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Abstract
The recent identification of rearrangements of neurotrophic tyrosine receptor kinase (NTRK) genes and the development of 
specific fusion protein inhibitors, such as larotrectinib and entrectinib, have revolutionised the diagnostic and clinical manage-
ment of patients presenting with tumours with these alterations. Tumours that harbour NTRK fusions are found in both adults 
and children; and they are either rare tumours with common NTRK fusions that may be diagnostic, or more prevalent tumours 
with rare NTRK fusions. To assess currently available evidence on this matter, three key Spanish medical societies (the Span-
ish Society of Medical Oncology (SEOM), the Spanish Society of Pathological Anatomy (SEAP), and the Spanish Society of 
Paediatric Haematology and Oncology (SEHOP) have brought together a group of experts to develop a consensus document that 
includes guidelines on the diagnostic, clinical, and therapeutic aspects of NTRK-fusion tumours. This document also discusses 
the challenges related to the routine detection of these genetic alterations in a mostly public Health Care System.
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Introduction

The identification of new therapeutic targets and the devel-
opment of selective tyrosine kinase inhibitors or antagonistic 
monoclonal antibodies have enriched the therapeutic arsenal 
against cancer, particularly benefiting subgroups of patients 
with tumours that harbour specific molecular alterations [1]. 
The identification of rearrangements of neurotrophic tyros-
ine receptor kinase (NTRK) genes in a wide range of tumours 
and the development of specific inhibitors of fusion proteins 
have revolutionised the diagnostic and clinical management 
of patients who present with tumours with these alterations 
[1]. The NTRK genes encode tropomyosin receptor kinase 
(Trk) proteins, which play key roles in the development, 
maintenance, and functioning of neural tissues [2], in addi-
tion to a role in the oncogenesis of certain types of tumours 
[3, 4].

Tumours that harbour NTRK fusions are found in both 
adults and children, and can be classified into two groups 
[1]. The first group consists of rare tumours with common 
fusions that are often diagnostic; and the second group com-
prises more common tumours that rarely harbour NTRK 
fusions (frequencies ranging between 0.1% and 2.0%).

Traditionally, targeted therapies have been developed 
individually depending on the histological type of the 
tumour. However, basket trials have shown that the response 
of some of these inhibitors may be independent of histology 
[5, 6]. This poses several challenges. One of them is the 
need to implement comprehensive diagnostic strategies that 
cover many different types of tumours to benefit small sub-
groups of patients. The implementation of new diagnostic 
strategies requires a learning process within hospitals and 
a balanced use of resources, especially when a high benefit 
from targeted therapies is expected in a limited number of 
patients. Three key Spanish medical societies (the Spanish 
Society of Medical Oncology [SEOM], the Spanish Society 
of Pathological Anatomy [SEAP], and the Spanish Society 
of Paediatric Haematology and Oncology [SEHOP], which 
are responsible for the diagnostic and clinical management 
of patients with NTRK-rearranged tumours, have brought 
together a group of experts to develop a consensus docu-
ment that includes guidelines on the diagnostic, clinical, and 
therapeutic aspects of these tumours. This document also 
discusses the challenges related to the routine detection of 
these alterations in a mostly public reimbursement setting.

Anatomopathological aspects

Biology of NTRK

The NTRK1, NTRK2, and NTRK3 genes encode the Trk 
A, B and C proteins, respectively, that have high affinity 
towards their ligands, neurotrophins. These ligands and 
receptors regulate the development, maintenance, and 
function of neurons. There is a high degree of homology 
between Trk proteins [7].

NTRK1, NTRK2 or NTRK3 can be found as oncogenic 
drivers in a wide range of paediatric and adult tumours. In 
almost all cases, the 5′ region of a gene that is expressed 
in the tumour fuses with the 3′ region of one of the NTRK 
genes. The fusion transcript, controlled by the promoter of 
the 5′ gene, encodes a protein that comprises the amino-
terminus of the 5′ gene and the carboxyl-terminal tyrosine 
kinase domain of the Trk. This results in a constitutively 
active fusion protein [8]. This constitutive activation leads 
to an uninterrupted signalling message downstream that 
acts as a true oncogenic controller. Although fusions can 
occur in any of the three NTRK genes, most of the altera-
tions identified to date involve NTRK3 or NTRK1. The 
NTRK genes show very complex alternative splicing pat-
terns in normal and tumour tissues, which generate multi-
ple types of fusions according to the combination of exons 
involved in them.

The Trk fusion proteins are often mutually exclusive 
with other known fusion proteins involving kinases. Spe-
cific fusions of the NTRK gene are associated with certain 
tumours (e.g. the ETV6–NTRK3 fusion gene is detected 
in 90–100% of mammary analogue secretory carcinomas, 
more than 90% of secretory breast carcinomas, and most 
cases of infantile fibrosarcoma and congenital mesoblas-
tic nephroma). NTRK1-3 fusions have been described in 
infantile fibrosarcoma and mesoblastic nephroma (e.g. 
LMNA–NTRK1, EML4–NTRK3). In some tumours, the 
proteins encoded by the NTRK gene have many different 
fusion partners. In lung cancer, for example, seven dif-
ferent gene fusions involving the NTRK1 gene have been 
described that lead to the constitutive activation of the 
TrkA tyrosine kinase domain [8]. This suggests that a 
diagnostic strategy based on the incidence of these fusions 
and Trk expression patterns in different types of cancer 
may be the most effective approach to identifying patients 
whose tumours harbour NTRK fusions [7].

