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Abstract

The goal of this paper is to present a systematic method to compute reference dependent positively invariant sets for systems
subject to constraints. To this end, we first characterize these sets as level sets of reference dependent Lyapunov functions.
Based on this characterization and using Sum of Squares theory, we provide a polynomial certificate for the existence of such
sets. Subsequently, through some algebraic manipulations, we express this certificate in terms of a Semi-Definite Programming
problem which maximizes the size of the resulting reference dependent invariant sets. We then present some results implementing
the proposed method to an example and propose some variants that may help in reducing possible numerical issues. Finally,
the proposed approach is employed in the Model Predictive Control for Tracking scheme to compute the terminal set, and in
the Explicit Reference Governor framework to compute the so-called Dynamic Safety Margin. The effectiveness of the proposed
method in each of the schemes is demonstrated through simulation studies.
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1 Introduction

The relevance of positively invariant sets lies in their nu-
merous applications [1]. Given an autonomous dynami-
cal system, a subset of the state space is said to be pos-
itively invariant if, assuming it contains the state of the
system at some time, it will also contain it in the future.
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Invariance is particularly important in the control of dy-
namical systems subject to constraints. In particular, in
Model Predictive Control (MPC) [2], the use of an in-
variant set as a terminal constraint is typically used to
ensure stability and recursive feasibility. Additionally,
invariant sets are at the basis of Reference Governor
(RG) [3] approaches, of the recently introduced Explicit
Reference Governors (ERG) [4], and of multimode reg-
ulators for constrained control [5].

The computation of positively invariant sets has been
the object of many research works. In [6], the authors
compute polyhedral invariant sets for switched linear
systems. In [7], a method to compute a polyhedral in-
variant set for linear systems with polytopic uncertainty
is presented; for what concerns input saturated systems,
in [8] a novel concept of invariance for saturated sys-
tems is introduced. For an extensive survey on research
in invariant sets and their usage in control, the reader
is referred to [9]. The majority of the work present in
the literature focuses on finding domains of attraction
for a single point of equilibrium. However, in the realm
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of reference tracking, the required invariant sets need to
be centered around any admissible point of equilibrium,
and thus become parameterized in the reference. These
sets are much less straightforward to be computed ex-
plicitly.

To the best of our knowledge, the first instance of this
concept dates to the Maximal Output Admissible Sets
[10]. These sets are defined as the sets of pairs of ini-
tial states and references such that the trajectories of
the system fulfills the constraints when said reference
is kept constant. For discrete time systems, polyhedral
representations of these sets can be computed for lin-
ear [11] and nonlinear systems [12], or characterized us-
ing Lyapunov arguments [13]. Due to the link between
the Maximal Output Admissible Sets and the Dynamic
Safety Margin (DSM) in the ERG framework, this line
of research has seen a recent increase in activity. In [14],
a closed form solution of the optimal DSM for linear sys-
tems subject to linear constraints is provided. In [15], the
authors present a method to estimate online the DSM
in the case of convex Lyapunov functions and concave
constraints. A method able to work with unions and in-
tersections of concave constraints has been presented in
[16].

A promising tool to tackle the computation of reference
dependent invariant sets is Sum of Squares (SOS) pro-
gramming [17]. In recent years the SOS framework has
been used extensively to tackle invariance-related prob-
lems [18–21].

In this paper we propose to employ the SOS framework
to compute reference dependent invariant sets for con-
strained systems. The main idea is to fix a polynomial
Lyapunov function parameterized in the reference, and
through SOS arguments compute the largest level set
fully contained in the constraints. The effectiveness of
the proposed method is showcased with two applica-
tions: a discrete time system controlled with an MPC for
Tracking, and a continuous time system controlled with
an ERG.

Notation: The set of polynomials with variables
x1, . . . , xn, whose coefficients belong to R, is denoted
by R[x1, . . . , xn]. We denote the set of all non-negative
reals, and the set of all non-negative integers as R≥0

and Z≥0, respectively. For polynomials pj , j = 1, . . . , N ,
we will use {pj}Ni=1 to denote the set {p1, . . . , pN}. The
set of all Sum of Squares polynomials with variables
x1, x2, . . . , xn is denoted by Σ[x1, x2, . . . , xn]. We denote
the degree of a polynomial p by ∂p. The n-dimensional
identity matrix is denoted by In. The Jacobian matrix
of a vector valued function f is denoted by ∇f . The
gradient of a scalar function V is denoted as ∇V . For
two sets A,B ⊆ Rn, A	 B denotes the Pontryagin dif-
ference. We denote the n-dimensional ball of radius ε by

Bn(ε) , {x ∈ Rn : xTx ≤ ε2}. For two matrices A and
B, their Kronecker product is denoted by A⊗ B. For a
vector u and a matrix Q we denote uTQu as ‖u‖2Q.

