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Facultad de Matemáticas, Universidad de Sevilla,
c/ Tarfia s/n, 41012 Sevilla (Spain)

caraball@us.es

3

Cecilia Cavaterra
Dipartimento di Matematica, Università degli Studi di Milano
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Abstract5

In this paper we consider a model describing the evolution of a nematic liquid6

crystal flow with delay external forces. We analyze the evolution of the velocity7

field u which is ruled by the 3D incompressible Navier-Stokes system containing8

a delay term and with a stress tensor expressing the coupling between the trans-9

port and the induced terms. The dynamics of the director field d is described10

by a modified Allen-Cahn equation with a suitable penalization of the physical11

constraint |d| = 1. We prove the existence of global in time weak solutions12

under appropriate assumptions, which in some cases requires the delay term to13

be small with respect to the viscosity parameter.14

Key words: Liquid crystals, Navier-Stokes system, delay terms.15

AMS (MOS) subject classification: 35D30, 35Q30, 76A1516

1 Introduction17

We consider a well known system modeling the flow of nematic liquid crystals when
the stretching effects are taken into account (see [26] and [28]). The material occupies
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a bounded spatial domain Ω ⊂ R3 and the evolution of the state variables u and d
governing the dynamics is ruled by

divu = 0, in ΩT , (1.1)

∂tu+ div (u⊗ u) +∇p = divT + f , in ΩT , (1.2)

∂td+ u · ∇d− αd · ∇u+ (1− α)d · ∇Tu = γ(∆d−∇dW (d)), in ΩT , (1.3)

where ΩT := (0, T )× Ω and the tensors T, S are defined as follows

T = S− λ (∇d�∇d)− αλ(∆d−∇dW (d))⊗ d+ (1− α)λd⊗ (∆d−∇dW (d)),
(1.4)

S = µ
(
∇u+∇Tu

)
. (1.5)

The system consists of two coupled equations, namely, the 3D incompressible Navier-1

Stokes equations for the velocities u , and a modified Allen-Cahn equation for the2

director field d .3

In the system p represents the scalar hydrodynamic pressure, T and S are the4

Cauchy stress and the Newtonian viscous stress tensors, respectively, while f is a5

given external force. In addition, µ , λ and γ denote the viscosity, the competition6

between kinetic energy and potential energy, and the microscopic elastic relaxation7

time (Deborah number) for the molecular orientation field, respectively.8

The role of the term function W consists in the penalization of the deviation9

of the length |d| from the value 1, which is due to liquid crystal molecules being of10

similar size (cf. [14]). As a typical example, we can consider a double well potential11

given by W (d) = (|d|2 − 1)2 . Finally, α ∈ [0, 1] is a parameter related to the shape12

of the liquid crystal molecules.13

As for the notation we will use throughout this paper, ∇d denotes the gradient14

with respect to the variable d . ∇d�∇d stands for the 3× 3 matrix whose (i, j)-th15

entry is given by ∇id · ∇jd , for 1 ≤ i, j ≤ 3, and ⊗ indicates the usual Kronecker16

product, i.e., (u⊗ u)ij := uiuj , for i, j = 1, 2, 3. Finally, ∇T will be used to denote17

the transpose of the gradient.18

A detailed derivation of liquid crystal models and their importance in applica-19

tions can be found, e.g., in [4], [5], [10], [12], [13] [14], [15], [24], [26], [28] (see also the20

references therein). In this context, the mathematical analysis of these models is quite21

wide. We recall here, for instance, the contributions contained in [2], [3], [6], [7], [9],22

[18], [23], [26].23

In our opinion, the analysis of an evolution problem is more accurate if we take24

into account the history of the phenomenon, since the future evolution of the problem25

is influenced, in one or another way, by what has happened in the recent or long26

term history (finite or infinite delay, respectively). This justifies the consideration of27

delay or memory terms in the formulation of the equations. Moreover, in most control28

problems, the construction of feedback controls requires the use of delay terms (see,29

for instance, [1], [8], [19], [29], [30] where several physical models containing delay or30

memory have been studied).31

Therefore, the model we will analyze in the current paper includes an addi-
tional forcing term taking into account some past history information of the system.
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Consequently, we replace equation (1.2) with the following one

∂tu+ div (u⊗ u) +∇p = divT + f + g(t,ut), in ΩT , (1.6)

where the expression for the delay term g is given in a functional way so that several1

types of delays can be considered in a unified formulation (see [1]). The notation ut2

will be used to denote the segment of the solution in the time interval [t−h, t] , where3

h > 0 denotes the maximum delay of the problem. More precisely4

ut(s) = u(t+ s), for s ∈ [−h, 0]. (1.7)

Main object of our investigation in this paper is to generalize the results proved5

in [2] to the case in which different types of delay appear in the system. We underline6

that in [2] no restriction on the viscosity coefficient µ or on the norms of the data are7

assumed in order to prove in a rigorous way the existence of global well defined weak8

solutions in 3D (compare with the results contained in [3]). This result is obtained by9

means of an appropriate choice of the test functions in the variational formulation and10

of a suitable regularization procedure in order to treat the high order stretching terms11

in the momentum equation. For the details on this particular kind of regularization12

see [16], [17] and [11].13

However, in the case we are going to analyze, due to the appearance of the14

delay terms, it is necessary to impose a smallness condition on g with respect to15

the viscosity parameter µ , when this delay term is allowed to contain second order16

partial derivatives (see Remark 3.2 for more details). This makes a difference with the17

non-delay case. Moreover, as in [2] we will analyze two meaningful cases of boundary18

conditions for the director field d : homogeneous Neumann boundary conditions and19

non-homogeneous Dirichlet boundary conditions.20

The structure of the paper is the following. In Section 2 we introduce the initial21

and boundary value problems in the two different cases of boundary conditions for d22

and their weak formulation. In Section 3, we enlist the assumptions on the data and23

state the two theorems regarding existence of global in time solutions. The proof of the24

main results is given in the two following Sections 4 and 5. In particular, in Section 425

some a priori estimates are shown, from which we deduce rigorously the approximated26

Faedo-Galerkin scheme presented in Section 5. Finally, in the Appendix we will furnish27

some meaningful examples of the delay term g .28

2 Formulation of the problems29

Here we associate to system (1.1), (1.6), (1.3) two different sets of initial and boundary30

conditions: in the first case d satisfies a homogeneous Neumann boundary condition31

and in the second case a non-homogeneous Dirichlet boundary condition.32

The initial condition for u is assigned accordingly to the presence of the delay33

term g .34

We assume that Γ := ∂Ω is smooth enough and we set ΓT := (0, T ) × Γ,35

Γh,T := (−h, T )× Γ.36
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We will analyze the following problems where, for the sake of simplicity, we1

have taken γ = λ = 1.2

Problem (P1)

divu = 0, in ΩT , (2.1)