Although fusions involving the NTRK1, NTRK2, and 
NTRK3 genes represent the main mechanism of activation 
and abnormal expression of Trk proteins, other molecular 
mechanisms have also been described that have potential 
impacts on their function. Specifically, overexpression of 
TrkA and TrkC is a favourable prognostic biomarker in 
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neuroblastoma, while TrkB is often expressed in neuro-
blastomas with MYCN amplification, which per se is an 
unfavourable biological factor in these patients [9]. Acti-
vating splice variants of NTRK1 have been described in 
neuroblastoma [10] and have been recognised as having 
oncogenic capacity.

Methods of detecting NTRK fusions

The ability to identify NTRK fusions has undoubtedly ben-
efited from the wealth of knowledge accumulated in the 
pathology departments for other treatable rearrangements 
(ALK, ROS1, etc.) [11, 12] The techniques most used for 
this purpose are immunohistochemistry (IHC), fluorescence 
in situ hybridization (FISH), next-generation sequencing 
(NGS), and reverse transcription polymerase chain reaction 
(RT-PCR) [13]. In the case of NTRK fusions, the European 
Society for Medical Oncology (ESMO) issued a clinical 
practice guideline recommending first screening with IHC 
and then confirming all positive cases with a second tech-
nique (mainly NGS but also FISH in some specific situa-
tions; see below) [13]. As discussed in other SEAP–SEOM 
consensus documents, obtaining a specimen of sufficient 
quality and quantity to measure the biomarkers that need 
to be studied in a particular patient should be a responsibil-
ity shared by the entire tumour board [14]. For this pur-
pose, it is important that the professionals involved have 
sufficient knowledge of the advantages and disadvantages 
of each technology (Table 1) [8, 14, 15]. It would be wise 
to establish automated and routine channels that would pro-
vide a solution when one of the testing techniques fails or 
is incomplete [14]. To minimise this risk, it is important 
to keep in mind the preanalytical and sample prioritisation 
requirements suggested in previous publications [14, 16].

Immunohistochemistry

When IHC is used as a screening method, maximum sen-
sitivity must be achieved, which is particularly important 
in the case of NTRK fusions due to their low prevalence, 
because once a report of IHC negativity is issued, it is 

unlikely that this patient will undergo another technique 
to rule out a rearranged NTRK. Therefore, considerations 
should include (i) choosing an antibody with the greatest 
accumulated evidence in the literature to identify the over-
expression of all three NTRK genes (EPR17341) [17, 18], 
and (ii) a positive control in all slides to ensure the proper 
interpretation of the result. The most commonly used posi-
tive control tissue is from the appendix [18, 19]. The neu-
ral structures of the wall should be positive, in contrast to 
the rest of the tissue (which is completely blue) (Fig. 1). 
Positivity can be cytoplasmic, nuclear, or mixed (Fig. 2a, 
b). The cytoplasmic staining is granular and homogeneous 
throughout but may be stronger in the membrane. Nuclear 
positivity has been described in about half of patients with 
the ETV6–NTRK3 fusion [15, 20, 21].

Although there is no universally accepted results inter-
pretation system, some considerations may be useful for 
establishing the level of IHC positivity that would trigger a 
confirmatory technique: (i) although it has been suggested 
that 1% positive cells is sufficient for an IHC diagnosis of 

Table 1   Advantages and disadvantages of the main approaches to studying NTRK fusions

IHC immunohistochemistry, FISH fluorescence in situ hybridization, NGS next-generation sequencing (massive parallel sequencing)

IHC FISH NGS

Advantages High sensitivity
Inexpensive and accessible
Fast

High sensitivity and specificity
Inexpensive and accessible
Fast

High sensitivity and specificity
Simultaneous study of other targets

Disadvantages Specificity unknown
Non-standardised interpretation

Three individual FISH tests must be performed
Non-standardised interpretation

Expensive and limited access
Reduced sensitivity for DNA panels
Longer response time

Fig. 1   The appendix serves as both a positive and a negative con-
trol for the IHC of Trks. The positivity of the neural structures of the 
appendix wall ensures the correct functioning of the analytical step of 
the IHC (clone EPR17341, Window, × 400). IHC: immunohistochem-
istry
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positivity [21], most positive cases have staining in 50% 
or more of the neoplastic cells, with intensities of at least 
2 + (on a scale of 0 to 3 +). Lower percentages or intensi-
ties seem to be linked more to preanalytical or analytical 
technical difficulties than to the biology of the neoplasia in 
question; (ii) structures with neural and smooth muscle dif-
ferentiation, as well as their neoplastic counterparts, show 
intrinsic expression of NTRK that is not caused by an NTRK 
fusion. Therefore, in all these situations, the value of IHC 
as a screening method is very limited [15].