2 Problem Statement

Consider the system

δx = φ(x, u), (1)

where δx is the successor state in discrete time or the
time derivative in continuous time, x ∈ Rn is the state,
and u ∈ Rm is the input. The system is subject to con-
straints in the following form:

x ∈ X, u ∈ U,

where X ⊆ Rn and U ⊆ Rm are simply connected sets
with nonempty interiors.

As often done in reference tracking problems, it is as-
sumed that a control law u = κ (x, r) is used to stabi-
lize 1 the system, where r ∈ Rp is the reference signal.
System (1) then becomes

δx = f (x, r) , (2)

where f (x, r) , φ (x, κ (x, r)) and the pair (x, r) is con-

strained in the set D , {(x, r) : x ∈ X , κ (x, r) ∈ U}.
Typically, this set can be expressed through a set of in-
equalities as

D = {(x, r) : ci(x, r) ≥ 0, i = 1, . . . , nc}. (3)

In this paper we assume that these inequalities are poly-
nomial, i.e. ci(x, r) ∈ R[x, r], i = 1, . . . , nc (see Fig. 1).
We also define the set of admissible references

R , {r ∈ Rp : ci(r) ≥ 0, i = 1, . . . , nc},

where ci(r) , ci(xr, r), with xr as the equilibrium point
of (2) associated with a constant reference signal r ,
i.e., f(xr, r) = 0 in continuous time, and f(xr, r) =
xr in discrete time. Furthermore, R is assumed to be
connected.

The purpose of this paper is to solve the following prob-
lem:

Problem 1 (Safe Reference Dependent Positively In-
variant Sets) Consider system (2) where the pair (x, r)
is constrained in the set D as in (3). Compute a family
of sets parameterized in the reference S(r) such that

1 The stabilization of unconstrained nonlinear systems is
the subject of an extensive literature (e.g., [22,23]), and can
be approached using a variety of available control tools.
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Fig. 1. Geometric illustration of the class of constraints under
study.

• S(r) is invariant for system (2) for any constant r ∈
R, i.e., every trajectory of (2) with initial condition
x(t0) ∈ S(r) and a constant reference r ∈ R is such
that x(t) ∈ S(r) for all t ≥ t0,

• S(r) is fully contained in the constraint set D for every
r ∈ R.

Remark 2 Contrary to regulation problems where a sin-
gle invariant set centered around the origin is computed,
in reference tracking we need to compute invariant sets
centered around all possible points of equilibrium xr as-
sociated with every r ∈ R.

It is well known that one way to determine invariant
sets is using Lyapunov level sets. In this paper we will
assume, without loss of generality, that for each refer-
ence r, the corresponding equilibrium point of system
(2) denoted by xr is globally asymptotically stable (see
Remark 3 for local stability). We will also assume that
a polynomial Reference Dependent Lyapunov Function
(RDLF) V (x, r) : Rn × Rp → R≥0 is known such that:

V (x, r)>0 ∀x ∈ Rn \ {xr}, V (x, r)=0⇔ x=xr
δV (x, r) < 0 ∀x ∈ Rn\{xr}, δV (x, r)=0⇔ x=xr.

(4)

where δV (x, r) denotes ∇V (x, r)f(x, r) in the continu-
ous time case, and V (f(x, r), r)−V (x, r) in the discrete
time case. It is easy to see that given Γ(r) : Rp → R
with Γ(r) > 0 ∀r ∈ R if the level set SΓ(r) = {x ∈ Rn :
V (x, r) ≤ Γ(r), Γ(r) > 0}, ∀r ∈ R is fully contained in
D, then SΓ(r) is a safe positively invariant set.

Typically it is useful to determine the largest possible
safe invariant set. In the case of invariant sets based
on Lyapunov functions, this corresponds to finding the
largest bound Γ∗(r) corresponding to the solution of the
following optimization problem:

Γ∗(r) =


max Γ

s.t.

{x ∈ Rn : V (x, r) ≤ Γ} ⊆ D

, (5)

for every r ∈ R. Note that this optimization problem is
parameterized in r and that, except for some very special
cases [14], its closed form parametric solution might be
hard to compute and/or to handle.

In this paper we propose a systematic method to com-
pute a good polynomial approximation of Γ∗(r), denoted

by Γ̂(r) ∈ R[r] such that Γ̂(r) ≤ Γ∗(r), ∀r ∈ R. Note

that for any lower bound Γ̂(r) ≤ Γ∗(r), the set SΓ̂(r) is
a safe reference dependent invariant set.

