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ABSTRACT The increasing use of renewable energy and storage systems by end users has changed the
paradigm of electricity markets, with consumers changing their role from passive to active players, the
so-called prosumers. Different countries have encouraged the aggregation of these prosumers in energy
communities. In these communities, it is essential to create a market to manage energy exchanges between
neighbors, who can sell surpluses or buy energy to reduce their bills. This paper presents the framework
definition of a multi-peer-to-peer market. As contributions, it defines how storage systems can participate
in the market and multiple exchanges between prosumers are possible. This market can be integrated in
an optimization process to perform optimal scheduling in the community by setting an objective. All this
has been tested in a community with 5 prosumers with generation and storage, where the effect of multiple
exchanges and valuation of assets is observed, achieving as a result higher bill reductions.

INDEX TERMS Local electricity market, local energy community, optimization, peer-to-peer transactions,
prosumers, energy storage systems, renewable energies.

NOMENCLATURE
A. SETS
T Set of T periods, t ∈ T .
D Set of D demanders, d ∈ D.
S Set of S suppliers, s ∈ S.
K Set of K demanders matched, k ∈ K .
M Set of M suppliers matched, m ∈ M .
I Set of I prosumers, i ∈ I .
J Set of J increments of energy, j ∈ J .

B. VARIABLES AND PARAMETERS
π Units of money.
Esupi,t Energy order as supplier for prosumer i in

interval t.
Edemi,t Energy order as a demander for prosumer i in

interval t.
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π
sup
i,t Price order as supplier for prosumer i in

interval t.
πdemi,t Price order as demander for prosumer i in

interval t.
5
buy
i,t Price of buying energy from grid by prosumer

i in interval t.
5sell
i,t Price of selling energy to grid by prosumer i

in interval t.
Ebat,chi,t Energy charged by prosumer battery i in

interval t.
Ebat,disi,t Energy discharged by prosumer battery i

in interval t.
Emax,chi,t Maximum energy charged by prosumer battery

i in interval t.
Emax,disi,t Maximum energy discharged by prosumer

battery i in interval t.
Ebati,t Energy stored in the battery of prosumer i in

interval t.
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ηch Battery charge efficiency of prosumer i.
ηdis Battery discharge efficiency of prosumer i.
π
bat,ch
i,t Price set by prosumer i to buy energy to

store it in the battery on the market.
π
bat,dis
i,t Price set by prosumer i to sell energy stored

in interval t.
π
agreed
m,k,t Price agreed between supplier m and

demander k for energy exchanged in the
interval t.

M exch
m,k,j Money exchanged between supplier m

and demander k for energy exchanged in
increment j.

M exch,total
m,t Total money obtained by supplier m in the

interval t.
M exch,total
k,t Total money paid by supplier m in the

interval t.
E1,supm,j Energy provided by supplier m in

increment j.
E1,demk,j Energy required by demander k in increment

j.
z1 Objective value.
Ebat,sizei Battery size of the prosumer i.
Ech,balancei,t Energy charged in the internal

balance of the prosumer i in interval t.
Edis,balancei,t Energy discharged in the internal

balance of the prosumer i in interval t.
Ech,marketi,t Energy charged in the market by

the prosumer i in interval t.
Edis,marketi,t Energy discharged in the market by

the prosumer i in interval t.

I. INTRODUCTION
Different directives [1], [2] from official organizations
lead the way towards the use of clean, sustainable and
efficient renewable energies. This, along with the significant
reduction in the costs of renewable generation technologies
and storage [3], has enabled a large growth in small-scale
distributed energy resources (DERs). This is particularly
evident in the growth of domestic photovoltaic panels,
together with the inclusion of residential storage systems.
The energy from these self-consumption installations is

cheaper than energy purchased from the grid, due to the
elimination of transmission fees, commercial margins and
other taxes. This has resulted in more and more consumers
opting for these installations, helped by the regulation of
self-consumption in many territories [4], [5]. This also
implies a paradigm change in the electricity system and
markets, with consumers becoming an active part of the
system, becoming prosumers. Prosumers can buy energy
they need from the grid, and sell surplus energy to the
grid or to other consumers in their community. Everyone
involved would also benefit from access to clean, cheaper and

more efficient energy, due to more localized energy where
consumption is produced.
These prosumers can be grouped into energy communi-