Fluorescence in situ hybridization

There are three main purposes for FISH in the NTRK study 
algorithm [8, 15]: (i) to confirm or rule out NTRK fusions in 
cases with IHC positivity; this is done by performing three 
FISH procedures, one each for NTRK1, NTRK2, and NTRK3; 
(ii) to confirm nuclear IHC positivity for NTRK3; and (iii) 
to confirm NTRK fusion in a neoplasm whose histology 

predicts that type of fusion (e.g. a FISH for NTRK3 in a 
secretory breast carcinoma).

The use of dual-colour break-apart probes is recommended. 
Although the interpretation of the results is not standardised, 
the general recommendations could be very similar for ALK 
FISH interpretation [12]. At least 50 cells must be counted, 
with a cut-off for positive nuclei of 15–20% (separate red and 
green signals and isolated red signals) [22, 23]. Some commer-
cial probes may not detect certain rearrangements due to their 
design, but there are no published data on this problem yet.

Massive parallel sequencing or next‑generation sequence

For the correct interpretation of NGS results, several issues 
should be taken into account [7, 13, 24, 25]: (i) the three 
NTRK fusions are mutually exclusive and do not usually 
appear together with the main treatable alterations in most 
neoplasias; (ii) not all sequencing panels include all three 
genes, and the number of fusion pairs that theoretically can 
be detected is variable. These two parameters do not nec-
essarily correlate with the number of genes in the panel. 
Therefore, it is necessary to know the “width” of the panel 
being used (not only the number of NTRK genes but also the 
number of fusion pairs); (iii) RNA panels have shown better 
sensitivity than DNA panels. Therefore, the absence of an 
NTRK fusion as shown by a DNA panel should be com-
pletely ruled out by a second, confirmatory technique, espe-
cially if IHC positivity is unquestionable. Likewise, if the 
RNA is not of a high enough quality to inform that part of 
the NGS panel, it is essential to confirm or rule out the pres-
ence of NTRK fusions (and other treatable rearrangements) 
through two alternatives: (i) repeating the test in another 
block of paraffin, either from the same biopsy or surgical 
specimen or from another, anterior or posterior sample (e.g. 
rebiopsy); and (ii) using a confirmatory technique.

Reverse transcription polymerase chain reaction

The use of RT-PCR for the detection of NTRK fusions in 
RNA has been described in thyroid neoplasms [26], glio-
blastomas [27], congenital fibrosarcomas [28], and secretory 
carcinomas of the salivary gland [29] and of the breast [30]. 
As in other fusion study scenarios, the sensitivity of this 
technique, the need to have foreknowledge of the gene that 
makes up one half of the fusion protein, the complexity and 
variability of the rearrangements that have been described, 
and the limited preservation of RNA in paraffinised tissue, 
all suggest that the usefulness of RT-PCR in clinical prac-
tice may be limited. There are other alternatives for study-
ing RNA, such as nCounter technology, which is still being 
developed.

Fig. 2   Positive neoplasias can have cytoplasmic staining (a adeno-
carcinoma of the colon, TPM3–NTRK1, clone EPR17341, Win-
dow, × 400) or nuclear staining (b papillary thyroid cancer ETV6–
NTRK3, clone EPR17341, Window, × 400)



1533Clinical and Translational Oncology (2021) 23:1529–1541	

1 3

Organisational aspects

Workflow

When a diagnostic test is used in patient populations with 
low-prevalence molecular alterations, efficiency and costs 
should be analysed. In this regard, pan-Trk IHC is a reliable 
and efficient screening method for the detection of NTRK 
fusions. In cases that demonstrate any degree of fusion pro-
tein expression by IHC, the alteration should be confirmed 
by a technique based on DNA or RNA, including FISH, 
NGS, or PCR. In those centres in which the molecular diag-
nosis is based on NGS techniques, the use of panels that 
include the genes of the NTRK family and can, therefore, 
detect their fusions is recommended.

Optimal biological specimens

Obtaining sufficient specimens of optimal quality for the 
study of biomarkers in a particular patient should be a 
responsibility shared by the entire multidisciplinary commit-
tee, as has been commented in other SEAP–SEOM consen-
sus documents [14, 16]. It is important that all involved have 
sufficient knowledge of the advantages and disadvantages of 
each technique for studying NTRK alterations (Table 1) [8, 
15]. It would be helpful to establish automated and routine 
channels for the study of NTRK alterations when diagnosing 
certain tumour types or according to the clinicopathological 
characteristics, to ensure an adequate response time. The 
fundamental parameters to consider for a successful bio-
marker study are the tumour percentage and the number of 
tumour cells in the specimen, as well as their preanalytical 
conditions, as suggested in previous publications [14, 16].

