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Abstract
Purpose  We examined the association between dietary folate intake and a score of MetS (metabolic syndrome) and its 
components among older adults at higher cardiometabolic risk participating in the PREDIMED-Plus trial.
Methods  A cross-sectional analysis with 6633 with overweight/obesity participants with MetS was conducted. Folate intake 
(per 100 mcg/day and in quintiles) was estimated using a validated food frequency questionnaire. We calculated a MetS 
score using the standardized values as shown in the formula: [(body mass index + waist-to-height ratio)/2] + [(systolic blood 
pressure + diastolic blood pressure)/2] + plasma fasting glucose–HDL cholesterol + plasma triglycerides. The MetS score as 
continuous variable and its seven components were the outcome variables. Multiple robust linear regression using MM-type 
estimator was performed to evaluate the association adjusting for potential confounders.
Results  We observed that an increase in energy-adjusted folate intake was associated with a reduction of MetS score (β for 
100 mcg/day = − 0.12; 95% CI: − 0.19 to − 0.05), and plasma fasting glucose (β = − 0.03; 95% CI: − 0.05 to − 0.02) inde-
pendently of the adherence to Mediterranean diet and other potential confounders. We also found a positive association with 
HDL-cholesterol (β = 0.07; 95% CI: 0.04–0.10). These associations were also observed when quintiles of energy-adjusted 
folate intake were used instead.
Conclusion  This study suggests that a higher folate intake may be associated with a lower MetS score in older adults, a lower 
plasma fasting glucose, and a greater HDL cholesterol in high-risk cardio-metabolic subjects.
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Introduction

Cardiovascular disease (CVD) is a major cause of death 
and disability in the world, according to the 2015 Global 
Burden of Disease study [1]. The global burden of CVD is 
expected to increase in the coming decades as a result of 
the aging of the population. Metabolic syndrome (MetS) 
is a complex metabolic disorder involving abdominal 

 *	 Jesus Vioque 
	 vioque@umh.es

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2284-148X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00394-020-02364-4&domain=pdf


1126	 European Journal of Nutrition (2021) 60:1125–1136

1 3

obesity, impaired glucose, dyslipidemia, and hypertension, 
all of which can lead to complications including CVD. The 
prevalence of MetS in developed countries has been also 
increasing in the adult population over the last 2 decades 
[2–5], particularly in older adults [6, 7]. Therefore, the 
early identification of modifiable determinants of MetS, 
including dietary factors, has become a priority to prevent 
metabolic complications and to reduce the risk of CVD 
[8, 9].

Folate is an essential micronutrient involved in several 
important physiological functions, including synthesis of 
methionine from homocysteine, synthesis of nucleic acids, 
amino acids, cell division, and methylation of DNA [10]. 
A meta-analysis of 11 randomized clinical trials of a dose 
of 5000 µg/d of the synthetic form of folate (folic acid), 
showed a beneficial effect on flow-mediated dilation (1.42; 
95% CI: 1.26; 1.58) and other in cutaneous vasodilatation 
in older people [11, 12]. This suggests that nitric oxide 
may play a protective role as a potent vasodilator against 
the pathogenesis of endothelial dysfunction, which could 
be more prevalent in patients with MetS [13, 14]. It has 
been also shown that the combination of folic acid supple-
mentation (5 mg/d) and vitamin B12 improves endothelial 
dysfunction in patients with MetS [15]. There is insuf-
ficient research on the relationship between the natural 
form of folate and MetS, despite the fact that elevated 
homocysteine levels or changes in the expression of genes 
involved in lipid metabolism have been previously linked 
to MetS [16, 17]. In a cross-sectional study of a nationally 
representative sample of 8077 adults in the US, a high 
dietary folate intake was associated with lower MetS risk 
[18]. In another study of 2800 Iranian adults aged 35–65, 
no association was found [19].

Current evidence suggests that the use of folic acid sup-
plements, the synthetic form of the vitamin, is associated 
with a positive effect on risk factors for MetS, including 
a better lipid profile, glycemic control and a lower risk of 
hypertension [20–24]. However, little is known about the 
independent effect of dietary folate, the natural form of 
folate, and whether it has an effect that is similar to that 
observed for its synthetic form. This is of interest because 
there are differences between the two forms of folate, in 
terms of metabolic pathways and absorption processes [25, 
26]. As far as we know, only two studies that have explored 
the association between dietary equivalent folate (DEF) 
intake and MetS, both reported a protective effect, although 
no distinction was made between the natural and synthetic 
forms of the vitamin [18, 19]. Since folate food fortifica-
tion is not compulsory in Spain, we had the opportunity to 
examine the association between the dietary folate intake 
from natural sources and a score based on the components of 
MetS (MetS score) in older adults with overweight/obesity 
and MetS participating in the PREDIMED-Plus trial.