ties [6], which will become increasingly important and a key
element of the energy system in the coming years. Thus, part
of the energy generated can be traded between neighbours
in the community, through peer-to-peer (P2P) exchanges [7].
P2P trading is a recent technology of the energy management
mechanism for smart grids, in which prosumers exchange
energy among themselves, maximizing their resources.
There are several techniques for addressing P2P

exchanges, introducing new markets and the optimization of
these energy exchanges. Some studies [8], [9] have reviewed
the state of the art of P2P energy exchange methods.
For example, there are techniques, such as stage-based

techniques [10], where a two-stage aggregate control is
proposed to carry out the energy allocations, where real-time
deviations are handled by rules, which, if not precise and
well-defined, can affect performance. Other work [11] also
uses a hierarchical stepwise model, where an energy trading
framework is proposed to solve exchanges at different levels.
The work developed in [12] proposes an energy sharing
model with price-based demand response (DR) for P2P
prosumer microgrids. This has the disadvantage that, in the
absence of a market where bids are submitted, a consensus
must be reached to decide prices during energy sharing. Local
marginal price (LMP) to set trade prices and P2P transaction
fees are used in [13]. LMPs are invariant to the type of
technology, so they may not fully represent the value of
resources such as batteries. In [14], a peer-to-peer market
is proposed, it is based on the concept of multiclass energy,
used to coordinate trading between prosumers. This concept
can be difficult to apply because each prosumer may perceive
the non-economic value of the resources in a totally different
way. Prospect theory (PT), which is based on individual
differences of market members, is used to resolve power
exchanges in [15], with the handicap that the price is set by a
program and not by the prosumer, who cannot value his assets
according to his own criteria.
Game theory [16] is frequently used to address P2P

exchanges. This approach is used to provide a solution
based on an understanding of the behavior of the other
participants. In [17], a motivational framework is used with
the objective of improving the participation of the prosumers.
The same approach is developed in [18]. These studies do
not include storage systems in P2P exchanges. The work
developed in [19] solves direct interactions between buyers
and sellers, taking into account the DR capacity and privacy
of prosumers. This paper also does not address the market
integration of storage systems in the exchanges: batteries
are only used to reduce own consumption. In [20], the
Stackelberg game is formulated with producers as leaders
and consumers as followers to optimize social welfare. In the
same way, in [21], a P2P trading algorithm, based on the
Stackelberg game, is proposed. In this approach, the question
arises as to why consumers are not the leaders, since it
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is the demand that conditions the energy exchanged, and
how it is resolved that a battery can act as a producer
or consumer, depending on the case. A coalition game is
selected in [22] to build a model where the trading price is
set according to different priorities. Priorities are used for
the management of exchanges, but it has the handicap of not
addressing individual batteries, only one community battery
for all. In [23], an economic dispatch is defined as non-
cooperative game. In some cases, there is the disadvantage
that the solution of these problems leads to highly complex
algorithms. In this case, the issue of battery participation in
exchanges and the flexibility they offer is not addressed.

Another of the most established techniques for dealing
with P2P exchanges on the network is the use of linear
programming techniques to optimize exchanges, where the
method for obtaining the transactions is included in the
optimization. A Mixed Integer Linear Programming (MILP)
method is proposed in [24] to optimize the decision-making
of P2P electricity transactions from the operator’s point of
view.

Another work, as [25], formulates another MILP problem
by minimizing network costs in addition to the operating
costs of the storage systems, to solve the exchanges. In these
works, storage is not given a prominent role, it is only used
to reduce the bill, but without seeking its integration. The
work developed in [26] formulates the Generalised Nash
Bargaining Problem (GNB), which is decomposed into two
MILP subproblems, seeking to maximize the social welfare
and the net benefit of participants but again the inclusion
of storage systems in the problem is not addressed. In [27],
an MILP optimization is modeled by minimizing the cost of
energy purchase, as well as taking into account the cost of
the assets (generation and batteries). In this work a key role
of storage is not achieved, because to make a profit the battery
owner must have generation. Another work, such as [28],
also uses MILP, seeking to reduce the total community bill,
allowing energy transactions with the retailer or with other
consumers in the community. This work has the disadvantage
that only the exchange between two prosumers is allowed, not
being able to exchange one of them with several.