The first step to consider for obtaining an adequate speci-
men is the time taken between removing the sample from 
the patient and its fixation, named as cold ischemia time. 
The general optimal specimen requirements are storage in a 
10% buffered formalin solution for 6–12 h for small biopsies 
and 24–48 h for surgical resections [31] and the presence of 
at least 50 viable cells for IHC or FISH tests [13]. For PCR 
and NGS techniques, a minimum of 5% and 20–30% tumour 
cells are recommended, respectively [32].

Quality control

Ensuring the quality of diagnostic techniques is necessary 
and should be incorporated into the quality control plan of 
the laboratory or service that performs the tests. In Spain, 
it is recommended that laboratories have ISO 9001 cer-
tification and that the different tests be accredited by the 
UNE-EN ISO 15,189 standard, which the pathology and 
molecular diagnostic laboratories have begun to apply and 
which is evaluated by the Spanish National Accreditation 

and Certification Entity (ENAC) [33]. The quality control 
policy should be extended to include (i) personnel involved 
(technicians, biologists, pathologists, etc.) and their training, 
experience, and use of standardised work procedures (SWP); 
(ii) the use of European Conformity (CE)-certified equip-
ment that is properly calibrated; and (iii) the use of validated 
reagents [34]. In addition, the laboratory should (i) include 
positive and negative internal controls associated with each 
test (e.g. brain parenchyma or organs with nerve plexuses); 
(ii) participate in external quality control programmes 
(SEAP, EMQN, UK-NEQAS); and (iii) monitor the results 
to verify that the percentage of mutations found corresponds 
to the frequency described in the literature according to the 
type of specimen analysed.

Results reporting

The results report must also meet some quality parameters, 
such as (i) a recommended response time of 7–10 work-
ing days; (ii) compliance with the quality control policy 
described above and (iii) inclusion of the following infor-
mation: identity of the patient and the person who ordered 
the test, pathological diagnosis, type of specimen submit-
ted, time of collection (e.g. diagnosis, relapse, or progres-
sion), date on which the specimen was collected, collection 
medium (e.g. fresh, frozen, or paraffin-embedded), anatomi-
cal origin, order date, specimen receipt date, date on which 
the results were issued, test method used, description of the 
detectable alterations, and potential limitations of the assay. 
In the case of commercial kits, the commercial name, the 
batch number, whether it is an approved in vitro diagnostics 
product, description of the quality of the sample (percentage 
of cancer cells, whether the sample was enriched by micro- 
or macrodissection, DNA concentration and purity), com-
ments about the adequacy of the sample, test results defining 
the type of molecular abnormality detected or the absence 
of molecular abnormalities, identity of the professional(s) 
responsible for the test, and, finally and optionally, the name 
of the laboratory supervisor, should be recorded. Any addi-
tional information or comments of interest, accreditation, 
certification, or participation in quality programmes should 
also be described.

Clinical aspects

NTRK genes can form parts of constitutively active fusion 
proteins that lead to the development of multiple types of 
tumours. Currently, there is a great deal of scientific evi-
dence for the efficacy of Trk inhibitors in the control of the 
disease in these patients.
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Larotrectinib

Larotrectinib is a selective inhibitor of the Trk proteins 
(including TrkA, TrkB, and TrkC) approved by the Ameri-
can Food and Drug Administration (FDA) in 2018 for the 
treatment of adult and paediatric patients with any advanced 
cancer with a Trk fusion protein after progression follow-
ing standard treatment or who lack a satisfactory alternative 
treatment [35]. Likewise, in September 2019, the European 
Medicines Agency (EMA) approved its use as treatment in 
adult and paediatric patients with locally advanced, meta-
static solid tumours and an NTRK fusion, or in those in for 
whom surgical treatment involves severe morbidity and the 
patient does not have other satisfactory therapeutic options 
[36].

The efficacy and safety of larotrectinib have been stud-
ied in three multicentre, open-label, single-arm clini-
cal trials in adult and paediatric cancer patients (Phase 1 
adult NCT02122913, Phase 1/2 paediatric NCT02637687 
“SCOUT”, Phase 2 “in basket” in adolescents and adults 
NCT02576431 “NAVIGATE”) [37]. In the latest joint 
analysis of these studies, presented in September 2020, 
the activity of the drug was analysed in 175 patients who 
had progressed following a previous standard treatment 
or for whom effective therapies were not available. The 
main objective of the analysis was the objective response 
rate (ORR), which was 78% (95% CI 71–84) regardless of 

histology, age, and type of NTRK fusion (Table 2). In the 
cohort of adult patients, the ORR was 71% (95% CI 62–79), 
compared to 92% (95% CI 81–97) in the paediatric cohort. 
In the general population, after a median follow-up of 12.9 
and 11.1 months, the median duration of response (DR) 
was not reached, and the median progression-free survival 
(PFS) was 36.8 months (95% CI 25.7-not estimated [NE]). 
The percentage of patients alive at 1 year was 90% (95% CI 
85–95), and at 2 years it was 83% (95% CI 75–90). With a 
median follow-up of 15.3 months, the median overall sur-
vival (OS) had not been reached [38, 39].