Materials and methods

Study population

This study was based on the cross-sectional analysis of 
baseline data collected from the 6874 participants recruited 
for the PREDIMED-Plus trial. This is a 6-year, parallel-
group, multi-center and randomized clinical trial designed 
to evaluate the effect of an energy-restricted Mediterranean 
diet, physical exercise and behavioral therapy compared to 
usual care with an energy unrestricted Mediterranean diet 
for the primary prevention of CVD. The trial was registered 
at the International Standard Randomized Controlled Trial 
(ISRCTN89898870). The study protocol includes more 
detailed information and is available at the website https​
://www.predi​medpl​us.com/ and in previous publications 
[27, 28]. Participants included men ages 55–75 years and 
women ages 60–75 years, with a body mass index (BMI) 
of ≥ 27 to < 40 kg/m2 complying with at least three MetS 
criteria and not suffering from CVD at the time of enroll-
ment [29]. After excluding participants with missing data 
for the main variables and with implausible values for 
mean daily energy intake (< 500 and > 3500 kcal/day for 
women, < 800 and > 4000 kcal/day for men), 6633 partici-
pants were included in the present analysis. Figure 1 shows 
the flowchart for the population sample in our study. All 
participants provided written informed consent, and the trial 
was approved by the Intuitional Review Board of the recruit-
ment centers where the study was conducted.

Folate intake assessment

The FFQ was administered to participants at baseline by 
trained interviewers. Participants were asked about the fre-
quency of their consumption of each food item during the 

Participants randomized in 
PREDIMED PLUS  (n=6,874)

Final sample for the present study 
(n=6,633)

Without dietary information 
(n=50)

With total energy intake out of 
predefinde limits (n=188)

Withouth phsical activiy 
information (n=3)

Fig. 1   Flowchart of participants

https://www.predimedplus.com/
https://www.predimedplus.com/
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previous year. The questionnaire included nine frequency 
options for a specified serving size (never or almost never, 
1–3 times a month, once a week, 2–4 times a week, 5–6 
times a week, once a day, 2–3 times a day, 4–6 times a day, 
and more than 6 times a day). The nutrient and energy con-
tent of foods were obtained from Spanish food composition 
tables [31, 32]. Since folic acid fortification is not manda-
tory in Spain, we only used information on folate derived 
from natural, non-fortified foods. Thus, we estimated the 
mean daily folate intake and total energy intake by multi-
plying the frequency of use for each food item by folate and 
total energy intake content of the portion size and added the 
results across all foods to obtain a dietary folate and energy 
intake for each individual. Energy-adjusted folate intake was 
computed using the residual method, where dietary folate 
intake is regressed on total calories and the population mean 
was then added to the residual [33]. Folate intake was ana-
lyzed as a continuous variable (per 100 mcg/d increment) 
and categorized into quintiles. Participants were compared 
according to compliance with the average requirements (AR) 
of dietary folate intake according to the European Food 
Safety Authority recommendations [34].

Metabolic syndrome score and its components

Weight, height, waist (measured at the midpoint between the 
lowest rib and the iliac crest on a horizontal plane) and hip 
circumference were measured in duplicate with light cloth-
ing and no shoes using a calibrated scale, a wall-mounted 
stadiometer, and a non-elastic tape, respectively. Body 
mass index (BMI) was calculated as weight (kg) divided by 
height (squared meters), and waist–hip ratio (WHR) [waist 
circumference (cm) divided by hip circumference (cm)]. 
Blood pressure was measured three times with a validated 
semiautomatic oscillometer after 5 min of rest in-between 
measurements (Omron HEM-705CP, Hoofddorp, The Neth-
erlands), and the mean of the three readings was used. Blood 
samples were collected at baseline after an overnight fast, 
and aliquots of serum and EDTA plasma were immediately 
processed, coded, and stored at − 80 °C in a central labora-
tory until analysis. High-density lipoprotein (HDL), serum 
glucose and triglyceride levels were determined using stand-
ard enzymatic methods in automatic analyzers in local labo-
ratories of the National Health System hospitals.

A MetS score was compiled based on World Health 
Organization’s definition of MetS [29] and was computed 
based on the formula devised by Franks et al. [35]. This 
variable was derived by standardizing and then summing 
the following continuously distributed indexes of obe-
sity (BMI + WHR/2), hypertension (systolic blood pres-
sure + diastolic blood pressure/2), hyperglycemia (plasma 
fasting glucose), inverted fasting HDL cholesterol, and 
hypertriglyceridemia to create a z score. A little variation in 

the formula was introduced: we used the sex-specific z score 
for WHR and HDL components instead of z score was used 
and insulin was not included because this information was 
not collected for the study. In parallel, standardized compo-
nents of the MetS score (i.e. indexes of obesity, hyperten-
sion, hyperglycemia, inverted fasting HDL cholesterol, and 
hypertriglyceridemia) were also calculated.

Covariates

The following information was also collected at baseline 
age, sex, educational level, smoking, total physical activity 
in Metabolic Equivalents (METS)-min/day using the vali-
dated Regicor Short Physical Activity Questionnaire [36], 
information regarding medication use (antihypertensive, 
hypolipidemic, diabetes, and vitamin supplementation), and 
family history of illness (i.e. stroke and cardiac disease). 
Adherence to an energy-restricted Mediterranean diet (Med-
Diet) was assessed using a 17-item questionnaire, a modified 
version of a validated 14-item questionnaire [37]. Alcohol 
intake in grams per day was estimated using the validated 
FFQ [30].