∂tu+ div (u⊗ u) +∇p = div (µ
(
∇u+∇Tu

)
)− div (∇d�∇d) (2.2)

− div (α(∆d−∇dW (d))⊗ d− (1− α)d⊗ (∆d−∇dW (d)))

+ f + g(t,ut), in ΩT ,

∂td+ u · ∇d− αd · ∇u+ (1− α)d · ∇Tu = (∆d−∇dW (d)), in ΩT , (2.3)

u(s, ·) = u0(s, ·), s ∈ [−h, 0], in Ω (2.4)

d(0, ·) = d0, in Ω, (2.5)

u = 0, on Γh,T , (2.6)

∂nd = 0, on ΓT , (2.7)

Problem (P2)

divu = 0, in ΩT , (2.8)

∂tu+ div (u⊗ u) +∇p = div (µ
(
∇u+∇Tu

)
)− div (∇d�∇d) (2.9)

− div (α(∆d−∇dW (d))⊗ d− (1− α)d⊗ (∆d−∇dW (d)))

+ f + g(t,ut), in ΩT ,

∂td+ u · ∇d− αd · ∇u+ (1− α)d · ∇Tu = (∆d−∇dW (d)), in ΩT , (2.10)

u(s, ·) = u0(s, ·), s ∈ [−h, 0], in Ω (2.11)

d(0, ·) = d0, in Ω, (2.12)

u = 0, on Γh,T , (2.13)

d|Γ = h, on ΓT . (2.14)

We introduce now the weak formulation of Problems (P1) and (P2) in which3

the momentum and the incompressible constraint equations are replaced by a family4

of integral identities, while the equation for the director field holds in the strong sense,5

due to the regularity we will obtain for d .6

Here the appropriate choice of the test functions leads to a rigorous weak for-7

mulation of Problem (P1) and Problem (P2) and in addition it will allow us to treat8

the stretching term in the stress tensor (compare with the results contained in [3] and9

see [2]).10
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Problem (P1) - weak formulation1

A weak solution of Problem (P1) is a pair (u, d) satisfying

∫
Ω

u(t, ·) · ∇ϕ = 0, for a.a. t ∈ (0, T ), (2.15)

〈∂tu, ϕ〉 −
∫

Ω

u⊗ u : ∇ϕ+

∫
Ω

µ
(
∇u+∇Tu

)
: ∇ϕ =

∫
Ω

(∇d�∇d) : ∇ϕ (2.16)

+ α

∫
Ω

(∆d−∇dW (d))⊗ d : ∇ϕ− (1− α)

∫
Ω

d⊗ (∆d−∇dW (d)) : ∇ϕ

+

∫
Ω

(f + g(·,u·)) · ϕ, for a.a. t ∈ (0, T ), ∀ϕ ∈ W 1,3
0 (Ω;R3), s.t. divϕ = 0,

∂td+ u · ∇d− αd · ∇u+ (1− α)d · ∇Tu = ∆d−∇dW (d), a.e. in ΩT , (2.17)

∂nd = 0, a.e. on ΓT , (2.18)

d(0, ·) = d0, a.e. in Ω, (2.19)

u(s, ·) = u0(s, ·), a.e. s ∈ (−h, 0), a.e. in Ω. (2.20)

Problem (P2) - weak formulation2

A weak solution of Problem (P2) is a pair (u, d) satisfying

∫
Ω

u(t, ·) · ∇ϕ = 0, for a.a. t ∈ (0, T ), (2.21)

〈∂tu, ϕ〉 −
∫

Ω

u⊗ u : ∇ϕ+

∫
Ω

µ
(
∇u+∇Tu

)
: ∇ϕ =

∫
Ω

(∇d�∇d) : ∇ϕ (2.22)

+ α

∫
Ω

(∆d−∇dW (d))⊗ d : ∇ϕ− (1− α)

∫
Ω

d⊗ (∆d−∇dW (d)) : ∇ϕ

+

∫
Ω

(f + g(·,u·)) · ϕ, for a.a. t ∈ (0, T ), ∀ϕ ∈ W 1,3
0 (Ω;R3), divϕ = 0,

∂td+ u · ∇d− αd · ∇u+ (1− α)d · ∇Tu = ∆d−∇dW (d), a.e. in ΩT , (2.23)

d|Γ = h a.e. on ΓT , (2.24)

d(0, ·) = d0, a.e. in Ω, (2.25)

u(s, ·) = u0(s, ·), a.e. s ∈ (−h, 0), a.e. in Ω. (2.26)

3 Assumptions and main results3

Here we introduce the assumptions on the data and state our main results concerning4

the existence of global-in-time weak solutions, without any restriction imposed on the5

initial data or on µ .6
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3.1 Assumptions on the data1

We enlist the hypotheses on the known data of the problem. In particular we will
describe with full details the delay function g in which relies the novelty of this paper.

µ > 0, α ∈ [0, 1], (3.1)

W ∈ C2(R3), W ≥ 0, (3.2)

W = W1 +W2 s.t. W1 is convex and W2 ∈ C1(R3), ∇W2 ∈ C0,1(R3;R3) (3.3)

f ∈ L2(0, T ;W−1,2(Ω;R3)), (3.4)

g(·, ·) : (0, T )× L2(−h, 0;W 1,2
0 (Ω;R3))→ W−1,2(Ω;R3) satisfies (3.5)

(g1) ∀ ξ ∈ L2(−h, 0;W 1,2
0 (Ω;R3)) the mapping t ∈ [0, T ]→ g(t, ξ) ∈ W−1,2(Ω;R3) is2

measurable,3

(g2) for all t ∈ [0, T ], g(t, 0) = 0,4

(g3) there exists Lg > 0 such that ∀ t ∈ [0, T ], ∀ ξ,η ∈ L2(−h, 0;W 1,2
0 (Ω;R3))5

‖g(t, ξ)− g(t,η)‖W−1,2(Ω;R3) ≤ Lg ‖ξ − η‖L2(−h,0;W 1,2
0 (Ω;R3)) ,

(g4) there exists Cg > 0 such that ∀ t ∈ [0, T ], ∀u,v ∈ L2(−h, T ;W 1,2
0 (Ω;R3))6 ∫ t