These approaches have several drawbacks. The first one
is that no clear market structure is defined, which allows
incorporating storage and offers for sale and purchase,
including the handling of batteries. Another drawback is
the need for an optimization approach to solve the P2P
exchanges, which are decisively influenced by the objective
function to be defined.

Another disadvantage is the modeling in linear program-
ming, which is rigid and sometimes not all interactions
can be modeled. An example of this is how to model
multiple exchanges between several prosumers, which is a
significant limitation. An alternative to linear programming
for optimization are evolutionary algorithms, which allow
including the definition of markets in a specific way and
their subsequent optimization. In [29], the genetic algorithm
is used to minimize the energy cost of the community.

Evolutionary algorithms allow complex models to be
included without the need for simplifications.

The work presented in this paper attempts to overcome
some disadvantages of the existing methods. A real market
structure is proposed to solve P2P exchanges, completely
scalable, where producers and consumers present their offers,
and the exchange occurs at a fair price between each producer
and consumer for each energy block. This market has the
advantage that it can be run in real time resolving with the
orders submitted, and be integrated into an optimization for
optimal scheduling in the community.

The main contributions of this work can be summarized in
the following points:
• A market structure that can be executed in any period of
time is proposed, obtaining the P2P exchanges between
the participants without requiring optimization. In this
market, multiple exchanges are allowed.

• The direct incorporation of the price in the orders at the
market allows finding the right price between supplier
and demander, eliminating the unique price of the
marginalist market. This also enables the incorporation
of demand side management (DSM) strategies.

• Incorporation of storage systems into the market in a
specific way, taking advantage of all the flexibility they
offer. A bidding method is provided to decide charging
and discharging based on price without the need to
optimize.

• It allows for a better valuation of the assets because, as a
result, it is possible to identify which prosumer’s asset
sells energy to the other assets. Each prosumer asset can
be priced independently of the other.

• Opportunity to integrate the market into an optimization
(possible with evolutionary algorithms). Due to the
optimization process, all P2P market participants will
benefit (No one is negatively affected).

This paper is divided into four further sections:
Section 2 presents the basics of the proposed P2P exchange
method. In Section 3 it is shown how the market can
be integrated in an optimization and which variables are
involved. Section 4 shows the data that will be used to test the
method. Section 5 depicts the results of applying the proposed
market together with the optimization for the case presented
in Section 4. Finally, Section 6 presents the conclusions of
the developed work.

II. PROPOSED P2P MARKET
This section presents the proposed P2P methodology, includ-
ing the theoretical background and conceptualization behind
the method, the architecture and the operation of the power
exchanges.

A. CONCEPTUALIZATION
Most of the existing methods in the literature solve peer-to-
peer exchanges by an optimization, seeking to maximize or
minimize a specific objective, but without really defining a
market.
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FIGURE 1. Aggregated supply and demand curves.

In this paper, the definition of a market in which
participants can solve their buy and sell offers is presented,
with the additional advantage that it can also be included in
an optimization seeking a given objective as the previously
mentioned methods. The proposed market is based on two
key concepts, which in combination allow defining a robust
and versatile method for managing energy exchanges in each
market execution.

The first concept is that of aggregated curves, taken from
Euphemia [30], the bid matching algorithm used to manage
the daily market in Europe. The supply or demand orders of
all participants in the same zone are aggregated in the supply
or demand curves for each period of the day. Supply orders
are ordered from lowest to highest price, while demand orders
are ordered from highest to lowest price.

With these aggregated curves, Euphemia matches energy
demand and supply for all periods of a single day, where
a single market price and the total energy exchanged are
obtained for each period. This concept can also be applied
to P2P exchanges because the procedure is the same, since
the aim is to match the cheapest supply and demand offers
with the highest prices.

The result of Euphemia has a disadvantage that clashes
with the P2P philosophy: it is a marginalist system. All
producers sell their energy at the market price, despite having
submitted different prices in their bids. The same occurs with
the purchase bids, they pay the market price despite having
set a higher price.

For a P2P market, a non-marginalist system is necessary
to solve the exchanges between participants: whoever was
willing to pay more, pays more; and whoever was willing
to sell at a cheaper price, sells at a lower price. To solve
energy exchanges and the pricing of these, the second key
concept is incorporated. It is matter of managing trades based
on priorities or price signals. That is, to allocate energy
among prosumers according to the energy requests and prices
set. Because of this, the methodology of the priority-based
auction algorithmE-Broker [31], [32] is used as the resolution
core.