Larotrectinib was designed to have low central nervous 
system (CNS) penetration, reducing the potential for on-
target toxicity through the inhibition of TRKs in the brain. 
During the clinical development programme of larotrec-
tinib, baseline brain imaging in asymptomatic patients was 
not required and only 13 (8%) of 159 adult and paediatric 
patients had baseline CNS metastases. In a post hoc explora-
tory analysis of evaluable patients with brain metastases, 
9 of 12 patients (75%) achieved ORR. Only three of 12 
patients with evaluable intracranial disease had measurable 
intracranial disease at baseline. In these patients, best intrac-
ranial responses included one complete response, one partial 
response and one stable disease [38, 40].

The safety of larotrectinib was analysed in 260 patients, 
and the most frequent adverse events (AEs) were asthenia, 
cough, elevated liver enzymes, constipation, diarrhoea, 
dizziness, and anaemia, mainly grade 1–2. Some 16% of 
patients had grade 3–4 toxicity related to treatment, and it 
was necessary to discontinue treatment in 2% of patients (6 
of 279). The most frequent grade 3–4 related AEs were ele-
vation of alanine aminotransferase (4%), neutropenia (3%), 
and anaemia (2%) [38, 39].

To study the efficacy of the treatment in the adult popu-
lation, an analysis of those patients older than 18 years 
treated with 100 mg larotrectinib every 12 h was performed. 
With a July 2019 data cut-off, 116 patients and 17 tumour 
types were registered. The most frequent histological sub-
types were thyroid tumours (22%), salivary gland tumours 
(19%), soft-tissue sarcomas (16%), lung cancer (12%), 
colon cancer (7%), melanoma (5%), breast cancer (5%) and 
gastrointestinal stromal tumours (3%). The most frequent 
fusion transcripts were NTRK3 (54%) and NTRK1 (43%), 
and only 3% had NTRK2. An ORR of 71% (95% CI 62–79) 
was observed, independent of tumour type. With a median 
follow-up of 17.4 months, the DR was 35.2 months (21.6-
NE), and 61% of the patients who responded were progres-
sion-free at 1 year of treatment. With a median follow-up of 
15.8 months, the median PFS was 25.8 months (15.2-NE), 
with the median OS not being reached (36.5-NE), and 87% 
of patients were alive at 1 year [41].

In the analysis of the efficacy of larotrectinib in paediatric 
patients, as of 30 July 2018, 38 patients under 18 years of age 

Table 2   Efficacy of larotrectinib as a function of tumour type*

GIST gastrointestinal stromal tumour, STS soft-tissue sarcoma
* Data cut-off: 19 February 2019

Type of tumour N = 153 
evaluable 
(%)

Response
n = 121, 79%

Childhood fibrosarcoma 29 (18) 27 (96)
GIST 4 (3) 4 (100)
Other soft-tissue sarcomas 36 (23) 29 (81)
Thyroid 26 (16) 19 (79)
Salivary glands 21 (13) 18 (90)
Lung 12 (8) 9 (75)
Colon 8 (5) 4 (50)
Melanoma 7 (4) 3 (43)
Breast 5 (3) 3 (75)
Bone sarcoma 2 (1) 1 (50)
Cholangiocarcinoma 2 (1) 1 (50)
Pancreas 2 (1) 1 (50)
Congenital mesoblastic nephroma 1 (< 1) 1 (100, 3–100)
Appendix 1 (< 1) 0 (not calculable)
Hepatocellular 1 (< 1%) 0 (not calculable)
Prostate 1 (< 1%) 0 (not calculable)
Unknown 1 (< 1%) 1 (100%, 3–100)
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with solid relapsing or locally advanced tumours with NTRK 
fusions included in the Phase 1/2 study (NCT02637687) or 
in the Phase 2 study (NCT02576431) were reviewed [42]. 
The included patients had infantile fibrosarcoma (48%), 
other soft-tissue sarcomas (40%), papillary thyroid cancer 
(6%), gastrointestinal stromal tumour (2%), melanoma (2%) 
or mesoblastic nephroma (2%). The recommended dose was 
100 mg/m2 twice daily orally, equivalent to 173% of the 
recommended dose in adults adjusted for body surface area 
[43]. Among the 34 evaluable patients, the ORR was 94% 
(12 of 34 complete responses, 18 of 34 confirmed partial 
responses, and 2 of 34 partial responses pending confir-
mation). The DR ranged from 6.0 to 26.7 months and was 
greater than 1 year in 84% of patients [42].

Entrectinib

Entrectinib is a multikinase inhibitor of the TrkA, TrkB, 
TrkC, ROS1, and ALK proteins that was approved by the 
FDA and the EMA in August 2019 and May 2020, respec-
tively, for the treatment of patients older than 12 years with 
advanced solid tumours with NTRK fusions who have pro-
gressed following standard treatment, who have not previ-
ously received Trk inhibitors, and for whom other appropri-
ate treatments are not available [44, 45].