Statistical analysis

The descriptive analysis of participants’ characteristics 
according to energy-adjusted folate intake quintiles was 
displayed as means and standard deviations (SD) for quan-
titative variables, and as percentages for categorical vari-
ables. An analysis of variance (ANOVA) test was used for 
quantitative variables and the Chi-square test was used for 
qualitative variables to compare the sample characteristics 
between quintiles of levels of intake.

We used a stepwise multiple linear regression analysis 
to estimate the cumulative coefficient of determination to 
identify the main food sources of dietary folate intake among 
the study participants [38].

A robust multiple linear regression using an MM-type 
estimator was performed to evaluate the association between 
energy-adjusted folate intake (in quintiles and per 100-mcg/d 
increment) and MetS score and its components [39]. Regres-
sion coefficients represent the change in each outcome per 
one unit of dietary folate intake, where 1 unit is equivalent 
to a 1-SD difference in z scores, or a 1-unit difference in the 
CM-risk score, either in the continuous or quintile form of 
the variable folate intake.

Models were adjusted for potential confounders based 
on previous literature, and for those variables related to 
the outcome (based on the likelihood ratio: tests with a p 
value of < 0.10) or if the effect estimates for the exposure of 
interest changed by ≥ 10% when they were excluded from 
the model. Finally, four models were examined: Model 1 
was adjusted for sex, age (continuous), total energy intake, 
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educational level (illiterate or primary education, second-
ary education, academic or graduate, and missing infor-
mation), total physical activity (METS-min/day), smoking 
status (current smoker, former smoker, and never smoker), 
alcohol intake in grams per day, antihypertensive (no/yes), 
hypolipidemic (no/yes) and diabetes (no/yes) medication 
use and vitamin supplements use (no/yes), and Model 2 
accounted for the variables in model 1 plus the 17-score 
energy-restricted Mediterranean diet.

To assess the possible effect of dose–response, linear 
trend tests were applied for quintiles of energy-adjusted 
folate intake as continuous variable. The median consump-
tion level within a quintile was assigned to all people within 
that quintile. Finally, to check the robustness of our findings, 
we conducted several sensitivity analyses: (a) excluding 
patients with prevalent diabetes; (b) excluding patients with 
a family history of stroke; (c) excluding patients with family 
history of cardiac disease; (d) excluding patients using vita-
min supplements; (e) stratifying by sex; and (g) stratifying 
by median value of vitamin B2, B6 and B12 intake.

Statistical interactions were tested by the means of like-
lihood ratio test and compared the full adjusted model of 
the linear robust regression with and without cross-product 
terms between the aforementioned variables and per 100-
mcg/d increments of energy-adjusted folate intake.

Statistical analyses were conducted using R 3.5.1 (R 
Foundation for Statistical Computing, Vienna, Austria; 
https​://www.R-proje​ct.org). For the robust linear regression 
analyses, we also used the “robustbase” package of R sta-
tistical software. We used the PREDIMED-Plus database 
update of March 2019.

Results

The mean daily folate intake among participants was 
351 mcg/day, and 86 percent of participants exceeded the 
EFSA AR recommendations of 250 mcg/day. Table 1 shows 
the main food groups and individual foods contributing at 
least 80 percent to dietary folate intake. Vegetables, fruits, 
cereals, and legumes were the main food groups, and spin-
ach, orange and natural juices were the main individual food 
sources.

Table 2 shows the baseline characteristics according to 
quintiles of energy-adjusted folate intake. The mean age, 
physical activity, adherence to an energy-restricting Medi-
terranean diet, and vitamin B12, percentage of women, 
hypolipidemic medication use, and vitamin supplement 
use increased across the quintiles of folate intake. In con-
trast, the percentage of current smokers and the mean 
alcohol intake decreased across the quintiles of folate 
intake. Compared with the first quintile of energy-adjusted 
folate intake, participants in the fifth quintile had higher 

HDL-cholesterol levels, and lower plasma triglycerides, 
WHR, and slightly lower systolic and diastolic blood 
pressure.

Table 3 presents the results of the multiple robust lin-
ear regression analysis for the association between energy-
adjusted folate intake (in quintiles and in continuous) and 
the MetS score and its components after adjusting for poten-
tial confounders. We observed a reduction in MetS score, 
expressed in units of SD, according to quintiles of energy-
adjusted folate intake (p trend < 0.001). Compared with the 
first quintile of energy-adjusted folate intake (< 275 mcg per 
day), the participants in the fifth quintile (> 416 mcg per 
day) had a reduction of − 0.37 points (95% CI: − 0.54 to 
− 0.20) in the SD of the MetS score after adjusting for age, 
sex, energy intake, educational level, smoking status, alcohol 
intake, total physical activity, hypertension, diabetes, cho-
lesterol medication, and vitamin supplement use. Additional 
adjustment for the 17-point screener for Mediterranean diet 
adherence did not change the statistical association between 
quintile of energy-adjusted folate intake and MetS z score, 
but the magnitude of the association was slightly lower 
(− 0.29 vs. − 0.37 points, respectively). The increment in 
100 mcg per day in energy-adjusted folate intake showed a 
reduction of − 0.15 (95% CI: − 0.21 to − 0.00) and − 0.12 
(95% CI: 0.19 to − 0.05) points in the SD MetS score in the 
multiple adjusted model 1 and 2 respectively.