E-Broker uses price signals to allocate energy from
generation sources to loads. Suppliers and demanders are

FIGURE 2. E-Broker priority sorting.

ordered according to priority. For suppliers, the priorities
are ordered from lowest to highest, while demanders are
ordered in reverse order. For example, in the management
of a microgrid, the generation with the lowest priority would
be used first, feeding the load with the highest priority. This
process continues with the next bidders until no more energy
can be exchanged.

Thus, the way to proceed for the allocations and to fix the
prices. First, the lowest priced bidders will exchange their
energy with the highest purchase bids, fixing an average price
between them. Then the following bidders and demanders
will be chosen in order of priority to assign the energy offered,
until the limit of the matched power is reached.

B. METHODOLOGY
To solve the P2P power exchanges, the proposed market
method is developed in five steps, which will be described
below. The data shown in Fig. 2 will be used to illustrate the
description of the steps of the proposed method (as a P2P
market execution.

1) STEP 1: DEFINITION OF ORDERS IN THE MARKET
The first stage consists of defining the supply and demand
orders, which are presented in the P2P market. Similar to
Euphemia, these buy and sell bids are used to form the
aggregate curves once the submission of bids is closed. Each
supplier must define in its offer the amount of energy it is
willing to supply and the price at which it values the energy.
Similarly, purchase offers indicate the energy demanded and
the purchase price.

Market
Offers

=

{
Esupi,t , π

sup
i,t , for bidders.

Edemi,t , π
dem
i,t , for demanders.

(1)

To be matched, these orders must comply:

π
sup
i,t ≤ 5

eq
t , ∀i ∈ I , ∀t ∈ T , (2a)

πdemi,t ≥ 5
eq
t , ∀i ∈ I , ∀t ∈ T , (2b)

where matched sell bids must have a price equal to or
lower than the equilibrium price5eq

t , while matched demand
orders must have a price equal to or higher than this market
equilibrium price.
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The appearance of prosumers in communities and the
increased use of storage systems makes it essential to
specifically define how these systems participate in the
market. To take advantage of the flexibility of storage systems
and make them as profitable as possible, it is proposed that
each storage system submits two orders, one as a supplier and
the other as a demander.

Depending on the price at which the market closes, it may
be interesting to charge or discharge the stored energy. If in
one hour the price is low enough, the battery can be charged
with cheap energy to use it later. On the other hand, if the
market closing price is very high and there is stored energy,
it may be interesting to discharge part of the stored energy to
maximize profits.

Energy orders that are related to the charge and discharge
of the battery (as bidder or demander) are conditioned by:

Ebat,disi,t ≤ min(Emax,disi,t ,Ebati,t · η
dis), ∀i ∈ I , ∀t ∈ T .

(3a)

Ebat,chi,t ≤ min(Emax,chi,t ,Ebati,t · η
ch), ∀i ∈ I , ∀t ∈ T .

(3b)

The prices at which storage systems participate in the
market must comply:

π
bat,ch
i,t ≤ π

bat,dis
i,t , ∀i ∈ I ,∀t ∈ T , (4)

which is the result of the combination of equations (2a) and
(2b). Note that the battery charge price (demander) is lower
than the discharge price (seller). This prevents that the battery
can buy energy from itself in the market run and produce
errors. The behavior of the battery depending on the price
can be summarized in the following cases:

Offer =


π
bat,ch
i,t ≥ 5

eq
t , only charge.

π
bat,dis
i,t ≤ 5

eq
t , only discharge.

π
bat,ch
i,t ≤ 5

eq
t ≤ π

bat,dis
i,t , do nothing.

(5)

This approach allows for a better integration of prosumer
storage systems. Thanks to price signals, it is possible to
manage the charging and discharging behavior, maximizing
the profit obtained by the owner. This strategy adds flexibility
to the decision, either in the execution of the market or in
the optimization of the operation. It reduces the uncertainty
of how to participate in the market, being able to behave as
producer or demander depending on the price at which the
market closes.