For the sake of simplicity, in the sequel we will compute
one Γ̂(r) at a time. This is without loss of generality,
since the multi-constraint case can be expressed as the
composition of single constraint cases as follows:

Γ∗(r) = min
i
{Γ∗i (r)}, i = 1, . . . , nc,

where Γ∗i (r) is the value of Γ∗(r) if only the i-th con-
straint ci(x, r) is considered.

Remark 3 In the case of local stability, it is possible
to impose the additional constraint δV (x, r) < 0 in (5),
which will yield the largest safe level set of the local RDLF.

3 Approximating the Largest positively Invari-
ant Set via SOS Techniques

In this paper we propose a method to compute a param-
eterized solution for (5) using SOS programming. This
framework is able to tackle convex relaxations of non-
convex optimization problems through polynomial opti-
mization [24]. The following theorem presents the main
contribution of this paper. The theorem states that it is
possible to find a good solution to Problem 1 by solv-
ing a Semi-Definite Programming (SDP) optimization
problem.

Theorem 4 Consider system (2) subject to cj(x, r) ≥
0, j = 1, . . . , nc and assume that a polynomial RDLF
V (x, r) ∈ R[x, r] is known. Let D = {(x, r) : ci(x, r) ≥
0}, R = {r : cj(r) ≥ 0, j = 1, . . . , nc}, Γ̂i(r) ∈ R[r] and

SΓ̂i
(r) = {x ∈ Rn : V (x, r) ≤ Γ̂(r)}. Then SΓ̂i

(r) ⊆ D,

∀r ∈ R, if there exist q ∈ R[x, r], {sj}nc
j=1 ∈ Σ[x, r] such

that

V − Γ̂i + q · ci −
nc∑
j=1

sj · cj ∈ Σ[x, r]. (6)

PROOF. The condition an admissible Γ̂i(r) must fulfill
is {

(x, r) : V (x, r) ≤ Γ̂i(r)
}
⊆ D, ∀r ∈ R. (7)
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Reformulating (7) as a set emptiness condition yields{
(x, r) : r ∈ R, ci(x, r) = 0, V (x, r) > Γ̂i(r)

}
= ∅,

which in turn is equivalent to 2

{
(x, r) : V −Γ̂i≥0, V − Γ̂i 6=0, ci =0, {cj}nc

j=1≥0
}

=∅.
(8)

At this point, the Krivine–Stengle Positivstellensatz (P-
satz) [21,25] states that (8) is empty if and only if there
exist polynomials g, h, l such that

g + h2 + l = 0,

where g ∈ K({V − Γ̂i, {c̄j}nc
j=1}), h ∈ M(V − Γ̂i), and

l ∈ I(ci). For the definitions of the algebraic structures
M(·), I(·) and K(·) please refer to Appendix A. Di-
rectly applying the definitions of these algebraic struc-
tures leads to

g = σ0 + σ1

(
V − Γ̂i

)
+ σ2c̄1 + . . .+ σnc+1c̄nc

+

σnc+2

(
V − Γ̂i

)
c̄1 + σnc+3

(
V − Γ̂i

)
c̄2 + . . .+

σ2nc+1

(
V − Γ̂i

)
c̄nc + . . .

h =
(
V − Γ̂i

)k
l = q̄ci,

where σj ∈ Σ[x, r], k ∈ Z≥0, and q̄ ∈ R[x, r]. Setting

to zero every σj that is either not factored in V − Γ̂i or
has a power higher than 1 yields the following sufficient
condition

− s0 ·
(
V − Γ̂i

)
+
(
V − Γ̂i

)2k

+ q̄ · ci

−
(
V − Γ̂i

) nc∑
j=1

sj · cj = 0, (9)

where the SOS multipliers σj have been renamed as

{sj}nc
j=0 for simplicity. Imposing q̄ = q

(
V − Γ̂i

)
with

q ∈ R[x, r] and k = 1 it follows that (8) is empty if

(
V − Γ̂i

)−s0 +
(
V − Γ̂i

)
+ q · ci −

nc∑
j=1

sj · cj

 = 0,

2 For brevity, we will omit the arguments of functions when-
ever there is no risk of confusion.

which allows us to formulate the following condition

s0 = V − Γ̂i + q · ci −
nc∑
j=1

sj · cj . (10)

Since s0 is an SOS polynomial, (10) implies that Γ̂i

is a lower bound of Γ∗i if there exist SOS polynomials
s1, . . . , snc and a polynomial q such that (6) holds, which
concludes the proof. 2

Since in this paper we are interested in the largest safe
level set of V , a possible way to do so is to maximize the
integral of Γ̂i over Rd ⊆ R, a compact domain chosen
so as to avoid improper integrals in the case where R
is unbounded. Additionally, Rd can be chosen so as to
prioritize the accuracy of Γ̂i in a certain region of interest
of R, e.g., around likely operation points of the system.