0

‖g(s,us)− g(s,vs)‖2
W−1,2(Ω;R3) ds ≤ C2

g

∫ t

−h
‖u(s)− v(s)‖2

W 1,2
0 (Ω;R3) ds,

(g5) if the sequence vm converges weakly to v in L2(−h, T ;W 1,2
0 (Ω;R3)) and strongly

in L2(−h, T ;L2(Ω;R3)), then the sequence g(·,vm· ) converges weakly to g(·,v·) in
L2(0, T ;W−1,2(Ω;R3)) (recall notation (1.7)),

µ̃ := 2µ− Cg > 0, (3.6)

u0(·, ·) ∈ L2(−h, 0;W 1,2
0 (Ω;R3)), div(u0(t, ·)) = 0 inL2(Ω),∀t ≥ 0, (3.7)

d0 ∈ W 1,2(Ω;R3), W (d0) ∈ L1(Ω), (3.8)

h ∈ H1(0, T ;H−1/2(Γ;R3)) ∩ L∞(0, T ;H3/2(Γ;R3)), h(0) = d0|Γ (3.9)

3.2 Statement of the existence theorems7

The first result related to Problem (P1) is the following.8

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain with boundary Γ of class C1,1 .9

Assume that hypotheses (3.1)–(3.8) are fulfilled. Then problem (2.15)–(2.20) admits10

a global in time weak solution (u , d) such that11

u ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(−h, T ;W 1,2
0 (Ω;R3)), (3.10)

12

∂tu ∈ L2(0, T ;W−1,3/2(Ω;R3)), (3.11)
13

W (d) ∈ L∞(0, T ;L1(Ω)), (3.12)
14

d ∈ L∞(0, T ;W 1,2(Ω;R3)) ∩ L2(0, T ;W 2,2(Ω;R3)) ∩H1(0, T ;L3/2(Ω;R3)). (3.13)
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In addition, the following energy inequality holds true, for a.a. t ∈ (0, T ) ,∫
Ω

(
|u|2 + |∇d|2 + 2W (d)

)
(t)−

∫
Ω

(
|u0(0, x)|2 + |∇d0|2 + 2W (d0)

)
(3.14)

+ 2

∫ t

0

∥∥(−∆d+∇dW (d))(s)
∥∥2

L2(Ω;R3)
ds+ µ̃

∫ t

0

‖∇u(s)‖2
L2(Ω;R3×3)ds

≤ C

∫ t

0

‖f(s)‖2
W−1,2(Ω;R3) ds+ Cg‖u0‖2

L2(−h,0;W 1,2
0 (Ω;R3))

,

where C is a positive constant depending on Ω and Cg is as in (g4).1

Remark 3.2. The assumption µ̃ > 0 imposes some kind of smallness of the delay2

term with respect to µ . This is necessary in the general case of having g taking3

values in W−1,2(Ω;R3). However, in the particular case in which g takes values in4

L2(Ω;R3), this assumption can be avoided (see Garcia-Luengo et al. [8] for a similar5

situation in the case of Navier-Stokes in 2D).6

Remark 3.3. Thanks to (3.10), (3.12) and (3.13), we can deduce7

u⊗ u, ∇d�∇d, (∆d−∇dW (d))⊗ d ∈ L2(0, T ;L3/2(Ω;R3×3)), (3.15)

so that their (distributional) divergence belong to

L2(0, T ;W−1,3/2(Ω;R3)).

This justifies the choice of the regularity of the test function ϕ in (2.16).8

Observe that this approach does not depend on the fact that we are considering9

the 3D case. Indeed, also in the 2D case, in order to obtain the existence of weak10

solutions we need the same kind of weak formulation (cf. also [26] and [28]).11

As for Problem (P2), the main result reads as follows.12

Theorem 3.4. Let Ω ⊂ R3 be a bounded domain with boundary Γ of class C1,1 .
Assume that hypotheses (3.1)–(3.9) are satisfied. Then problem (2.21)–(2.26) admits
a global in time weak solution (u , d) satisfying (3.10)–(3.13). Moreover the following
energy inequality holds, for a.a. t ∈ (0, T ) ,∫

Ω

(
|u|2 + |∇d|2 + 2W (d)

)
(t)−

∫
Ω

(
|u0(0, x)|2 + |∇d0|2 + 2W (d0)

)
(3.16)

+ 2

∫ t

0

∥∥(−∆d+∇dW (d))(s)
∥∥2

L2(Ω;R3)
ds+ µ̃

∫ t

0

‖∇u(s)‖2
L2(Ω;R3×3)ds

≤ C

(∫ t

0

(
‖ht(s)‖2

H−1/2(Γ;R3) + ‖h(s)‖2
H3/2(Γ;R3) + ‖∇dW (h(s))‖L2(Γ;R3)

)
ds

+

∫ t

0

‖f(s)‖2
W−1,2(Ω;R3)ds

)
+ Cg‖u0‖2

L2(−h,0;W 1,2
0 (Ω;R3))

,

where C is a positive constant depending on Ω and Cg is as in (g4).13
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4 A priori bounds1

Following the steps contained in [2] (see also [6]), we show here several formal a priori2

estimates, as well as the energy inequalities (3.14) and (3.16). By means of the Faedo-3

Galerkin approximation scheme decribed in Section 5 below all these estimates can be4

validated in a rigourous way.5

Let us consider first the weak formulation of Problem (P1). We take ϕ = u6

in (2.16) and test (2.17) by −∆d + ∇dW (d) on Ω. Summing up the two resulting7

equations, by means of the divergence theorem and using (2.15), we obtain8

1

2

d

dt

∫
Ω

(
|u|2 + |∇d|2 + 2W (d)

)
+ µ

∫
Ω

|∇u|2 +

∫
Ω

| −∆d+∇dW (d)|2 (4.1)

= H−1〈f + g(t,ut),u〉W 1,2
0
.