2) STEP 2: IDENTIFICATION OF MATCHED
SUPPLY AND DEMAND
Once the orders presented in the market have been described,
in this step, the total energy exchanged is calculated based
on the intersection of the aggregate curves formed by the
supply and demand orders. This intersection determines the

TABLE 1. Classification of matched participants.

volume of energy exchanged (Eeq) and the price at which
the market closes, 5eq. The balance of matched energy
must be maintained between suppliers (M) and matched
demanders (K):

m=M∑
m=1

Esupm,t =

k=K∑
k=1

Edemk,t , ∀m∈M , ∀k ∈K , ∀t ∈T . (6)

Once the participants that have been matched are iden-
tified, they are ordered according to the aggregate curves.
Table 1 shows the sell offers ordered from lowest to highest
price, and the purchase offers ordered from highest to lowest
price.

For all matched orders (shown in the Table 1), the prices
must satisfy that:

π
sup
m=1,t ≤ . . . ≤ π

sup
M ,t ≤ 5

eq
t ≤ π

dem
k=1,t ≤ . . . ≤ π

dem
K ,t ,

∀m ∈ M , ∀k ∈ K , ∀t ∈ T . (7)

The lower priced sale bids will have a greater chance of
selling all the energy offered, and the higher priced purchase
bids will have a greater chance of obtaining all the desired
energy. As closer to the equilibrium price5eq

t , it may happen
that not all the energy presented in the offer is sold or bought.

3) STEP 3: PARTICIPANTS ENERGY CONTRIBUTION
In this step, with the information of the matched participants,
the objective is to identify who composes each step of the
matched aggregate curve piece. To illustrate the theoretical
description of the steps, the case shown in Fig. 2 will be taken
as an example.

In the suppliers a first step of two kWh (supplier 1)
and another step of 3.5 kWh, formed by the contribution
of supplier 1 plus that of supplier 2, are identified. For
the demand, there is a step of one kWh from demander 3,
and another step of 3.5 kWh, with the contribution of
demander 3 and 2.5 kWh from demander 2. Table 2 shows the
contributions in the matched blocks of all market participants
(also unmatched participants).

The information collected in the supplier and demander
tables is organized in a single table, with all the values of the
identified energy blocks, ordered from lowest to highest. This
allows to know who can offer energy in a step and who can
demand it. Table 3 shows the unified contributions for each
step.
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TABLE 2. Identification of matched energy blocks for suppliers (a) and
demanders (b).

TABLE 3. Unified contributions from market participants.

4) STEP 4: ENERGY BLOCKS CALCULATION
The identification of who makes up the steps and how much
energy they contribute, allows the calculation of energy
increments. These increments are defined as the difference
between one energy block and another in the table of unified
contributions for each participant. This helps to value each
energy exchange that occurs. As each step was characterized
by a different price, each increment will be valued at a
different price with respect to the others. For the first block a
price is paid, and for the successive increases in energy, with
respect to this, different prices will be paid as they come from
different agreements between participants.

To calculate the increments, the method described in the
algorithm 1 is used. The input is the information contained in
the unified contribution Table 3 (where J is the total number
of contributions, it is, the number of columns), and the output
is the energy increments.

Applying this algorithm to the information shown in
Table 3, the increments of the Table 4 are obtained as output.
It can be seen how two kWh that supplier 1 had matched, are
divided into two different increments of 1 kWh. As the two
increments are different, the supplier will receive a different
amount of money for each of them, as each increment is
valued with a different price.

Similarly, demander 2, who hadmatched 2.5 kWh, will pay
a different price for a first increment of 1 kWh, and another
different price for the other increment of 1.5 kWh. Thus, this
demander will complete its energy demand, but will not pay
the same price for all the energy, since it will buy it from
different producers. This is the philosophy of P2Pmarket, not
being a marginalist market.

TABLE 4. Energy increments from market participants.

Algorithm 1 Algorithm for Calculating Increments
Input: Table 3 data
Output: IncrEne[i,j]

for i = 1 : I do
for j = 1 : J do

IncrEne[i,j] = Table[i,j+1] - Table[i,j]
end for

end for

5) STEP 5: ALLOCATION OF ENERGY BLOCKS AND PRICES
With the identified energy increments of each bidder and
demander, the energy allocationis carry out between them.
In this allocation, the same supplier is allowed to exchange
energy with several demanders in the same increment, as well
as a demander can obtain energy from several suppliers.