Table 1   Main sources of variability concerning dietary folate intake 
in the PREDIMED-Plus participants (n = 6633)

R2 Cumulative R2

Food groups
 Vegetables 0.453 0.453
 Fruit 0.155 0.608
 Fruit juice 0.065 0.673
 Cereals 0.065 0.738
 Legumes 0.036 0.774
 Nuts 0.022 0.796
 Dairy products 0.012 0.808
 Meat 0.008 0.816
 Fish 0.006 0.822

Foods
 Spinach 0.241 0.241
 Oranges 0.165 0.406
 Natural juice 0.085 0.491
 Other vegetables 0.072 0.563
 Tomato 0.059 0.622
 Dry beans 0.052 0.674
 Muesli 0.048 0.722
 Melon 0.042 0.764
 Green beans 0.030 0.794
 White bread 0.021 0.815

https://www.R-project.org
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Regarding, the components of the MetS score, in Model 
1 we observed that three (i.e. WHR, HDL-cholesterol, and 
plasma fasting glucose) of the seven individual risk fac-
tors were associated with the energy-adjusted folate intake 
(analyzed as continuous as well as quintiles of intake). 
However, when the model was adjusted for the 17-point 
screener for Mediterranean diet adherence (Model 2), the 
association remained significant only for HDL-cholesterol 
and plasma fasting glucose. A positive dose–response was 
observed for the association with HDL-cholesterol and a 
negative dose–response was observed for the association 
with plasma fasting glucose according to quintiles of energy-
adjusted folate intake (p trend < 0.001). The results of model 
2 also showed that, compared to the first quintile (> 275 mcg 
per day), the fifth quintile of energy-adjusted folate intake 
(> 416 mcg per day) was associated with an increase of 
0.13 (IC 95%: 0.06–0.21) points in SD of HDL-cholesterol 
and a decrease of 0.10 (IC 95%: − 0.15 to − 0.04) points 
in SD of plasma fasting glucose. Moreover, we observed 

an increase of 0.07 (IC 95%: 0.04–0.10) points in SD of 
HDL-cholesterol and a decrease of 0.03 (IC 95%: − 0.05 to 
− 0.02) points in SD of plasma fasting glucose per 100 mcg/
day increase in energy-adjusted folate intake.

Table 4 shows the sensitivity analyses of the association 
between energy-adjusted folate intake per 100 mcg/day of 
increase and MetS score, HDL-cholesterol and plasma fast-
ing glucose after excluding those participants with poten-
tially relevant conditions for the association. Excluding 
prevalent diabetes (n = 2042), patients with a family history 
of stroke (n = 1785), cardiac disease (n = 2697) or vitamin 
supplement use (n = 802) did not change the main find-
ings. Furthermore, the interaction (i.e. effect modification) 
between sex, vitamin B12 intake and the observed asso-
ciation between energy-adjusted folate intake and MetS 
score, HDL cholesterol and plasma fasting glucose was 
not statistically significant. Nonetheless, the magnitude of 
the association between energy-adjusted folate intake per 
100 mcg/day increase and MetS score, HDL-cholesterol and 

Table 2   Baseline characteristics of the study population by quintiles of energy-adjusted folate intake in the PREDIMED-Plus study (n = 6633)

BMI body mass index, HDL high-density lipoprotein-cholesterol, MET metabolic equivalent of task
a From the χ2 test (categorical variables), and analysis of variance (continuous variables)

Folate intake (mcg/day)

Q1: < 275
(n = 1327)

Q2: 275–315
(n = 1327)

Q3: 316–357
(n = 1326)

Q4: 358–416
(n = 1327)

Q5: > 416
(n = 1326)

p valuea

Age in years, mean (SD) 64.5 (5.0) 65.5 (5.0) 65.6 (4.8) 65.9 (4.9) 66.5 (4.6) < 0.001
Sex, % women 32.9 40.2 49.7 55.7 63.5 < 0.001
Education level, % academic or graduate 25.5 19.8 19.2 23.1 21.7 < 0.001
Smoking status, % current smoker 18.6 13.2 10.3 9.7 10.1 < 0.001
Physical activity (METS-min/day), mean (SD) 304.2 (291.3) 343.1 (330.2) 353.1 (318.8) 374.6 (345.2) 384.9 (349.6)  < 0.001
Adherence to Mediterranean diet (0–17 points), 