Once the structure of the polynomials Γ̂i, q, and {sj}nc
j=1

is set, it is possible to use Theorem 4 to formulate the
following SOSP optimization problem

max
∫

r∈Rd

Γ̂i(r) dr

s.t.

V − Γ̂i + q · ci −
∑nc

j=1 sj · cj ∈ Σ[x, r]

{sj}nc
j=1 ∈ Σ[x, r]

q ∈ R[x, r]

, (11)

which was proven to be equivalent to an SDP optimiza-
tion problem in [17].

Remark 5 Note that whenever Rd is a normal domain
[26] described by polynomials,

∫
r∈Rd

Γ̂i(r) dr can easily

be computed in closed form and is polynomial [27], which
implies that the objective function of (11) remains linear

in the coefficients of Γ̂i. When this is not the case, a
practical approach is to randomly select a (possibly large)
number of points in Rd, p1, . . . , pnw , and use the following
objective function

1

nw

nw∑
w=1

Γ̂i(pw). (12)

Note that for a sufficiently large nw, optimizing over (12)

is equivalent to optimizing over
∫
Rd

Γ̂i(r) dr.

4 Example and practical considerations

It is widely known that the LMI problems that arise from
SOS theory can become exceedingly sparse [28] and nu-
merically ill-conditioned. This may limit the applicabil-
ity of the method presented in Section 3. In this section
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Fig. 2. Visual representation of the case study. The set of
possible points of equilibrium of system (13) is depicted as
a grey dashed line, the set of points where c(x, r) < 0 is
represented by a solid dark red shaded area, and the set of
points within Rd are encapsulated by black square brackets.
For a given r = r̃, the set of points such that V (x, r̃) = Γ∗

is represented as a solid blue ellipsoid, and the steady state
associated to r̃, xr̃, is represented by a blue cross-shaped
marker.

we propose two techniques that might aid in mitigat-
ing numerical issues in the proposed methodology. The
first technique is based on exploiting the structure of the
problem at hand to utilize some a priori knowledge in
the structure of Γ̂(r). The second technique is based on
a division of the domain Rd.

In order to show the practical improvements due to the
application of these two techniques, we introduce a nu-
merical case study consisting of a continuous time dou-
ble integrator controlled with a PD control law

ẋ =

[
0 1

−ω2 −2ζω

]
x+

[
0

ω2

]
r, (13)

where ω = 10 is the angular frequency and ζ = 0.2 is the
damping ratio. This system is subject to the constraint

c(x, r) = x2 − x3
1 + 3x2

1 + 10 ≥ 0. (14)

Since xr = [r 0]T, constraint (14) defines R as R =
{r : r ≤ 3.721}. The domain Rd is chosen as Rd =
{r : −1.5 ≤ r ≤ 3.721}. For every equilibrium point,
stability can be proved using the following quadratic
RDLF

V (x, r) = (x− xr)
T

[
12.6450 −0.005

−0.005 0.1263

]
(x− xr) .

The problem is depicted in Fig. 2. In Fig. 3 we show the
results obtained by solving (11) with constraint (14) for

several values of ∂Γ̂. The obtained results are compared
with Γ∗(r) which was computed using a 100-point grid
with a resolution of 0.0527, which was made possible due
to the low dimensionality of the system. As expected,
the accuracy of the approximation increases with the
degree of Γ̂. However, as it can be seen in Fig. 3, a rel-
atively high value of ∂Γ̂ is required to get a fairly good

Fig. 3. Approximation of Γ∗ for different values of ∂Γ̂.

approximation. Furthermore, in this particular case, the
optimizer is not able to find a solution for ∂Γ̂ > 15. In
the following subsection we will introduce a method to
increase the accuracy of Γ̂ without increasing ∂Γ̂.

4.1 Exploiting the structure of Γ∗(r)

A first way to reduce the required degree of Γ̂i(r) con-
sists in exploiting the fact that the set {r : Γ∗i (r) = 0}
coincides with the set {r : ci(r) = 0}. This is proved by
the following lemma.

Lemma 6 Let system (2) subject to the constraint
ci(x, r) ≥ 0, and whose global stability can be proved
through an RDLF V (x, r). Then for any r ∈ R, ci(r) > 0
implies that Γ∗i (r) > 0, and ci(r) = 0 implies that
Γ∗i (r) = 0.

PROOF. Let r′ ∈ R be such that ci(r
′) > 0 (i.e., r′ is

in the interior of R) and xr′ its associated steady-state.
The definition of Γ∗i (r) in (5) implies that

∃x′ ∈ {x : V (x, r′) = Γ∗i (r′)}, such that ci(x
′, r′) = 0.