The price at which the agreements between participants are
closed is defined as the average price between what a supplier
set for its energy and what a demander was willing to pay for
the energy required in the market:

π
agreed
m,k,t =

π
sup
m,t + π

dem
k,t

2
. (8)

The allocation process starts with the first energy incre-
ment identified. Each supplier provides energy to each
demander until completing the energy identified in the
increment table, receiving for each energy exchange the
agreed price.

The energy of the participant is updated in each increment.
When a supplier exchanges all the energy in the increment,
the next supplier is chosen to continue exchanging in the
increment if is necessary. In the same way, that happens with
the demanders, when their energy request is satisfied, the next
demander is chosen. Once the exchanges in one increment
have been resolved, it moves on to the next one.

Fig. 3 shows the scheme followed for energy distribution
for each block identified in the increments.

Equations (9a) and (9b) define the total amount that a
supplier receives and that a demander pays for the energy
exchanged in a market execution.

M exch,total
m,t =

∑
j

∑
k

M exch
m,k,j, ∀m ∈ M , ∀t ∈ T . (9a)

M exch,total
k,t =

∑
j

∑
m

M exch
m,k,j, ∀k ∈ K , ∀t ∈ T . (9b)
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FIGURE 3. Allocation flowchart during a market execution (Interval index
is omitted for brevity).

For the case used in the description of the market,
allocation result, supplier 1 is analyzed. It offered 2 kWh
to the market at a price of π , which have been divided into
two increments of 1 kWh each. One is sold to demander 3
(demand price of 4π ) at an agreed average price of 2.5π . The
other unit of energy is sold to demander 2 (demand price of
3π ) in another increment at an average price of 2π .

In a marginalist market it would have obtained 7π , while in
P2P market it receives 4.5π , so there is a fairer distribution in
which demanders pay less, and suppliers are paid according
to their bids submitted and not at the market closing price.

III. PROPOSED OPTIMIZATION METHOD FOR
THE P2P MARKET MODEL
The proposed P2P market model can be integrated into
an optimisation to realise, as in other methods, optimal
scheduling in a prosumer community.

Different objectives can be defined to optimize exchanges
in the community and perform an optimal scheduling:

FIGURE 4. Flowchart of the optimization with market integration.

reduction of grid dependency, reduction of operating costs or
use of clean energy. One of the most common options is to
minimize the electricity bill of the community. The aim is to
seek the social welfare of all members of the community. This
approach is defined by the objective function:

min z1=
∑
i

∑
t

Ebuyi,t ·5
buy
i,t −

∑
i

∑
t

Eselli,t ·5
sell
i,t , (10)

where the objective is to reduce the costs of purchasing
energy from the grid. In this case, the assets are managed
not only to reduce the individual prosumer’s bill, also to help
reduce the bill of other prosumers, if possible. Fig. 4 shows a
flowchart of the optimization process, including the proposed
market for this case.

This optimization process integrating the proposed P2P
market to obtain the optimal scheduling is divided into three
stages:

1) Internal balance of each prosumer: the objective is
first to satisfy the consumption of each prosumer with
its own resources.Excess generation available, if any,
is calculated to be offered to the market or stored in the
battery. If, after balancing, a prosumer needs energy,
it will submit a purchase offer to the market.

2) Market execution: Once the internal balancing is done,
the P2P market is executed with the purchase and sale
offers submitted by prosumers.

3) Evaluation of the objective function: the defined
objective function is evaluated, which will use the
market results. The optimization variables will change
their value and how they behave in the internal balance
and the market in order to minimize the set objective.

Thanks to including the internal balance and separating it
from the market, it is guaranteed that no prosumer will be

64308 VOLUME 10, 2022



C. Garcia-Santacruz et al.: Multi P2P Energy Trading Market, Integrating Energy Storage Systems

adversely affected by participating in the P2P market, since
the priority will always be to reduce its own bill.

Optimization should focus on managing the controllable
assets that exists in the community: controllable generation,
manageable load and mainly storage systems. Thus, the
optimization variables must be related to the flexible
systems in the community, which are the ones that allow
the bill to be reduced through their management. Non-
controllable generation and loads are defined as parameters.
The optimization variables that are defined to control storage
systems (other manageable assets are defined in the same
way) are:
• Edisi,t : variable to control battery discharge, for internal
consumption and participating in market.