mean (SD)
7.1 (2.5) 8.0 (2.4) 8.5 (2.5) 9.1 (2.5) 9.9 (2.5) < 0.001

Vitamin B12 intake (mcg/day) 8.6 (3.6) 9.5 (3.9) 10.0 (4.7) 10.4 (4.4) 11.1 (5.3) < 0.001
Alcohol intake (g/day), mean (SD) 15.9 (18.5) 13.7 (17.0) 10.0 (13.6) 8.6 (12.2) 6.9 (10.5) < 0.001
HDL-cholesterol (mg/dL), mean (SD) 46.2 (11.5) 47.1 (12.1) 48.4 (11.8) 49.0 (11.6) 49.8 (11.9) < 0.001
Plasma triglycerides (mg/dL), mean (SD) 159.9 (86.7) 153.2 (76.9) 151.6 (74.5) 148.3 (76.8) 147.0 (72.0) < 0.001
Plasma fasting glucose (mg/dL), mean (SD) 114.3 (29.1) 113.6 (28.2) 114.6 (30.6) 113.4 (29.3) 111.6 (28.1) 0.078
BMI (kg/m2), mean (SD) 32.6 (3.4) 32.5 (3.4) 32.6 (3.4) 32.5 (3.5) 32.6 (3.5) 0.900
Waist circumference (cm), mean (SD) 109.3 (9.4) 108.1 (9.7) 107.4 (9.4) 106.7 (9.9) 106.3 (9.6) < 0.001
Hip circumference (cm), mean (SD) 109.4 (8.3) 109.5 (8.3) 110.1 (8.5) 110.1 (8.5) 110.8 (8.8) < 0.001
Waist-to-hip ratio, mean (SD) 1.001 (0.073) 0.989 (0.076) 0.989 (0.076) 0.970 (0.077) 0.961 (0.076) < 0.001
Systolic blood pressure (mmHg), mean (SD) 139.8 (16.7) 140.1 (17.2) 141.2 (17.4) 138.6 (16.9) 138.2 (16.2) < 0.001
Diastolic blood pressure (mmHg), mean (SD) 81.3 (10.2) 80.9 (10.0) 81.8 (10.3) 80.3 (9.6) 80.0 (9.5) < 0.001
Familiar history of stroke, % 26.2 25.2 28.4 27.7 27.0 0.590
Familiar history of cardiac disease, % 38.1 38.3 41.9 41.9 43.1 0.168
Prevalent diabetes, % 28.5 31.2 32.2 30.9 31.1 0.315
Antihypertensive medication use, % 75.7 77.5 79.6 76.6 79.1 0.179
Hypolipidemic medication use, % 47.9 50.7 52.0 52.8 53.5 0.018
Diabetes medication use, % 17.6 20.5 21.2 20.2 20.6 0.158
Vitamin supplement use, % 8.6 9.9 12.0 14.3 15.2 < 0.001
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plasma fasting glucose was greater in men than in women 
(β = − 0.15, 95% CI: − 0.26 to − 0.04; β = 0.09, 95% CI: 
0.05–0.13; and β = − 0.05, 95% CI: − 0.08 to − 0.02, respec-
tively), and in those with vitamin b12 intake equal to or 
less than the median (β = − 0.18, 95% CI: − 0.28, − 0.08; 
β = 0.07, 95% CI: 0.03, 0.12; and β = −  0.04, 95% CI: 
− 0.07, − 0.01, respectively). A significant interaction was 

also observed between folate and vitamin B6 (p = 0.028), 
with a protective effect between folate and MetS score that 
was only present among participants with a median vita-
min b6 intake higher than 2.4 mcg/d (β = − 0.13, 95% CI: 
− 0.24, − 0.03). Interactions were also observed between 
folate and vitamin B2 (p < 0.001) and vitamin B6 (p = 0.048) 
for the protective association with plasma fasting glucose. 

Table 3   Multiple adjusted βa (95% CI) for z metabolic syndrome score and their individual components according to energy-adjusted folate 
intake (in quintiles and continuous) at baseline in participants PREDIMED-Plus study (n = 6633)

Multiple adjusted 1: adjusted for age, energy, sex (male, women),educational level (primary, secondary or university/graduate), smoking sta-
tus (never, former or current), alcohol intake (grams per day), total physical activity (METS-min/day), antihypertensive medication (yes/no), 
diabetes medication (yes/no), and hypolipidemic medication (yes/no), and vitamin supplements use (yes/no); multiple adjusted 2: additionally 
adjusted for 17-point screener of Mediterranean diet adherence (continuous)
HDL-c high-density lipoprotein-cholesterol
a MM-type estimators for linear robust regression models
b Data were standardized
c Data were sex-specific standardized
d p trend: test for linear trend were conducted using the median folate intake within a quintile was assigned to all people within that quintile and 
entered as continuous term in the robust linear regression models

Folate intake (mcg/day)

Q1: < 275
(n = 1327)

Q2: 275–315
(n = 1327)

Q3: 316–357
(n = 1326)

Q4: 358–416
(n = 1327)

Q5: > 416
(n = 1326)

p trendd Per 100-mcg/d incre-
ment

Metabolic syndrome 
scoreb

 Multiple adjusted 1 Ref − 0.17 (− 0.34; − 
0.01)

− 0.11 (− 0.28; 0.06) − 0.32 (− 0.50; − 
0.15)

− 0.37 (− 0.54; − 
0.20)

< 0.001 − 0.15 (− 0.21; − 
0.08)

 Multiple adjusted 2 Ref − 0.14 (− 0.31; 0.02) − 0.07 (− 0.24; 0.10) − 0.27 (− 0.45; − 
0.09)

− 0.29 (− 0.48; − 
0.11)

0.001 − 0.12 (− 0.19; − 
0.05)

Body mass indexb

 Multiple adjusted 1 Ref − 0.02 (− 0.10; 0.05) − 0.03 (− 0.11; 0.05) − 0.04 (− 0.12; 0.04) − 0.02 (− 0.10; 0.06) 0.641 − 0.01 (− 0.04; 0.02)
 Multiple adjusted 2 Ref − 0.00 (− 0.08; 0.08) − 0.01 (− 0.08; 0.09) − 0.01 (− 0.08; 0.09) − 0.04 (− 0.04; 0.13) 0.300 − 0.01 (− 0.02; 0.05)