(15)

Since from the definition of RDLF V (x, r′) > 0 if x 6=
xr′ , it follows from (15) that Γ∗i (r′) > 0, and finally that
ci(r

′) > 0⇔ Γ∗i (r′) > 0. Using the same logic, it follows
that Γ∗i (r′′) = 0 ⇔ ci(r

′′) = 0 (i.e., r′′ is on the border
of R). 2

We can use the results of Lemma 6 to our advantage by
using the following structure for Γ̂i

Γ̂i = cki · Γ̃i, (16)
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Fig. 4. Approximation of Γ∗ for different values of ∂Γ̃, as-

suming Γ̂ = Γ̃ · c.

Fig. 5. Approximation of Γ∗ for different values of ∂Γ̃, assum-

ing Γ̂ = Γ̃ · c2. Note that the curve corresponding to ∂Γ̃ = 2
overlaps with ∂Γ̃ = 3, and ∂Γ̃ = 5 overlaps with ∂Γ̃ = 7.

Fig. 6. Accuracy of Γ̂ = ck · Γ̃ with respect to the degree of
Γ̃ for k ∈ {0, 1, 2}.

where k ∈ Z≥0 and Γ̃i ∈ R[r]. Intuitively, the use of

this term may require a lower ∂Γ̃i to achieve a higher
accuracy, since assuming that Γ̂i is factorized in ci au-
tomatically sets Γ̂i to 0 wherever ci vanishes. In Fig. 4

and 5 we show the results of applying this notion to our
case study, assuming that Γ̂ is factorized in c and c2,
respectively. As it can be seen in Fig. 6, when assum-
ing Γ̂ = Γ̃ · c the required degree to obtain an accuracy
of more than 80% is ∂Γ̃ = 5, compared to the required
degree of ∂Γ̂ = 7 if this assumption is not made. The
required degree is further decreased to ∂Γ̃ = 2 if we as-
sume Γ̂ = Γ̃ ·c2. In these cases, the optimizer fails to find
a sensible solution for ∂Γ̃ > 10 for the first case, and for
∂Γ̃ > 11 in the second one.

4.2 Piece-wise polynomial approach

In some cases the SDP solver may not reach a sensible
approximation of Γ∗i due to the impossibility of Γ̂ to
fulfill the required characteristics in a large domain. To
tackle this, a possible approach is to divide Rd in several
subsets R`, ` = 1, . . . , nr such that Rd =

⋃nr

`=1 R`.

These subsets are described by the additional constraints
c`j(r), with j = 1, . . . , n`. Subsequently the polynomial
approximation of Γ∗ associated with the `-th subset R`,
denoted by Γ̂i,`, can be computed through the following
SOS condition

V − Γ̂i,` + q · ci −
n∑̀
j=1

sj · cj ∈ Σ[x, r],

Once the Γ̂i,` have been computed, Γ̂i(r) can be recov-
ered as follows:

Γ̂i(r) = max
`
{Γ̂i,`(r)},

where Γ̂i,` = 0 ∀r /∈ R`. By dividing Rd, not only we
reduce the size of the domain over which we compute
each Γ̂i,`, but also the term

∑n`

j=1 sj ·cj becomes simpler
since typically nc > n`.

A possible approach for the division of Rd is the Delau-
nay tessellation [29,30], which divides the space into p-
simplices. It is well known that a p-simplex requires p+1
inequalities to be described, therefore, this tessellation
achieves the minimal amount of inequalities describing
a given inner R` for a polyhedral division of Rd.

We show the results of applying this approach to the
case study in Fig. 7, for nr = 9, ∂Γ̂1,` = ∂sj = 4. As it

can be seen, Γ̂ and Γ∗ overlap, thus yielding a very good
approximation for this case study.

Remark 7 Note that the two techniques presented in
this section are not mutually exclusive and can be used
at the same time.
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Fig. 7. Piece-wise polynomial approach for the case study,

using ∂Γ̂` = 4, ` ∈ {1, . . . , 9}. Γ∗ is depicted as a solid
black line, each of the divisions is marked as a yellow circular

marker, and every Γ̂` is depicted as a dashed colored line.

5 Applications in constrained control

In this section we will discuss two different applications
of the proposed reference dependent positively invariant
sets in constrained control problems. The first applica-
tion is in discrete time and allows us to compute the
terminal set in the MPC for Tracking framework for dis-
crete time systems. The second case shows that contin-
uous time positively invariant sets can be used to calcu-
late the dynamic safety margin in the ERG framework.