Moreover, integrating in time on the interval (0, t), taking into account assumption9

(g1)− (g4), applying the Schwarz, Poincaré and Young inequalities on the right hand10

side, then, by straightforward computations, we infer the energy estimate (3.14), where11

we recall that the constant µ̃ is defined as µ̃ = 2µ− Cg .12

Integrating again in time on (0, t) equation (4.1), by means of assumptions13

(3.2)–(3.5), we deduce the a priori bounds14

u ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)) ∩ L10/3((0, T )× Ω;R3), (4.2)

15

d ∈ L∞(0, T ;W 1,2(Ω;R3)), (4.3)
16

−∆d+∇dW (d) ∈ L2(0, T ;L2(Ω;R3)) . (4.4)

Taking advantage of (2.7) and (3.2), from (4.4) we have∫ T

0

∫
Ω

|∆d|2 +

∫ T

0

∫
Ω

∇(∇dW (d))∇d =

∫ T

0

∫
Ω

m ·∆d,

where the function m ∈ L2(0, T ;L2(Ω;R3)), from which, recalling assumption (3.3),
we deduce

1

2

∫ T

0

∫
Ω

|∆d|2 ≤
∫ T

0

∫
Ω

|∇(∇dW2(d))||∇d|+ 1

2

∫ T

0

∫
Ω

|m|2.

Thanks to (4.3), we have |∇d| ∈ L∞(0, T ;L2(Ω;R3)). Then, on account of (4.4) and17

(3.3), it holds18

d ∈ L2(0, T ;W 2,2(Ω;R3)), ∇dW (d) ∈ L2((0, T )× Ω;R3). (4.5)

Going back to (2.17), on account of (4.5) and the fact that u · ∇d and d · ∇u belong19

to L2(0, T ;L3/2(Ω;R3)), by comparison we deduce20

∂td ∈ L2(0, T ;L3/2(Ω;R3)). (4.6)

8



Consider now q(1− a) = 2 in the following interpolation inequality1

‖∇d‖qLs(Ω;R3×3) ≤ c1‖∇d‖aqL2(Ω;R3×3)‖∇d‖
(1−a)q

L6(Ω;R3×3) , (4.7)

where2

s, q ∈ [1,+∞), a ∈ (0, 1), 1/s = (1− a)/6 + a/2. (4.8)

Taking advantage of (4.3–4.5), we get3

∇d ∈ L4s/(3s−6)(0, T ;Ls(Ω;R3×3)) , (4.9)

which gives, for s = 10/3, the crucial estimate4

∇d ∈ L10/3(0, T ;L10/3(Ω;R3×3)). (4.10)

A combination of the previous results implies

(− (∇d�∇d) + α(∆d−∇dW (d))⊗ d− (1− α)d⊗ (∆d−∇dW (d)))

∈ L5/3((0, T )× Ω;R3×3)

and

(− (∇d�∇d) + α(∆d−∇dW (d))⊗ d− (1− α)d⊗ (∆d−∇dW (d)))

∈ L2(0, T ;L3/2(Ω;R3×3)).

Taking into account the a priori estimates (4.2), (4.3) and (4.6) we can deduce that5

any solution satisfies the regularity conditions (3.10) and (3.13), from which it follows6

(3.15) and then (3.11).7

Finally, it is possible to prove the weak stability of the solutions to problem8

(2.15)–(2.20) with respect to the a priori bounds, namely, taking any sequence of weak9

solutions satisfying the above uniform bounds then it admits a convergent subsequence.10

We omit here the details of the proof.11

Consider now Problem (P2). We note that since d satisfies a non-homogeneous12

Dirichlet boundary condition, then we deduce13

1

2

d

dt

∫
Ω

(
|u|2 + |∇d|2 + 2W (d)

)
+ µ

∫
Ω

|∇u|2 +

∫
Ω

| −∆d+∇dW (d)|2 (4.11)

14

= H−1/2(Γ)〈ht, ∂nd〉H1/2(Γ) +H−1 〈f + g(t,ut),u〉W 1,2
0
.

Integrating (4.11) in time on (0, t), by using assumption (g1)− (g4) we can estimate15

the term containing the delay as in the case of Problem (P1). Hence it holds16 ∫
Ω

(
|u|2 + |∇d|2 + 2W (d)

)
(t)−

∫
Ω

(
|u0(0, x)|2 + |∇d0|2 + 2W (d0)

)
(4.12)

+2

∫ t

0

∥∥(−∆d+∇dW (d))(s)
∥∥2

L2(Ω;R3)
ds+ µ̃

∫ t

0

‖∇u(s)‖2
L2(Ω;R3×3)ds

≤ C

∫ t

0

‖f(s)‖2
W−1,2(Ω;R3) ds+ Cg‖u0‖2

L2(−h,0;W 1,2
0 (Ω;R3))

+2

∫ t

0
H−1/2(Γ)〈hs, ∂nd〉H1/2(Γ)ds.

9



On account of assumption (3.9), using standard trace theorems and regularity
results for elliptic equations (cf., e.g., [20, Lemma 3.2, p. 263]), we can estimate the
last term on the right-hand side of (4.12) as follows

H−1/2(Γ)〈ht, ∂nd〉H1/2(Γ) ≤ C‖ht‖H−1/2(Γ)‖d‖H2(Ω) (4.13)

≤ C
(
‖ht‖2

H−1/2(Γ) + ‖h‖2
H3/2(Γ)

)
+

1

4
‖∆d‖2

L2(Ω) .

Consider now the following chain of inequalities

‖ −∆d+∇dW (d)‖2
L2(Ω) = ‖∆d‖2

L2(Ω) + ‖∇dW (d)‖2
L2(Ω) − 2(∆d,∇dW (d)) (4.14)

≥ ‖∆d‖2
L2(Ω) + ‖∇dW (d)‖2

L2(Ω)

+ 2

∫
Ω

∇(∇dW (d))∇d− 2

∫
Γ

∂nd(∇dW (d))|Γ

≥ ‖∆d‖2
L2(Ω) − C‖∇d‖2

L2(Ω)

− 1

4
‖∆d‖2

L2(Ω) − C‖h‖2
H3/2(Γ) − C‖∇dW (h)‖2

L2(Γ)

≥ 1

2
‖∆d‖2

L2(Ω) − C‖h‖2
H3/2(Γ) − C‖∇dW (h)‖2

L2(Γ) ,

where we have used assumptions (3.2), (3.3) and again standard elliptic estimates,1

trace theorems, and the Gagliardo-Nirenberg inequality (cf. [21, p.125]). Then we2

can handle the last term in (4.13) and combining with (4.12) we deduce the energy3

inequality (3.16).4

Integrating again on time equation (4.11), at light of assumptions (3.2), (3.4)5

and (3.9) together with (4.13–4.14), we can deduce the a priori bounds6

u ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)) ∩ L10/3((0, T )× Ω;R3), (4.15)

7

d ∈ L∞(0, T ;W 1,2(Ω;R3)), (4.16)
8

−∆d+∇dW (d) ∈ L2(0, T ;L2(Ω;R3)), (4.17)
9

d ∈ L2(0, T ;L2(Ω;R3)), ∇dW (d) ∈ L2(0, T ;L2(Ω;R3)) . (4.18)