Waist-to-hip ratioc

 Multiple adjusted 1 Ref − 0.08 (− 0.16; − 
0.01)

− 0.11 (− 0.18; − 
0.04)

− 0.12 (− 0.19; − 
0.04)

− 0.14 (− 0.21; − 
0.06)

< 0.001 − 0.05 (− 0.08; − 
0.03)

 Multiple adjusted 2 Ref − 0.06 (− 0.13; 0.02) − 0.07 (− 0.14; 0.01) − 0.06 (− 0.13; 0.02) − 0.05 (− 0.13; 0.03) 0.378 − 0.02 (− 0.05; 0.01)
Systolic blood 

pressureb

 Multiple adjusted 1 Ref − 0.01 (− 0.08; 0.07) 0.08 (0.01; 0.16) − 0.04 (− 0.12; 0.03) − 0.05 (− 0.12; 0.03) 0.080 − 0.02 (− 0.05; 0.01)
 Multiple adjusted 2 Ref − 0.01 (− 0.08; 0.07) 0.08 (0.00; 0.16) − 0.04 (− 0.12; 0.04) − 0.05 (− 0.13; 0.03) 0.084 − 0.02 (− 0.05; 0.01)

Diastolic blood 
pressureb

 Multiple adjusted 1 Ref 0.03 (− 0.04; 0.11) 0.16 (0.08; 0.24) 0.04 (− 0.04; 0.12) 0.06 (− 0.02; 0.13) 0.354 0.03 (0.00; 0.06)
 Multiple adjusted 2 Ref 0.01 (− 0.07; 0.08) 0.12 (0.04; 0.20) − 0.01 (− 0.09; 0.07) − 0.02 (− 0.10; 0.07) 0.343 0.00 (− 0.03; 0.03)

HDL-cholesterolc

 Multiple adjusted 1 Ref 0.02 (− 0.05; 0.09) 0.11 (0.04; 0.18) 0.13 (0.06; 0.20) 0.14 (0.06; 0.21) < 0.001 0.07 (0.04; 0.09)
 Multiple adjusted 2 Ref 0.02 (− 0.05; 0.09) 0.11 (0.04; 0.18) 0.13 (0.05; 0.20) 0.13 (0.06; 0.21) < 0.001 0.07 (0.04; 0.10)

Plasma triglyceridesb

 Multiple adjusted 1 Ref − 0.01 (− 0.07; 0.04) − 0.01 (− 0.07; 0.05) − 0.05 (− 0.11; 0.01) − 0.04 (− 0.10; 0.02) 0.088 − 0.02 (− 0.04; 0.00)
 Multiple adjusted 2 Ref 0.00 (− 0.06; 0.06) 0.01 (− 0.05; 0.07) − 0.01 (− 0.07; 0.05) 0.00 (− 0.06; 0.06) 0.964 0.00 (− 0.03; 0.02)

Plasma fasting 
glucoseb

 Multiple adjusted 1 Ref − 0.04 (− 0.09; 0.00) − 0.03 (− 0.08; 0.02) − 0.05 (− 0.09; 0.00) − 0.09 (− 0.14; − 
0.04)

< 0.001 − 0.03 (− 0.05; − 
0.01)

 Multiple adjusted 2 Ref − 0.04 (− 0.09; 0.00) − 0.03 (− 0.08; 0.01) − 0.05 (− 0.10; 0.00) − 0.10 (− 0.15; − 
0.04)

< 0.001 − 0.03 (− 0.05; − 
0.02)
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This was only the case for participants with vitamin B2 
intake > 2 mcg/d (β = − 0.06, 95% CI: − 0.09, − 0.03) and 
vitamin B6 intake > 2.4 mcg/d (β = − 0.05, 95% CI: − 0.08, 
− 0.02).

Discussion

In the present study, we observed that 86 percent of PRED-
IMED-Plus participants complied with the recommendation 
of 250 mcg/day of dietary folate intake, with spinach and 
oranges as the main food sources of dietary folate. In addi-
tion, this study suggests that an increase in folate intake by 
quintiles or per 100 mcg/day was associated with a reduction 
in the MetS score, after adjusting for potential confound-
ers, including adherence to Mediterranean diet. Moreover, 
a higher folate intake was associated with lower plasma 
fasting glucose and higher plasma concentration of HDL-
cholesterol independently of factors such as adherence to a 
Mediterranean diet and others. However, when we explored 
the effect for a 100 mcg/day increase of dietary folate intake 

on z-glucose or z-HDL, the effect was very small, and the 
results should be interpreted with caution regarding their 
clinical relevance.

The percentage of participants in compliance with the 
EFSA AR recommendations for dietary folate intake in the 
present study was high. This is similar to what has been 
reported in other populations of similar ages in Spain [40], 
a country where fortification is not mandatory. This percent-
age is also comparable to that found in other studies carried 
out in the US and Brazil, where fortification is mandatory 
[41, 42]. It could be due in part to the high consumption of 
vegetables, fruits, cereals, and legumes that is traditionally 
seen in Mediterranean populations such as those in Spain.