5.1 Safe Invariant Sets As Terminal Conditions In the
MPC for Tracking Framework

In the last two decades, MPC schemes have been widely
used to address constrained control problems [2,31].
These schemes have the remarkable feature of being
able to drive the system state to a fixed set-point while
optimizing the control performances and satisfying the
constraints to which the system is subject. However,
classical MPC schemes might lose feasibility under sud-
den set-point changes [32]. To tackle this, the MPC
for Tracking scheme was presented in [33]. This control
scheme minimizes at every tome step t the following
cost function

JNp,Nc
(x, r; u, v) =

Nc−1∑
j=0

Js(x(j)− xv, u(j)− uv)

+

Np−1∑
j=Nc

Js(x(j)− xv, κ(x(j), v)− uv) (17)

+Jf (x(Np)− xv) + Jo(v − r)

subject to

min
u,v

JNp,Nc
(x, r; u, v), (18a)

s.t.

x(0) = x(t), (18b)

x(j + 1) = φ(x(j), u(j)), j = 0, . . . , Nc − 1, (18c)

(x(j), u(j)) ∈ Z, j = 0, . . . , Nc − 1, (18d)

x(j + 1) = φ(x(j), κ(x(j), v)), j = Nc, . . . , Np − 1, (18e)

(x(j), κ(x(j), v)) ∈ Z, j = Nc, . . . , Np − 1, (18f)

xv = gx(v), (18g)

uv = gu(v), (18h)

(x(Np), v) ∈ Ω, (18i)

whereNp andNc are the prediction and control horizons,
respectively, κ : Rn × Rp → Rm is a stabilizing control
law as in Section 2, Z = X × U, v ∈ R is the auxiliary
reference, gx : R→ Rn and gu : R→ Rm are two locally
Lipschitz functions that map the auxiliary reference to
its corresponding steady state and input (xv, uv) (i.e.,
xv = φ(gx(v), gu(v)), Js : Rn × Rm → R, Jo : Rp → R,
and Jf : Rn → R are convex positive definite functions
that represent the stage, offset, and terminal costs, re-
spectively (see [34] for more details). Ω is an invariant
set for tracking which can be defined as follows:

Definition 8 For a given set of constraints Z = X×U, a
set of admissible references R, and a local control law u =
κ(x, v), a set Ω ⊂ Rn×Rp is an (admissible) invariant set
for tracking for system (2) if for all (x, v) ∈ Ω, we have
(x, κ(x, v)) ∈ Z, v ∈ R 	 Bp(ε), and (φ(x, κ(x, v)), v) ∈
Ω.

This set represents the MPC for Tracking counterpart
of the classical terminal set used in MPC schemes to
guarantee stability and recursive feasibility. The com-
putation of such a reference dependent set is one of the
most challenging problems when designing an MPC for
tracking.

To approximate these sets, in [34] the authors resort to
a partition of the set of points of equilibrium paired with
linearization of the system for each partition based on a
Linear Time Varying characterization [35,36]. However,
this ad-hoc technique is conservative and has a solution
only for limited classes of constraints.

Note that once a control law κ(x, v) acting as a termi-
nal control law has been fixed [22,23], terminal sets for
this scheme can be characterized as safe level sets of
RDLFs, meaning that the proposed method in Section
3 can be employed to compute these sets in the design
phase. In the rest of this subsection we will show an ex-
ample where an invariant set for tracking is computed
using the methodology proposed in this paper.
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Fig. 8. Representation of R and its division used in the ex-
ample at hand.

Example: Consider the following 4-dimensional
model of a ball-and-plate system in discrete time

x(t+ 1) = I2⊗

[
1 0.5

0 1

]
x(t) + I2⊗

[
0.125

0.5

]
u(t) (19)

The positions of this system are constrained as follows

c(x, v) = x4
1 + x4

3 − 10x2
1 + x2

3 − 0.1 ≤ 0, (20)

which describes the bow tie set depicted in Fig. 8. In
order to build the MPC for Tracking, we chose κ(x, v) =
I2 ⊗ [−4 − 2.73]x + 4I2v as the stabilizing terminal
control law. When system (19) is controlled with this
law and v is kept constant, the stability of every point
of equilibrium xv = [v1 0 v2 0]T can be proven using the
RDLF

V (x, v) = (x−xv)T

(
I2 ⊗

[
5.3933 0.8668

0.8668 1.1946

])
(x−xv).

To compute Γ̂, we used the approach presented in Sec-
tion 4.2: we divided R until the optimizer arrived at a
sensible solution for each Γ̂` (see Fig.8), and we did not
assume any dependence on c (i.e., k = 0 in (16)). For
what concerns the maximal degrees of the decision poly-
nomials, we set ∂q` = 6, ∂sj,` = 4 and ∂Γ̂` = 8, where
` ∈ {1, . . . , 16}.