Three clinical trials have studied the activity of entrec-
tinib in the adult population with tumours harbouring NTRK 
fusions: two Phase 1 (ALKA-372-001 and STARTRK-1 
[NCT02097810]) and a "basket" Phase 2 trial still ongo-
ing (STARTRK-2 [NCT02568267]) [46]. Patients who had 
progressed following standard treatment or for whom this 
was not possible due to high morbidity from localised dis-
ease were included, and 94% of patients received a dose 
of 600 mg every 24 h. The most frequently represented 
tumours were sarcoma (24%), lung cancer (19%), salivary 
gland tumour (13%), breast cancer (11%), thyroid cancer 
(9%), and colorectal cancer (7%). In the analysis of the first 
54 adults included, an ORR of 59% (95% CI 45–72), a DR 
of 12.9 months (95% CI 7.9-NE), a PFS of 11.2 months 
(8.0–14.9), and an OS of 23.9 months (95% CI 16.8-NE) 
were observed.

Entrectinib was specifically designed to cross the 
blood–brain barrier. Patients with brain metastases were 
enrolled if they had previous treatment resulting in con-
trol of symptoms or were asymptomatic. Patients requir-
ing steroids for their brain metastases could continue their 
treatment, but they must have received stable or decreasing 
doses for at least 2 weeks before the start of entrectinib treat-
ment. According to a blinded independent central review 
assessment, a total of 22% of the patients had metastases in 
the CNS, among whom entrectinib also showed activity at 
the CNS level, with an ORR and intracranial ORR of 58% 
(95% CI 28–85) and 55% (95% CI 23–83), respectively [47, 

48]. Seven patients had previously received radiotherapy 
to the brain. In an update of these data that included 74 
evaluable patients, these results were confirmed: the ORR 
was 64% (52–74), DR was 12.9 months (9.3-NE), PFS was 
11.2 months (8.0–15.7), and OS was 23.9 months (16.0-
NE) [49] (Table 3). In the safety analysis, 355 patients were 
evaluated, including data from the Phase 1 study in the pae-
diatric population STARTRK-NG. Entrectinib performed 
similar to larotrectinib, with a majority of AEs being mild 
(grade 1–2). The most frequent AEs were anaemia, weight 
gain, dyspnoea, and asthenia. The most frequently observed 
grade 3–4 AEs were weight gain (10%) and anaemia (12%). 
Severe AEs were described in 10% of patients, the most 
frequent being neurological (3, 4%), and in three patients, 
treatment was suspended for this reason [46]. The typical 
class side effects of Trk inhibitors are weight gain, observed 
in 53% of treated patients; dizziness, which may or may not 
be associated with ataxia, in 41%; and pain after discontinu-
ing the Trk inhibitor, in 35% of patients. These side effects 
are manageable with modification of the drug dose or with 
pharmacological intervention [50].

In the paediatric clinical trial phase 1/1b of entrectinib 
(NCT02650401), as of 1 July 2019, a total of 35 patients 
under 20 years of age with solid tumours in relapse, with 
a median age of 7 years (range 5 months–20 years), were 
included [51], of whom 11 had NTRK fusions (six high-
grade gliomas, two infantile fibrosarcomas, one medullo-
blastoma, one CNS embryonal tumour and one melanoma). 
Another eight patients had ROS1 (n = 4) and ALK fusions 
(n = 4). The recommended dose was 550 mg/m2 once daily 
orally or 400 mg/m2 in patients unable to swallow intact 
capsules. The safety profile showed no differences from what 
had been observed in the adult population, most AEs being 

Table 3   Efficacy of entrectinib as a function of tumour type*

NSCLC non-small-cell lung cancer, MASC mammary analogue secre-
tory carcinoma
*Data cut-off: 31 October 2018
**Cholangiocarcinoma, gastrointestinal, gynaecological, neuroblas-
toma

Type of tumour N = 74 evaluable (%) Response
n = 47, 64%

Breast 6 (8) 5 (83%)
Colorectal 7 (10) 2 (29%)
MASC 13 (18) 12 (92%)
NSCLC 13 (18) 9 (69%)
Neuroendocrine 4 (5) 2 (50%)
Other** 5 (7) 3 (60%)
Pancreas 3 (4) 2 (67%)
Sarcoma 16 (22) 9 (56%)
Thyroid 7 (10) 3 (43%)
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mild (grade 1–2), mainly at the haematological and diges-
tive levels. Similar to that observed in the adult population, 
7 (21%) patients had grade 1–2 neurological symptoms, 
including drowsiness, paraesthesia, or ataxia. Of the pae-
diatric patients, 3 (9%) discontinued treatment due to AEs, 
and 11 (32%) had to lower the treatment dose due to AEs. 
Only patients with NTRK, ROS1, or ALK fusions responded 
to treatment. The ORR of the 11 patients with tumours with 
NTRK fusions was 73% (5 of 8 complete responses and 3 of 
8 confirmed partial responses).