As far as we know, there are no previously published 
studies conducted in adults that have explored the effect of 
folate intake on a component-based MetS score, calculated 
as a continuous variable. The MetS score has emerged as 
an alternative to a definition based on dichotomous vari-
ables, and it is considered a valid tool for research that evalu-
ates cardiometabolic risk in different age groups including 
adults [43]. However, it should be noted that the MetS score 

Table 4   Sensitivity analyses exploring the associationa between 100 mcg/d increment of energy-adjusted folate intake and z metabolic syndrome 
score, HDL cholesterol and plasma glucose components at baseline in participants PREDIMED-Plus study (n = 6633)

a MM-type estimators for linear robust regression models adjusted for age (continuous), sex (female, male), energy intake in kcals per day (con-
tinuous), educational level (primary, secondary or university/graduate), smoking status (never, former or current), alcohol intake (grams per 
day), total physical activity (METS-min/day), antihypertensive medication (yes/no), diabetes medication (yes/no), and hypolipidemic medication 
(yes/no), vitamin supplements use (yes/no); and 17-point screener of Mediterranean diet adherence (continuous)

n Total Metabolic syndrome score HDL-cholesterol Plasma fasting glucose
βa (95% CI) βa (95% CI) βa (95% CI)

Basal model 6633 − 0.12 (− 0.19; − 0.05) 0.07 (0.04; 0.10) − 0.03 (− 0.05; − 0.02)
Excluding prevalent diabetes 4591 − 0.12 (− 0.20; − 0.05) 0.06 (0.03; 0.10) − 0.03 (− 0.05; − 0.02)
Excluding patients with familiar history of stroke 4848 − 0.13 (− 0.21; − 0.05) 0.07 (0.04; 0.10) − 0.03 (− 0.05; − 0.01)
Excluding patients with familiar history of cardiac disease 3936 − 0.12 (− 0.20; − 0.05) 0.09 (0.05; 0.12) − 0.02 (− 0.05; 0.00)
Excluding patients with vitamin supplements use 5831 − 0.12 (− 0.19; − 0.04) 0.08 (0.05; 0.11) − 0.03 (− 0.05; − 0.01)
Including only women 3209 − 0.10 (− 0.19; − 0.01) 0.05 (0.01; 0.09) − 0.03 (− 0.05; 0.00)
Including only men 3424 − 0.15 (− 0.26; − 0.04) 0.09 (0.05; 0.13) − 0.05 (− 0.08; − 0.02)
 p-interaction 0.179 0.126 0.236

Including only people with vitamin b12 intake < 9.1 mcg/day 
(median value)

3317 − 0.05 (− 0.14; 0.04) 0.06 (0.02; 0.10) − 0.03 (− 0.06; 0.00)

Including only people with vitamin b12 intake ≥ 9.1 mcg/day 
(median value)

3316 − 0.18 (− 0.28; − 0.08) 0.07 (0.03; 0.12) − 0.04 (− 0.07; − 0.01)

 p-interaction 0.105 0.994 0.319
Including only people with vitamin B2 intake < 2.0 mcg/day 

(median value)
3443 − 0.08 (− 0.18; 0.02) 0.10 (0.05; 0.14) 0.00 (− 0.03; 0.03)

Including only people with vitamin b2 intake ≥ 2.0 mcg/day 
(median value)

3190 − 0.11 (− 0.21; − 0.01) 0.03 (− 0.01; 0.07) − 0.06 (− 0.09; 0.03)

 p-interaction 0.407 0.082 < 0.001
Including only people with vitamin B6 intake < 2.4 mcg/day 

(median value)
3588 0.03 (− 0.09; 0.14) 0.05 (0.00; 0.10) 0.00 (− 0.3; 0.03)

Including only people with vitamin b6 intake ≥ 2.4 mcg/day 
(median value)

3045 − 0.13 (− 0.24; − 0.03) 0.06 (0.02; 0.10) − 0.05 (− 0.08; − 0.02)

 p-interaction 0.028 0.510 0.048
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has not been sufficiently used to date, and evidence of the 
association between dietary folate intake and MetS is still 
scarce and inconclusive. One study carried out with a repre-
sentative sample of adults in the US also reported an inverse 
association between dietary folate and MetS similar to that 
shown in our study [18]. Another study conducted among 
Iranian adults aged 35–65 did not report any significant 
association [19]. Before comparing our results with these 
two studies, it should be taken into account that there was a 
different folate intake distribution in these studies; it ranged 
from the lowest intake in Iran to the highest intake in the 
US. Also, there is very scarce information related to the 
association between folate biomarkers and MetS risk, with 
only one study conducted that showed no association for 
serum folate levels above or below the normal clinical range 
and MetS risk [44].