Since the set described by (20) is non-convex, we used the
results in [37] to ensure convergence. For what concerns
the MPC for Tracking design parameters, the control
and prediction horizons were set to Nc = 1 and Np = 2,
respectively. The stage, offset, and terminal cost func-
tions in the objective function of the MPC optimization

Fig. 9. Simulation results; previous state trajectory, its pre-
dicted evolution and terminal set at different time steps. The
previous state trajectory is depicted in a solid yellow line,
the predicted trajectory for the first Nc steps is depicted in
a solid blue line, the last Np−Nc steps is depicted in a solid
orange line, and the terminal invariant set is outlined in a
solid black line. The initial point is marked with a green cir-
cle, and the steady state associated to the auxiliary reference
is represented with a green cross.

problem are Js(x−xv, u−uv) = ‖x−xv‖2Q +‖u−uv‖2R,

Jo(v− r) = ‖v− r‖2T , and Jf (x−xv) = ‖x(Np)−xv‖2P ,
respectively with weights Q = I4, R = 0.1I2, and T =
10I2. In Fig. 9 we report the simulation results of the
resulting MPC scheme assuming the initial state x0 =
[−2 0 1.75 0]T, and setting the reference to r = [2 1]T.
As it can be seen in Fig. 9 (which shows only for some
time steps) the MPC is able to drive the system in Np

steps to the terminal invariant set, whose size allows for
a large domain of attraction of the MPC for Tracking.

5.2 Reference Dependent Positively Invariant Sets in
the ERG Framework

The ERG [4] is an add-on unit that is able to provide
constraint satisfying capabilities to prestabilized contin-
uous time systems (see Fig. 10). The main idea behind
the ERG is to feed the precompensated system with a
filtered version of the desired reference r, v ∈ Rp, com-
puted such that if v remains constant, the system will
not violate any constraints. In particular, the ERG [15]
manipulates the time derivative of the auxiliary refer-
ence v as

v̇ = ∆(x, v) · ρ(r, v),

where ρ(r, v) and ∆(x, v) are the two fundamental com-
ponents of the ERG, called the Navigation Field (NF)
and the Dynamic Safety Margin (DSM), respectively.

The NF is a vector field such that for any two steady-
state admissible references v and r, the trajectory of sys-
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Fig. 10. The general structure of the ERG scheme.

tem v̇ = ρ(r, v) goes from v to r through a path of strictly
steady-state admissible references. This problem can be
addressed using standard path planning algorithms e.g.,
[38].

The DSM is a measure of the distance between the con-
straints and the system trajectory that would emanate
from the state x for a constant reference v. A possible
way to construct a DSM [4,15] is by using an RDLF

V (x, v) and a bound Γ̂ such that SΓ̂ is a safe invariant
set as follows:

∆(x, v) = λ · (Γ̂(v)− V (x, v)),

where λ > 0 is a tuning parameter. Note that this implies
that ∆(x, v) > 0 whenever x is in the interior of SΓ̂(v),
and ∆(x, v) = 0 when x is on the border of SΓ̂(v).

Accordingly, the methodology presented in this paper
can be applied directly to compute the bound Γ̂(v) in
the DSM within the ERG framework.

Example: Consider a ball-and-plate system in contin-
uous time stabilized with a PD control law

ẋ = I2 ⊗

[
0 1

−100 −4

]
x+ I2 ⊗

[
0

100

]
v,

whose positions are constrained to lie within the bow tie
set (20). For every equilibrium point xv = [v1 0 v2 0]T,
stability can be proved using the following quadratic
RDLF

V (x, v) = (x−xv)T

(
I2 ⊗

[
12.645 0.005

0.005 0.1263

])
(x−xv).

We computed Γ̂ by dividing R and by setting the degrees
of the polynomials in the same manner as in the example
presented in Section 5.1.

For what concerns the NF, since R is non-convex [4], it
is enough to choose it as

ρ(r, v) =
∇Φ(v)−1(Φ(r)− Φ(v))

max{∇Φ(v)−1(Φ(r)− Φ(v)), θ}
,

Fig. 11. Simulation results; state trajectory, trajectory of v
and invariant set associated to v at different time steps. The
previous state trajectory is depicted in a solid blue line, the
trajectory of v is depicted in a dashed black line, and the
invariant set is outlined in a solid yellow line. The initial
point is marked with a green circle, the steady state associ-
ated to the current v is represented with a black cross, the
current state is depicted with a blue cross, and the reference
is depicted with a green cross.

where Φ : Rd → Rc is a diffeomorphism that maps the
interior of R to a convex set Rc and θ = 0.01 is a smooth-
ing factor. A possible choice for Φ is

Φ(r) =


r1
r2√

1

2

√
−4r4

1 + 40r2
1 +

7

5
− 1

2

 .