Observe that here we have exploited the assumption h ∈ L∞(0, T ;H3/2(Γ;R3)) in10

order to guarantee h ∈ L∞(0, T ;C0(Γ̄;R3)), which, in combination with W ∈ C2(R),11

gives ‖∇dW (h)‖2
L2(Γ) ∈ L2(0, T ).12

5 The approximation scheme13

In this section we construct a suitable family of approximate problems whose solutions14

weakly converge (up to subsequences) to some limit functions solving the problems of15

Section 2. We will show in details the estimates and the approximation-passage to16

the limit procedure on system (2.15)–(2.20). The procedure for the construction of17

a solution to Problem (P2), i.e. the case of Dirichlet boundary conditions for d , is18

analogous, hence it will be omitted.19

10



The approximation scheme consists of a standard Faedo-Galerkin method for1

the Navier-Stokes system (2.15)–(2.16) coupled with a regularization of the convective2

terms and of the momentum equation. More precisely, in order to regularize the3

convective terms we follow the original approach by Leray [12] to the Navier-Stokes4

system (see also Temam [27]), while in the momentum equation we introduce an5

additional term given by an r -Laplacian operator acting on the velocities (see [16],[17],6

[11] and references therein).7

To this aim, we introduce the Hilbert space8

W 1,2
0,div = {v ∈ W 1,2

0 (Ω;R3) | divv = 0, a.e. in Ω}

and consider an orthonormal basis {vn}∞n=1 . Fixing M, N ∈ N such that M ≤ N , we9

define the finite-dimensional space XN = span{vn}Nn=1 . Moreover, the symbol [v]M10

denotes the orthogonal projection onto the space XM = span{vn}Mn=1 .11

Then the approximate velocity field uN,M ∈ C1([0, T ];XN) solves the Faedo-12

Galerkin system13

d

dt

∫
Ω

uN,M · v =

∫
Ω

[uN,M ]M ⊗ uN,M : ∇v − 1

M

∫
Ω

|∇uN,M |r−2∇uN,M · ∇v (5.1)

14

−
∫

Ω

µ
(
∇uN,M +∇TuN,M

)
: ∇v +

∫
Ω

∇dN,M �∇dN,M : ∇v
15

+α

∫
Ω

(∆dN,M −∇dW (dN,M))⊗ dN,M : ∇v
16

−(1− α)

∫
Ω

dN,M ⊗ (∆dN,M −∇dW (dN,M)) : ∇v +

∫
Ω

f · v
17

+

∫
Ω

g(t, (ut)N,M) · v for all t ∈ [0, T ],

18 ∫
Ω

uN,M(0, ·) · v =

∫
Ω

u0 · v, (5.2)

for any v ∈ XN and r ∈ (3, 10/3).19

Here the function dN,M = dN,M [uN,M ] is the unique solution to the system20

∂tdN,M +uN,M ·∇dN,M−αdN,M ·∇uN,M +(1−α)dN,M ·∇TuN,M +∇dW (dN,M) (5.3)

21

= ∆dN,M , in (0, T )× Ω ,
22

∂ndN,M = 0, on (0, T )× Γ , (5.4)
23

dN,M(0, ·) = d0,M , in Ω , (5.5)

d0,M being a suitable smooth approximation of the initial datum d0 (cf. (2.17)–(2.19)).24

Observe that in (5.1) it has been introduced the additional term 1
M
|∇uN,M |r−2∇uN,M25

(cf. (2.16)) in order to regularize the velocity field in (5.3).26

We point out that the main difference between the approximation system (5.1)-27

(5.5) and the corresponding Faedo-Galerkin system in [2] is due to the presence of the28

11



delay term g(t, (ut)N,M). However, reasoning as in [2], thanks to Theorem A1 in [1]1

we can ensure the existence of solutions as follows.2

We notice that all the a priori bounds we derived formally in Section 4 still3

hold for the approximation problem (5.1)–(5.5). Hence, fixing u ∈ C([0, T ];XN) we4

can find d = d[u] solution to (5.3)–(5.5). Inserting d[u] in system (5.1)–(5.2) we can5

define a mapping u 7→ T [u] , T [u] being the solution of the system. Then, by means6

of the classical Schauder’s argument, it is possible to prove that T admits a fixed7

point on (0, T0), with 0 < T0 ≤ T . Finally, applying again the a priori estimates,8

we can conclude that the approximate solutions can be extended to the whole time9

interval [0, T ] (see [7, Chapter 3 and 6] for details).10

Consider now, for any M, N ∈ N with M ≤ N , the pair (uN,M ,dN,M) solution11

to (5.1)–(5.5). In the following two subsections we will pass to the limit first for12

N →∞ and then for M →∞ .13

5.1 Passage to the limit as N →∞14

The first step consists in passing to the limit as N →∞ in (5.1)–(5.5).15

Recalling the regularizing term introduced in (5.1), from the corresponding16

energy estimate we obtain17

M−1‖∇uN,M‖rLr(ΩT ;R3×3) ≤ C, for r ∈ (3, 10/3), (5.6)

from which we can deduce that, for any fixed M , the set of functions |∇uN,M |r−2∇uN,M18

is uniformly bounded in L
r

r−1 (ΩT ;R3×3). Observe that, since r ∈ (3, 10/3), it holds19

r/(r − 1) ∈ (10/7, 3/2).20

Passing to the limit as N → ∞ in (5.1)–(5.3), where in (5.1) the projection
on XM is kept in the convective term, on account of (5.6) it is possible to prove the
following convergence results

uN,M → uM weakly-(*) in L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)), (5.7)

∇uN,M → ∇uM weakly in Lr(0, T ;Lr(Ω;R3×3)), (5.8)

∂tuN,M → ∂tuM weakly in L
r

r−1 (0, T ;W−1,r/r−1(Ω;R3)), (5.9)

dN,M → dM weakly-(*) in L∞(0, T ;W 1,2(Ω;R3)) ∩ L2(0, T ;W 2,2(Ω;R3)). (5.10)

Moreover, by means of (5.10) and simple interpolation arguments, we get21

∇dN,M → ∇dM strongly in Lη(ΩT ;R3×3), for η ∈ [1, 10/3). (5.11)

On account of (5.7) and (5.8), applying standard interpolation results, some Sobolev22

embedding theorems and the Aubin-Lions lemma, it is possible to deduce the conver-23

gence24

uN,M → uM strongly in Ls(ΩT ;R3), for some s > 5. (5.12)

So that, by means of (5.7) and (5.12), assumption (g5) implies that25

g(t, (ut)N,M)→ g(t, (ut)M) in L2(0, T ;W−1,2(Ω;R3)). (5.13)
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Combining (5.12) with (5.11) and (5.8) with (5.10) we arrive at1

uN,M · ∇dN,M → uM · ∇dM strongly in Lp(ΩT ), for some p > 2, (5.14)

2

dN,M · ∇uN,M → dM · ∇uM weakly in Lp(ΩT ), for some p > 2.