In our study, we observed a significant protective effect 
of high intake of dietary folate intake (> 416 mcg/day) on 
plasma fasting glucose and HDL in older adults with MetS. 
A previous cross-sectional study based on a representative 
sample of adults in the US reported a slightly higher dietary 
folate intake than that found in our study, with a non-signif-
icant reduction in elevated fasting glucose and a significant 
reduction in HDL cholesterol [18]. Additionally, two stud-
ies conducted in patients with metabolic diseases reported 
that participants receiving 5 mg of folic acid supplements 
for 12 weeks had higher HDL cholesterol levels compared 
with those in the placebo group [22, 45]. A meta-analysis 
conducted by Akbari et al. concluded that, compared to pla-
cebo, folic acid supplementation was not associated with 
glucose [46]. On the other hand, the magnitude of associa-
tion between additional 100 mcg/day of dietary folate and 
z-fasting plasma glucose and z-HDL found in our study was 
small and should be interpreted with caution. This result 
could be influenced by potential confounders, the effect of 
some fortified foods or the use of folic acid supplements, 
which this study was unable to take into account. Another 
factor to consider is that the association with higher folate 
intake could be due to a higher consumption of fruits and 
vegetables among the Mediterranean study population. 
Therefore, further research, especially longitudinal studies, 
is warranted to confirm these results.

The biological mechanisms by which folate (in its natu-
ral and synthetic forms) may be related to the MetS score, 
plasma fasting glucose and HDL-cholesterol are still not 
fully understood. One possible explanation could be related 
to the fact that folate can reduce circulation concentrations 
of homocysteine, which may be a potential mediator that 
improves lipid metabolism and endothelial dysfunction [13, 
14, 16, 17]. It should be noted that there is debate in the 
literature about the relationship between the folate intake 
(both natural and synthetic form) and homocysteine con-
centration and endothelia function [13, 47]. It has been 

documented that folate (in the form of 5MTHF) can have a 
direct effect on endothelial function due to its role in nitric 
oxide synthesis and bioavailability, which is independent 
of its homocysteine-reducing effect [13]. Moreover, it has 
been postulated that methyl donors such as folate may reduce 
oxidative stress and systemic inflammation, which can have 
a positive effect on the normal regulation of insulin secre-
tion from pancreatic β-cells and glycemic control [48–50]. 
A tentative explanation regarding the positive relationship 
observed between folate intake and HDL-cholesterol might 
be related to the fact that both factors improve the synthesis 
and bioavailability of oxide nitric [13, 14]. Furthermore, 
defects in DNA methylation are associated with metabolic 
diseases, which suggests that our findings could be explained 
by folate’s crucial role in DNA metabolism [51]. In addition, 
a previous study conducted by Ramos-Lopez et al. showed 
that folate deficiency can be related to insulin resistance in 
people with obesity [50].

The interactions we observed between dietary folate 
intake and vitamin B6 intake for MetS score, and between 
dietary folate intake and vitamins B2 and B6 for fasting 
plasma glucose could be partly explained by the fact that 
vitamins B2 and B6 are cofactors for methylenetetrahydro-
folate reductase, a critical enzyme in folate recycling. Meth-
ylenetetrahydrofolate reductase generates methyl groups for 
homocysteine remethylation to methionine, which is the pre-
cursor to the universal methyl donor S-adenosylmethionine 
[52, 53]. However, this finding warrants additional explora-
tion in other studies.

Strengths of this study include the large sample size 
and, the detailed and high-quality information collected by 
trained interviewers. Additionally, the observed associations 
remained so after adjusting for Mediterranean diet adher-
ence and other potential confounders. The results obtained 
from the sensitivity analysis reinforced the strength of these 
findings.

Nevertheless, this study has limitations. The cross-sec-
tional analysis of our data prevents us from establishing a 
causal link and temporal direction in the association between 
folate intake and MetS score, plasma fasting glucose and 
HDL-cholesterol. However, our findings provide a rationale 
for potential replication in other samples using a longitudinal 
study design. Moreover, we should not disregard possible 
reverse causation. Another limitation is that the participants 
from the PREDIMED-Plus study were elderly individuals 
with specific clinical conditions. This prohibited us from 
extrapolating the findings of this study to the general popu-
lation. Although we adjusted for a wide range of potential 
confounding factors including the adherence to a Mediterra-
nean diet, residual confounding by unknown or unmeasured 
factors cannot be ruled out. For instance, we did not collect 
information about several genetic polymorphisms that are 
involved in folate metabolism and could affect folate status 
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in the participants. Regarding dietary data, the use of a food 
frequency questionnaire to estimate folate dietary intake is 
subject to possible misclassification errors, although any 
inaccuracy in reporting should be non-differential. This 
potential bias can be minimized using a carefully designed 
and validated FFQ that, in our case, showed good reproduci-
bility and validity [30], particularly for folate intake (r = 0.86 
and r = 0.69). It should also be mentioned that dietary folate 
intake did not include information for fortified foods since 
folate fortification is not mandatory in Spain. Therefore, 
the contribution of these foods to total folate intake should 
be minor, despite that some dairy and cereal brand names 
are fortified with folate and other vitamins. Unfortunately, 
detailed information on dosages and timing of folic acid sup-
plements was not collected.

In conclusion, this study suggests that a higher folate 
intake was associated with a lower MetS score, a lower 
plasma fasting glucose and a higher plasma HDL choles-
terol among older adults with MetS patients. Though fur-
ther observational longitudinal or experimental studies are 
needed, investigating the effect of a higher intake of vegeta-
bles, fruits, legumes and cereals as main sources of folate 
may be a possible approach to reducing the risk of cardio-
vascular disease and diabetes.
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