)
+ 2m|∆w|2 + δ|||ζt|||2µ + 2(∇(f0(w)− k4u),∇w) = 2(∇g,∇w). (43)

Since f ′0(w) ≥ 0 for all w ∈ R, integration by parts implies,

2(∇f0(w),∇w) = 2(f ′0(w)∇w,∇w) ≥ 0.

By the Young inequality, we derive

2(∇g,∇w) ≤ 2

m
|g|2 +

m

2
|∆w|2, 2k4(u,∆w) ≤ m

2
|∆w|2 +

2

m
k2

4|u|2.
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Therefore, neglecting the fourth term of left hand side of (43), making use of the above estimations
and the Poincaré inequality, (43) can be written as,

d

dt
‖K(t)z0‖2V + k‖K(t)z0‖2V ≤

2

m
(k2

4|u|2 + |g|2).

Because u(t) is uniformly bounded on H (cf. Lemma 16), together with the initial value (w(τ), ζτ ) =
(0, 0), by using the uniform Gronwall lemma (see, Lemma 7), we have

sup
t≥0

sup
z0∈B

‖K(t)z0‖2V ≤ C.

The proof of this lemma is finished by applying Lemmas 4 and 5, combining with Corollary 6. �

Proof of Theorem 14. By Lemmas 16 and 17, we see at once the desired inequality,

distH (S(t)B,BE) = sup
z0∈B

inf
y∈BE

‖L(t)z0 +K(t)z0 − y‖H

≤ sup
z0∈B

‖L(t)z0‖H + distH (K(t)B,BE)

≤ RHe−kt.

The result holds true since we choose RE bigger than C(RH). �

Theorem 18. Assume the conditions of Theorem 8 hold true. Then the semigroup S(t) defined in
H × L2

µ(R+;V ), i.e., H, associated to problem (14) has a global attractor A ⊂ H.

5. Conclusions and further comments. We have analyzed the dynamics of a nonlocal partial
differential equation with long time memory (4) by performing a transformation, first used by
Dafermos, which allows us to rewrite the original equation (4) with memory as a system (14)
without delay. Next, all the results related to problem (14) are shown assuming the initial values
(u0, η0) ∈ H ×L2

µ(R+;V ). In particular, we proved the existence of a global attractor in this phase
space, which in principle does not have a counterpart for the dynamical system generated by the
original problem (4) on the phase space H ×L2

V . Notice that when we refer to our orginal problem

(4), the initial function u0 and the corresponding η0 are related via η0(s) :=
∫ 0

−s u0(r)dr (cf. (10)),

thanks to the Dafermos transformation. When we assume that η0 ∈ D(T), then equations (4) and
(14) are proved to be equivalent, but with the current regularity of solutions, we are not able to
prove the dynamical system defined in the phase space H×D(T) possesses a global attractor. This
motivates the interest to design a new technique to analyze the original problem (4) using a similar
phase space H×L2

V , where it is only necessary to know the information of the initial function u0(s)
for all s ∈ (−∞, 0]. This problem will be explored in a forthcoming paper.
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