By comparison, we deduce3

∂tdN,M → ∂tdM weakly in L2(0, T ;L2(Ω;R3)), (5.15)

moreover, it holds4

|∇uN,M |r−2∇uN,M → |∇uM |r−2∇uM weakly in Lr/r−1(ΩT ;R3×3).

On account of the previous results, it is possible to prove that the limit pair (uM ,dM)5

solves the problem6 ∫
Ω

uM(t, ·) · ∇ϕ = 0, for a.a. t ∈ (0, T ), (5.16)

7 ∫ t

0

〈∂tuM , ϕ〉 −
∫ t

0

∫
Ω

(
[uM ]M ⊗ uM : ∇ϕ

)
+

∫ t

0

∫
Ω

µ
(
∇uM +∇TuM

)
: ∇ϕ (5.17)

8

=

∫ t

0

∫
Ω

(∇dM �∇dM + α (∆dM −∇dW (dM))⊗ dM) : ∇ϕ
9

−
∫ t

0

∫
Ω

(1− α)dM ⊗ (∆dM −∇dW (dM)) : ∇ϕ
10

− 1

M

∫ t

0

∫
Ω

|∇uM |r−2∇uM : ∇ϕ
11

+

∫ t

0

∫
Ω

f · ϕ+

∫ t

0

∫
Ω

g(t, (ut)M) · ϕ for all t ∈ (0, T ),

for any ϕ ∈ C∞(Ω;R3) such that divϕ = 0.12

Passing to the limit as N →∞ also in the system for d , we have13

∂tdM +uM ·∇dM −αdM ·∇uM + (1−α)dM ·∇TuM = ∆dM −∇dW (dM), a.e. in ΩT

(5.18)14

∂ndM = 0, a.e. in (0, T )× Γ, (5.19)
15

dM(0, ·) = d0,M , a.e. in Ω. (5.20)

Taking v = uN,M in (5.1) and then integrating in time over (0, t), we obtain16

‖uN,M(t)‖2
L2(Ω) +

∫ t

0

∫
Ω

µ|∇uN,M +∇TuN,M |2 +
2

M

∫ t

0

∫
Ω

|∇uN,M |r (5.21)

17

= ‖u0‖2
L2(Ω) + 2

∫ t

0

∫
Ω

(∇dN,M �∇dN,M) : ∇uN,M

13



1

+2α

∫ t

0

∫
Ω

(∆dN,M −∇dW (dN,M))⊗ dN,M : ∇uN,M
2

−2(1− α)

∫ t

0

∫
Ω

dN,M ⊗ (∆dN,M −∇dW (dN,M)) : ∇uN,M
3

+

∫ t

0

∫
Ω

f · uN,M +

∫ t

0

∫
Ω

g(t, (ut)N,M) · uN,M ,

for all t ∈ (0, T ).4

Then, by means of (5.7)–(5.9), taking in (5.17) ϕ = uM we can obtain5

‖uM(t)‖2
L2(Ω) +

∫ t

0

∫
Ω

µ|∇uM +∇tuM |2 +
2

M

∫ t

0

∫
Ω

|∇uM |r (5.22)

6

= ‖u0‖2
L2(Ω) + 2

∫ t

0

∫
Ω

(∆dM −∇dW (dM))⊗ dM : ∇uM
7

+2α

∫ t

0

∫
Ω

(∆dM −∇dW (dM))⊗ dM : ∇uM
8

−2(1− α)

∫ t

0

∫
Ω

dM ⊗ (∆dM −∇dW (dM)) : ∇uM
9

+2

∫ t

0

∫
Ω

f · uM +

∫ t

0

∫
Ω

g(t, (ut)M) · uM , for all t ∈ (0, T ).

Observe that at this point the Lr -regularity of ∇uM (cf. (5.8)) is essential since we10

do not know if the terms (∆dM −∇dW (dM)) ⊗ dM and (∆dM −∇dW (dM)) ⊗ dM11

belong to L2(ΩT ;R3). Actually, we can just guarantee that they lie in L5/3(ΩT ;R3),12

cf. (5.10) and (5.11).13

Now, testing (5.3) by ∆dN,M −∇dW (dN,M) and (5.18) by ∆dM −∇dW (dM),14

and then integrating on (0, t), we obtain for all t ∈ (0, T ),15

‖∇dN,M(t)‖2
L2(Ω) + 2

∫
Ω

W (dN,M)(t) + 2

∫ t

0

∫
Ω

|∆dN,M −∇dW (dN,M)|2 (5.23)

16

= ‖∇d0,M‖2
L2(Ω) + 2

∫
Ω

W (d0,M) + 2

∫ t

0

(uN,M · ∇dN,M ,∆dN,M −∇dW (dN,M))

17

+2

∫ t

0

(
−αdN,M · ∇uN,M + (1− α)dN,M · ∇TuN,M ,∆dN,M −∇dW (dN,M)

)
,

18

‖∇dM(t)‖2
L2(Ω) + 2

∫
Ω

W (dM)(t) + 2

∫ t

0

∫
Ω

|∆dM −∇dW (dM)|2 (5.24)

19

= ‖∇d0,M‖2
L2(Ω) + 2

∫
Ω

W (d0,M)

20

+2

∫ t

0

(
uM · ∇dM − αdM · ∇uM + (1− α)dM · ∇TuM ,∆dM −∇dW (dM)

)
.
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Observe that, due to the higher regularity (5.8) and (5.12) of uM and ∇uM given1

by the regularizing term 1
M
|∇uM |r−2∇uM in (5.1), then (5.18) in meaningful in2

L2(ΩT ;R3) (cf. (5.14)–(5.15)).3

Summing (5.21) with (5.23) and then (5.22) with (5.24), we can pass to the4

limit as N →∞ in both the resulting equations, obtaining5 ∫ T

0

∫
Ω

|∇uN,M |r →
∫ T

0

∫
Ω

|∇uM |r−2∇uM : ∇uM ,

6 ∫ T

0

∫
Ω

|∆dN,M −∇dW (dN,M)|2 →
∫ T

0

∫
Ω

|∆dM −∇dW (dM)|2.