New generation inhibitors

Despite the marked efficacy of Trk inhibitors and, in many 
cases, the long-lasting response, resistance is common. 
This can occur through the development of mutations of 
the NTRK gene, mutations of MAPK pathway genes such 
as BRAF (V600E) and KRAS (G12D), and the amplification 
of MET [1, 52]. However, second-generation Trk inhibitors 
have been developed, such as selitrectinib and repotrectinib, 
which have shown activity in these patients [1, 52, 53].

Selitrectinib is a pan-Trk inhibitor with minimal activ-
ity against other kinases. It is effective in the treatment of 
tumours with NTRK fusions that have developed resistance 
to first-generation Trk inhibitors in the form of a second-
ary point mutation in the kinase domain [53]. Two ongo-
ing phase 1/2 trials are studying the safety and efficacy 
of selitrectinib in the adult and paediatric populations 
(NCT03215511, EudraCT 2017-004246-20).

Repotrectinib is a protein kinase inhibitor derived from 
the ROS1, NTRK, and ALK genes that efficiently binds to 
the proteins in its active kinase conformation (i.e. the ATP-
binding pocket of the kinase) and prevents steric interfer-
ence resulting from a variety of clinically resistant mutations 
[54]. It has just received FDA breakthrough designation for 
NTRK-positive patients with advanced solid tumours who 
have progressed following treatment with at least one prior 
line of chemotherapy and one or two prior TKIs. This des-
ignation is based on findings from the early interim data of 
the pivotal phase 2 TRIDENT-1 study, which has shown an 
ORR of 50% in 3 of 6 patients with NTRK-positive, TKI-
pretreated advanced solid tumours. Currently, there are 
ongoing trials evaluating the safety and efficacy of the drug 
in patients older than 12 years (NCT03093116, EudraCT 
2016–003616-13; TRIDENT-1), as well as in children under 
25 years (NCT04094610).

Infantile fibrosarcoma

One of the best examples of the activity and potential benefit 
of therapy with Trk inhibitors is infantile fibrosarcoma, the 
most common soft-tissue sarcoma in children under 1 year 
of age. The treatment is eminently surgical, but when it 

occurs in locally advanced stages or in locations in which 
surgery can be especially morbid or mutilating, a neoadju-
vant chemotherapy, particularly an anthracycline, may be 
necessary, with consequent short- and long-term side effects 
and with a response rate of 62%, which means that surgery is 
not facilitated in a significant percentage of patients [55]. As 
an example, in the phase 1 clinical trial of larotrectinib, two 
of the patients achieved a partial response that allowed limb-
sparing surgery with negative margins (R0) and absence of 
viable tumour cells in the specimen, so they could withdraw 
from treatment, and no relapse beyond 12 months was seen. 
A third patient also achieved a partial tumour remission of 
93%, with incomplete resection (R1) and with the presence 
of viable cells in the specimen, so the patient continued 
treatment in the postoperative period, without evidence of 
relapse 7 months later [56]. Based on these results, treatment 
strategies for these patients are being designed, even in the 
first line. Since October 2019, the Phase 2 clinical trial of 
larotrectinib in neoadjuvant therapy in patients with infan-
tile fibrosarcoma who had not received previous treatment 
(NCT03834961) has been underway, with the primary objec-
tive of determining the ORR in this subgroup of patients.

Strategies to optimise the detection of NTRK 
fusions in adult and paediatric patients 
by tumour type

Currently, it is recommended to look for NTRK fusions in 
adult patients who have metastatic cancer (or when surgical 
resection would result in severe morbidity) and who have 
either progressed following treatment or have no alternative 
treatment (Fig. 3). In paediatric patients, it is recommended 
to look for NTRK fusions in those whose tumours have a 
high reported prevalence of such fusions, both at diagnosis 
and in relapse and regardless of their extent (localised or 
metastatic) (Table 4). It is recommended to consider search-
ing for NTRK fusions in paediatric patients with tumours 
with a prevalence of NTRK fusions lower than those men-
tioned above at diagnosis: when they are metastatic, when 
they have a poor prognosis, when surgical resection would 
result in severe morbidity, and in those who have progressed 
following standard treatment, who have relapsed, or who 
do not have an alternative treatment. Searching for NTRK 
fusions is not recommended in patients whose tumours 
harbour mutually exclusive known mutations with NTRK 
fusions.

The evaluation of NTRK gene alterations in clinical 
practice should take into account the expected prevalence 
according to the histology of the cancer and the availability 
of standard treatments, as well as the diagnostic techniques 
that are usually performed in each centre (Table 4) [7, 8, 13, 
25]. In cases in which a high prevalence of positive cases 
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for NTRK fusion is expected, such as infantile fibrosar-
coma, secretory carcinoma of the salivary gland or breast 
and congenital mesoblastic nephroma, it is recommended 
to initially perform FISH, if available in the centre, to con-
firm the expected positivity, or a baseline NGS. If the NGS 
is negative for NTRK, additional tests are recommended. 
In the cases in which a lower prevalence of NTRK fusions 
is expected, but it is known that there may be an increase 
in expression by IHC, such as neuroendocrine tumours, 
gliomas, some sarcomas, or those GISTs in which KIT and 

PDGFR are negative and the treatments are therefore lim-
ited, it is recommended to perform an initial NGS.