• πdisi,t : variable to control the price at which energy from
the battery is offered on the market.

• Echi,t : variable to control the battery charge, storing own
excesses and participating in market.

• πchi,t : variable to control the price at which energy is
purchased on the market to be stored in the battery.

where, by managing these variables, it is possible to
order the charge or discharge of the battery, to reduce own
consumption, to store surplus generation or to buy or sell
in the market. Prices will adjust their value so that the sale
or purchase is realized.The energy setpoints contemplate the
energy to reduce internal consumption (or charge) and sell to
the market (buy to the market). This is because it is satisfied:

Edisi,t =E
dis,balance
i,t +Edis,marketi,t , ∀i∈ I , ∀t ∈T . (11a)

Echi,t =E
ch,balance
i,t +Ech,marketi,t , ∀i∈ I , ∀t ∈T . (11b)

This total energy charged or discharged is the value used
to update the energy in the battery:

Ebati,t = Ebati,t−1 + E
bat,ch
i,t · ηchi − E

bat,dis
i,t · ηdisi . (12)

IV. CASE STUDY
This section presents the case study on which the proposed
market model will be tested along with its optimization. It is
a scenario with five prosumers connected to the same node.
Each of them has photovoltaic generation and storage. The
evolution of the consumption of each prosumer for the day to
be analyzed is shown in Fig. 5.
The maximum value of the consumption of each prosumer

will determine the installed PV power and storage size.
Installed photovoltaic power will be around 50% of the
maximum peak value of its consumption. The generation
profile is shown in Fig. 6. The size of the storage will also
be determined by the peak value, with the maximum battery
capacity being half of the peak consumption value.
This is a day-ahead market scheduling problem, so the

prices of a day on the OMIE market [33] are considered as
a reference, where, for each hour there is a different price.
The use of different hourly prices allows prosumers to value
their resources according to the time and generation available,
consumption, and when to sell to the grid or store surpluses.

FIGURE 5. Consumption profiles of prosumers.

FIGURE 6. Photovoltaic generation profile per unit and day-ahead prices.

TABLE 5. Energy storage system parameters.

The characteristics of the prosumer storage systems are
shown in Table 5. There is no maximum amount of energy
to sell to the grid or to other prosumers in this community.

V. RESULTS
In this section, the results of the optimal scheduling using the
proposed market are presented. The objective is to minimize
the total energy cost of the community. The optimization will
be implemented in Python, using Genetic Algorithm (GA) for
its resolution. In addition, a comparison with a MILP method
presented in the literature [28] is included.

A. OPTIMAL SCHEDULING
The proposed market and its optimization have been tested
for steps with numerous prosumers with their respective
assets, as well as 15-minute time intervals. To simplify the
visualization of the results, the optimization is performed for
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TABLE 6. Bill comparison without P2P transaction and allowing P2P
transaction.

FIGURE 7. Energy transactions in the grid and the P2P market for one
day.

an interval of 24 periods (one day) with a community of
5 prosumers.

The evolution of the consumption of each prosumer after
optimal scheduling is shown in Fig. 7.

It is observed that in the early hours of the day, when the
price is lower, the consumption of the community is fed with
energy from the grid. At central hours of the day, consumption
from the grid decreases, and excess generation is sold to the
grid.

The highest volume of P2P exchanges in the community
occurs during the central hours of the day, as well as
during one of the most expensive hours (20h). Batteries are
discharged at night hours (19-23h) at the highest prices,
in order to reduce the consumption of the grid. At the
community’s peak consumption hour, 20h, thanks to the
batteries, consumption is reduced by 25.78%.

Fig. 8 shows the total energy volume exchanged among
the prosumers in the community. Prosumer 4 is the largest
seller, with 7.88 kWh. This is because its maximum peak
consumption occurs at 20h, having a large excess of
photovoltaic generation in the central hours of the day, where
it has a small consumption. The average energy exchanged in
the P2P market is 3.21 kWh per prosumer.

Table 6 shows the comparison of the bills of each
prosumer and the community for two cases: when the assets
are managed individually (through individual optimization)
without allowing exchange between neighbors (without P2P),
and when exchange between prosumers is allowed in addition
to exchange with the grid (with P2P). It can be seen that by
allowing multiple exchanges between neighbors, the overall
bill is reduced by 7.22%.