Hence, standard Minty’s trick and monotonicity argument give the results7

∇uN,M → ∇uM strongly in Lr(ΩT ;R3×3),

8

∆dN,M → ∆dM strongly in L2(ΩT ;R3).

5.2 Passage to the limit as M →∞9

In the second step we pass to the limit as M →∞ in (5.16)–(5.20).10

First, we observe that the convergence results in (5.7), (5.12) and therefore
(5.13) still hold when taking M →∞ . Moreover, we can deduce

∂tuM → ∂tu weakly in L
r

r−1 (0, T ;W−1,r/r−1(Ω;R3)) , (5.25)

dM → d weakly-(*) in L∞(0, T ;W 1,2(Ω;R3)) ∩ L2(0, T ;W 2,2(Ω;R3)) , (5.26)

∂tdM → ∂td weakly in L2(0, T ;L3/2(Ω;R3)) , (5.27)

and in particular11

M−1/(r−1)∇uM → 0 strongly in Lr−1(ΩT ;R3×3). (5.28)

On account of the previous convergence results, passing to the limit as M → ∞ in12

(5.16)–(5.20) we finally recover (2.15)–(2.19) and Theorem 3.1 is proved.13

Appendix14

In this section we would like to illustrate some examples of delay forcing terms fulfilling15

assumptions (g1)–(g5). More details in the case of a Navier-Stokes problem can be16

seen in [1].17

(a) Variable delay case18

Let G : [0, T ] × R3 → R3 be a measurable function satisfying G(t, 0) = 0 for all19

t ∈ [0, T ], and assume that there exists LG > 0 such that20

|G(t,u)−G(t,v)|R3 ≤ LG|u− v|R3 ,∀u,v ∈ R3.

15



Consider a function ρ(t), which is going to play the role of the delay function. We1

suppose that ρ ∈ C1([0, T ]) , ρ(t) ≥ 0 for all t ∈ [0, T ] , h = maxt∈[0,T ] ρ(t) > 0 and2

ρ∗ = maxt∈[0,T ] ρ
′(t) < 1. Then, we define g(t, ξ)(x) = G(t, ξ(−ρ(t))(x)) for each3

ξ ∈ L2(−h, 0;W 1,2
0 (Ω;R3)), x ∈ Ω and t ∈ [0, T ] . Notice that, in this case, the4

delayed term g in our problem turns to g(t,ut) = G(t,u(t− ρ(t))). Then, g satisfies5

hypotheses (g1)− (g4). Indeed, (g1)− (g3) follow immediately.6

On the other hand, if u,v ∈ L2(−h, T ;W 1,2
0 (Ω;R3)), using the change of vari-7

able τ = s− ρ(s) it is easy to see that8 ∫ t

0

‖g(s,us)− g(s,vs)‖2
L2(Ω;R3) ds ≤ C2

g

∫ t

−h
‖u(τ)− v(τ)‖2

L2(Ω;R3) dτ ∀ t ∈ [0, T ],

where C2
g =

L2
G

1−ρ∗ and, consequently, (g4) is fulfilled on account of the continuous9

inclusions W 1,2
0 (Ω;R3) ⊂ L2(Ω;R3) ⊂ W−1,2(Ω;R3).10

(b) Distributed delay case11

Let now G : [0, T ]×[−h, 0]×R3 → R3 be a measurable function satisfying G(t, s, 0) =12

0 for all (t, s) ∈ [0, T ] × [−h, 0] and such that there exists a function γ ∈ L2(−h, 0)13

such that14

|G(t, s,u)−G(t, s,v)|R3 ≤ γ(s)|u− v|R3 ,∀u,v ∈ R3 ∀ (t, s) ∈ [0, T ]× [−h, 0].

Then, we define g(t, ξ)(x) =
∫ 0

−hG(t, s, ξ(s)(x)) ds for each ξ ∈ L2(−h, 0;W 1,2
0 (Ω;R3)),15

x ∈ Ω and t ∈ [0, T ] . In this case, the delayed term g in our problem becomes16

g(t,ut) =

∫ 0

−h
G(t, s,u(t+ s)) ds.

As in the case of variable delay, g satisfies hypotheses (g1)− (g4).17

Indeed, (g1) and (g2) can be deduced immediately. On the other hand, if18

ξ,η ∈ L2(−h, 0;L2(Ω;R3)), for each t ∈ [0, T ] we obtain19

‖g(t, ξ)− g(t,η)‖2
L2(Ω,R3) ≤

∫
Ω

(∫ 0

−h |G(t, s, ξ(s)(x))−G(t, s,η(s)(x))|R3 ds
)2

dx

≤
∫

Ω

(∫ 0

−h γ(s)|ξ(s)(x)− η(s)(x)|R3 ds
)2

dx

≤
∫

Ω
‖γ‖2

L2(−h,0)

(∫ 0

−h |ξ(s)(x)− η(s)(x)|2R3 ds
)
dx

≤ ‖γ‖2
L2(−h,0)‖ξ − η‖L2(−h,0;L2(Ω;R3),

which implies that (g3) is fulfilled thanks again to the continuous inclusions W 1,2
0 (Ω;R3) ⊂20

L2(Ω;R3) ⊂ W−1,2(Ω;R3).21

Finally, if u,v ∈ L2(−h, T ;L2(Ω;R3)) then, for each t ∈ [0, T ] it follows22 ∫ t

0

‖g(τ,uτ )−g(τ,vτ )‖2
L2(Ω;R3) dτ ≤ ‖γ‖

2
L2(−h,0)

∫ t

0

(∫ 0

−h
‖u(s+ τ)− v(s+ τ)‖2

L2(Ω;R3) ds

)
dτ,
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and, with the change r = s+ τ,1 ∫ t

0

‖g(τ,uτ )− g(τ,vτ )‖2
L2(Ω;R3) dτ

≤ ‖γ‖2
L2(−h,0)

∫ t

0

(∫ τ

τ−h
‖u(r)− v(r)‖2

L2(Ω;R3) dr

)
dτ

≤ T‖γ‖2
L2(−h,0)