In the remainder of the cases, the diagnostic approach 
depends on the type of cancer, its genomic profile, and the 
availability of effective treatments, both in adults and in 
children. For example, in lung cancer, molecular screen-
ing is usually performed. If this takes place, it is impor-
tant to ensure that NTRK is included in the diagnostic test 
chosen (NGS, FISH, or IHC). In general, if NTRK fusion 
at admission is not determined, and the molecular target 
test performed does not show alterations in KRAS, NRAS, 

Fig. 3   Diagram for the determi-
nation of NTRK alterations in 
advanced cancer
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BRAF, EGFR, ALK, ROS1, RET and is considered clini-
cally adequate, it is important still to evaluate NTRKs since 
their fusions are usually exclusive to these targets. NTRK 
evaluation can also be considered to enrich the selection 
of cases when microsatellite instability is high or deficient 
in MLH1, for example, colon cancer or breast cancer. In 
general, a two-step procedure may be considered, with an 
initial screening with IHC for pan-Trk, followed by NGS in 
positive cases. This may be particularly important in cases 
where therapeutic alternatives, even first-line alternatives, 
are unsatisfactory, such as in pancreatic cancer or cholan-
giocarcinoma [57, 58].

Conclusions

NTRK fusions can be present in a wide variety of tumours, 
both in adults and in children. In some rare tumours, fusions 
are found with high frequency, while in more common 
tumours they are seen in a low percentage of patients, which 
makes it difficult for oncologists and pathologists specialised 
in specific areas to gain the necessary experience to identify 
and diagnose these patients.

In recent years, various Trk inhibitors have been highly 
effective in the treatment of tumours with NTRK fusions, 
regardless of histology and type of fusion. A limitation of 
the studies in cancer patients who present NTRK fusions is 
that they are single-arm studies without a standard compara-
tor. The extremely low incidence of those alterations across 
tumours along with the difficulties to conduct randomised 
trials in rare diseases and heterogeneous populations are 
great inconveniences to carry out new studies. However, 
the activity described with these drugs in this population, 
without other effective treatment options, led to approval by 
regulatory agencies in spite of the lack of randomised trials.

Therefore, it is recommended that in the approach to 
the systemic treatment of adult or paediatric patients with 
advanced tumours involving aggressive surgeries, NTRK 
fusions be included as one of the biomarkers necessary to 
adequately guide treatment. It is recommended to always 
look for NTRK fusions in paediatric and adult patients 
who have tumours with a high reported prevalence of such 
fusions and to search for NTRK fusions in paediatric and 
adult patients with other tumours with a lower prevalence 
of fusions if the tumours are metastatic or have a poor prog-
nosis, if surgical resection would result in severe morbidity, 
and if the patient has progressed following standard treat-
ment or cannot receive an alternative treatment.

A diagnostic strategy for NTRK alterations should be 
defined, following the clinicopathological criteria dis-
cussed in this document, while also considering the available 
resources and the number of cases in each centre and guar-
anteeing the response time and communication of results, as 
well as the type of technique for the assessment of NTRK. 
A diagnostic technique based on DNA can be proposed for 
those tumours with a high frequency of alterations or in 
which alterations in NTRK must be known to make a diag-
nosis, but IHC is the screening method of choice in most 
cases. In this scenario, it is necessary to confirm the fusion 
of the NTRK genes by NGS before finalising treatment.

Emerging data suggest that in a significant percentage of 
cases, secondary events—acquired mutations—confer resist-
ance to first-generation Trk inhibitors, so it is necessary to 
identify new treatments against these alterations. This situ-
ation increases the complexity of the diagnosis, anticipating 
the need to identify these alterations early on. Therefore, 
a network of centres of excellence with the availability of 
adequately funded NGS platforms to ensure equitable access 
to these complex tests for all patients throughout the national 
territory must be coordinated by the National Health System. 

Table 4   Estimated frequency of 
NTRK gene fusions in different 
tumour types [20, 59–65]

Adult patient Paediatric patient

90–100% 91–100%
Mammary analogue secretory carcinoma [66, 67] Infantile fibrosarcoma [28, 68]
2–15% 92%
Thyroid cancer [69] Secretory breast carcinoma [70]
4% 83%
Intrahepatic cholangiocarcinoma [71] Congenital mesoblastic nephroma [68, 72]
 < 1–3% 7%
Lung cancer[73] Non-brainstem high-grade glioma [69]
3%
Gastrointestinal stromal tumour [74]
2%
Colon cancer [75]
 < 1%
Melanoma [76]
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From the SEOM, the SEAP, and the SEHOP, these recom-
mendations are proposed in a context of precision oncology 
that considers a comprehensive approach to the diagnosis 
and treatment of cancer, regardless of its histology, based 
on the knowledge of its molecular alterations.
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