Simulation results are shown in Fig. 11 for an initial state
x0 = [−2 0 1.75 0]T, and a desired reference r = [2 1]T.
As it can be seen, the proposed ERG is able to steer the
system state to the desired reference point while fulfilling
the constraints at all times. The reader is referred to [39]
for a video containing extra material.

6 Conclusions

In this paper we proposed a systematic method to ap-
proximate safe reference dependent positively invariant
sets parameterized for systems that are subject to gen-
eral polynomial constraints. To do so, first, we demon-
strated that such sets can be determined through an
optimization problem. It was then shown that we can
approximate a parameterized solution of this optimiza-
tion problem by making use of SOS techniques. We later
showed that it is possible to alleviate some of the nu-
merical issues that the SOS framework presents if the
underlying structure of the largest safe level set is ex-
ploited, and if the overall optimization problem is bro-
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ken down into several, smaller better numerically condi-
tioned problems.

The proposed method has relevant applications in con-
strained control schemes. In particular, the proposed
method can be used in the MPC for Tracking framework
to determine the terminal set, and in the ERG frame-
work to determine the Dynamic Safety Margin. Corre-
sponding formulations in the context of the mentioned
applications were discussed, and a numerical simulation
for each of the mentioned applications were presented
in order to evaluate the effectiveness of the proposed
method.

We believe that the proposed methodology can be ap-
plied to systems subject to polynomial constraints such
as robotic manipulators or the aging-aware charge of Li-
ion batteries [40]. Possible future research lines include
simultaneously computing the RDLF and its largest safe
level set and generalizing the methodology beyond poly-
nomials, e.g. for rational functions.
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A Krivine–Stengle Positivstellensatz

Before presenting the Krivine–Stengle Positivstellen-
satz, a few definitions need to be introduced. For the
sake of simplicity, the following concepts will not be
explained in depth, and will rather be mathematically
characterized. For further information on the matter,
the reader is referred to [17,41,42] and the references
therein.

Definition 9 (Multiplicative Monoid) The multiplica-
tive monoid generated by a set of polynomials P =
{pi}mi=1, M(P ) where pi ∈ R[x1, . . . , xn], i = 1, . . . ,m
is defined as

M(P ) =

{
m∏
i=1

pki
i , ki ∈ Z≥0, i = 1, . . . ,m

}
,

e.g., for a set of polynomials P ′ = {p1, p2} the multi-
plicative monoid generated by P ′ is the following:

M(P ′) =
{
pk1

1 p
k2
2 , k1, k2 ∈ Z≥0

}
={

1, p1, p2, p
2
1, p

2
2, p1p2, p

3
1, p

2
1p2, p1p

2
2, p

3
2, . . .

}
.

Definition 10 (Cone) The cone generated by a set
of polynomials P = {pi}mi=1, K(P ), where pi ∈
R[x1, . . . , xn], i = 1, . . . ,m is defined as

K(P )=

{
s0+

∑
i

sigi : si ∈ Σ[x1, . . . , xn], gi ∈M(P )

}
,

e.g., for a set of polynomials P ′ = {p1, p2} with p1, p2 ∈
R[x1, . . . , xn] the cone generated by P ′ is defined as

K(P ′) = {s0 + s1p1 + s2p2 + s3p1p2 + s4p
2
1 + . . .

: si ∈ Σ[x1, . . . , xn]}.

Definition 11 (Ideal) The ideal generated by a set
of polynomials P = {pi}mi=1, pi ∈ R[x1, . . . , xn], i =
1, . . . ,m is defined as

I(P ) =

{
m∑
i=1

tipi : ti ∈ R[x1, . . . , xn], i = 1, . . . ,m

}
,

e.g., for a set of polynomials P ′ = {p1, p2} with p1, p2 ∈
R[x1, . . . , xn] the ideal generated by P ′ is the following
set of polynomials:

I(P ′) = {t1p1 + t2p2 : t1, t2 ∈ R[x1, . . . , xn]}.

At this point, the Krivine–Stengle Positivstellensatz can
be expressed as follows:

Theorem 12 (Krivine–Stengle Positivstellensatz) Let
fi(x), i ∈ I, gj(x), j ∈ J, hk(x), k ∈ K be finite sets
of polynomials in R[x], K = K(fi), M = M(gj), and
I = I(hk), then the set

{x : fi(x) ≥ 0, i ∈ I, gj(x) 6= 0, j ∈ J, hk(x) = 0, k ∈ K}

is empty if and only if

∃f ∈ K, g ∈M, h ∈ I : f + g2 + h = 0.
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