∫ t

−h
‖u(r)− v(r)‖2

L2(Ω;R3) dr,

which, at light of the previously mentioned continuous inclusions, guarantees that (g4)2

holds.3

(c) Other delay terms4

Now, we shall exhibit a situation where certain delay can appear in terms containing5

partial derivatives with respect to the spatial variables.6

Let B(·) ∈ L∞(0, T ;L(W 1,2
0 (Ω;R3);L2(Ω;R3)) and ρ ∈ C1([0, T ]) , such that7

ρ(t) ≥ 0 for all t ∈ [0, T ] , h = maxt∈[0,T ] ρ(t) > 0 and ρ∗ = maxt∈[0,T ] ρ
′(t) < 1. We8

now define g(t, ξ) = B(t)ξ(−ρ(t)) for each ξ ∈ L2(−h, 0;W 1,2
0 (Ω;R3)), and t ∈ [0, T ] .9

Thus, in this case the delayed term g in our problems turns to g(t,ut) = B(t)u(t −10

ρ(t)). It is easy to see that g satisfies conditions (g1)− (g4).11

Also condition (g5) is fulfilled. Indeed, if vm converges to zero weakly in12

L2(−h, T ;W 1,2
0 (Ω;R3)) and ψ ∈ L2(0, T ;W 1,2

0 (Ω;R3)) is given, we have13 ∫ T

0

〈g(t,vmt ), ψ(t)〉 dt =

∫ T

0

〈B∗(t)ψ(t),vm(t− ρ(t))〉 dt,

with B∗(·) ∈ L∞(0, T ;L(L2(Ω;R3);W−1,2(Ω;R3))) ⊂ L∞(0, T ;L(W 1,2
0 (Ω;R3);W−1,2(Ω;R3)))14

the adjoint of B(·). Using the change of variables τ = t− ρ(t) = ω(t), we obtain15 ∫ T
0
〈g(t,vmt ),ψ(t)〉 dt =

∫ ω(T )

ω(0)
〈B∗(ω−1(τ))ψ(ω−1(τ)),vm(τ)〉 1

ω′(ω−1(τ))
dτ

=
∫ T
−h 〈Ψ(τ),vm(τ)〉 dτ,

with16

Ψ(τ) =


1

ω′(ω−1(τ))
B∗(ω−1(τ))ψ(ω−1(τ)) if τ ∈ [ω(0), ω(T )],

0 if τ ∈ [−h, T ] \ [ω(0), ω(T )].

For this function Ψ it follows17 ∫ T

−h
‖Ψ(τ)‖2

∗ dτ =

∫ ω(T )

ω(0)

1

(ρ′(ρ−1(τ)))2‖B
∗(ρ−1(τ))ψ(ρ−1(τ))‖2

∗ dτ,

and thus, by means of the change τ = ω(t) = t− ρ(t),18 ∫ T

−h
‖Ψ(τ)‖2

∗ dτ =

∫ T

0

1

1− ρ′(t)
‖B∗(t)ψ(t)‖2

∗ dt ≤
b2

0

1− ρ∗

∫ T

0

‖ψ(t)‖2 dt,

17



where b0= ‖B∗(·)‖L∞(0,T ;L(W 1,2
0 (Ω;R3);W−1,2(Ω;R3))) .1

Consequently, Ψ ∈ L2(−h, T ;W−1,2(Ω;R3)) and2

lim
m→∞

∫ T

0

〈g(t,vmt ),ψ(t)〉 dt = lim
m→∞

∫ T

−h
〈Ψ(τ),vm(τ)〉 dτ = 0.

Therefore, condition (g5) is satisfied.3

Let K ∈ L∞(−h, T ;L(W 1,2
0 (Ω;R3);W−1,2(Ω;R3))) and consider a term of the4

form g(t,ut) =
∫ 0

−hK(t + s)u(t + s) ds , defined for all u ∈ L2(−h, T ;W 1,2
0 (Ω;R3)).5

This term corresponds to the situation g(t, ξ) =
∫ 0

−hK(t+s)ξ(s) ds for each t ∈ [0, T ]6

and ξ ∈ L2(−h, 0;W 1,2
0 (Ω;R3)). In this case, it is easy to see that g is well defined and7

satisfies (g1)−(g3). In particular, if we denote k = ‖K(·)‖L∞(−h,T ;L(W 1,2
0 (Ω;R3);W−1,2(Ω;R3))) ,8

we can see that, for each t ∈ [0, T ] and each u ∈ L2(−h, T ;W 1,2
0 (Ω;R3)), we have9 ∫ t

0

‖g(s,us)‖2
∗ ds ≤ k2hmin(h, T )

∫ t

−h
‖u(s)‖2 ds,

and thus, (g4) holds by setting Cg = k2hmin(h, T ).10

On the other hand, let vm be weakly converging to zero in L2(−h, T ;W 1,2
0 (Ω;R3)),11

and fix ψ ∈ L2(0, T ;W 1,2
0 (Ω;R3)). Then12 ∫ T

0

〈g(t,vmt ),ψ(t)〉 dt =

∫ T

0

〈∫ t

t−h
K(τ)vm(τ) dτ, ψ(t)

〉
dt,

and, by Fubini’s theorem, it is easy to see that13 ∫ T

0

〈g(t,vmt ),ψ(t)〉 dt =

∫ T

−h
〈Σ(τ),vm(τ)〉 dτ,

with Σ(τ) = K∗(τ)Ψ(τ) and14

Ψ(τ) =


∫ τ+h

0
ψ(t) dt if − h ≤ τ < 0,∫ τ+h

τ
ψ(t) dt if 0 ≤ τ < T − h,∫ T

τ
ψ(t) dt if T − h ≤ τ ≤ T,

in the case h ≤ T , and15

Ψ(τ) =


∫ τ+h

0
ψ(t) dt if − h ≤ τ < T − h,∫ T

0
ψ(t) dt if T − h ≤ τ < 0,∫ T

τ
ψ(t) dt if 0 ≤ τ ≤ T,

in the case h > T . In both cases Ψ ∈ C0([0, T ];W 1,2
0 (Ω;R3)), and in particular16

Σ ∈ L2(0, T ;W−1,2(Ω;R3)).17

Consequently, if vm converges weakly to zero in L2(−h, T ;W 1,2
0 (Ω;R3)), then18

g(·,vm· ) converges weakly to zero in L2(−h, T ;W−1,2(Ω;R3)) and thus, g satisfies19

hypothesis (g5).20

18
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[20] J. Nečas, Introduction to the theory of nonlinear elliptic equations, Teubner Texts21

in Mathematics, 52. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983.22

[21] L. Nirenberg: On elliptic partial differential equations, Ann. Scuola Norm. Sup.23

Pisa (3) 13 (1959), 115–162.24
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