FIGURE 8. Volume of energy in P2P market transactions for one day.

TABLE 7. Summary table of energy purchased and sold by prosumer
assets (in kWh).

As can be seen, all of them reduce their bill by participating
in P2P exchanges (reduction between 2.13%-15.15%), and
none of them is negatively affected by participating in the
P2P market. This is due to the optimization approach (Fig. 4),
which first performs an internal balancing, prioritizing the
reduction of own consumption, and then participate in
the market with possible excesses of generation or energy
in the battery.

A summary of community exchanges is shown in Table 7.
Thanks to the definition of a P2P market, it is possible
to identify the exchanges between the community assets:
loads, batteries and generation. Batteries are not used to sell
energy to the grid, only to reduce consumption, since the grid
purchase price is not advantageous for selling stored energy
that can be used in expensive hours. In contrast, the excess of
photovoltaic generation is sold.

It is shown how the objective of reducing the overall bill is
achieved. A greater volume of excess photovoltaic generation
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FIGURE 9. Violin plot of the consumption of each prosumer (a), the
energy purchased from the grid (b) and the energy purchased in the P2P
market (c).

is sold to the community with respect to the grid, as the
objective is also to reduce for the other prosumers (15.08 kWh
versus 10.02 kWh). Regarding the behavior of batteries in
the P2P market, there is a tendency to buy excess generation
from other prosumers to store it and then to use this energy to
reduce their own consumption. This can be seen in the volume
of energy bought versus sold by batteries: 2.31 kWh when
buying versus 0.97 kWh when selling.

It can be concluded that batteries are used almost
exclusively to reduce self-consumption and excess generation
is sold mainly to the P2P market and not to the grid, which
is in the best interest of the community. Therefore, due to the
definition of the market, it is possible to analyze the behavior
of the assets, identifying the amount of energy exchanged by
each asset.

Fig. 9 shows the distribution of energy purchased from the
grid by each prosumer, as well as that purchased in the P2P
market.

Prosumers 3 and 4 are the biggest purchasers from the
grid, with high energy peaks (4.64 kWh and 5.69 kWh
respectively). This is due to their consumption profiles, where
in the central hours of the day, the consumption of prosumer
4 is small (0.68 kWh consumption at 12h); while prosumer
3 is the one with the highest and most uniform consumption.
This can be seen in the distribution of the violin graph (Fig. 9).
Prosumers 1 and 2 are those who buy the least amount of

FIGURE 10. Evolution of prosumer 1 consumption and energy exchanges
(a) and evolution of prosumer 1 SOC and daily prices (b).

energy from the grid; however, they are those who buy the
most in the P2P market, buying excess generation to feed
consumption or to store in the battery.

Thus, taking into account this information and the
consumption profiles, it can be seen that the first step is to try
to buy on the P2P market if possible to feed consumption and
reduce peaks, as is the case of prosumers 1 and 2. On the other
hand, due to their consumption profile, prosumers 3, 4 and
5 are more dependent on the grid to feed their consumption,
but they can reduce their bill by selling a larger amount of
excess energy on the P2P market.

From a technical point of view, it is also worth analyzing
the performance of prosumer batteries on the market for
the day under analysis. For this purpose, the evolution of
consumption, generation and P2Pmarket together with prices
and SOC of prosumer 1 is shown in Fig. 10. At 11h the
consumption peak occurs (5 kWh), which is satisfied with
own generation (2.73 kWh), energy from the P2P market
(3.41 kWh) provided by neighbors’ surpluses at a lower price
than the grid. This energy from community surpluses is also
used to charge the battery at low cost. Subsequently, the
battery is charged with excess own generation at 13h. At
20 and 21 hours, the battery is discharged by selling on the
P2P market, to reduce the own bill and the bill of neighbors,
because it is the hour with the most expensive price and
there isn’t generation. Similarly, at 15h, there is an excess of
generation that is more profitable to sell to a member of the
community to reduce his consumption or charge its battery.
It is also observed in the behavior of the battery that one of the
constraints is complied with: a complete charge and discharge
cycle is performed.
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TABLE 8. Comparison of the bill between the proposed method and the
SoA method.

Thanks to the definition of the market (with multiple
exchanges) and how the energy and price offers are presented,
which can be optimized, the community is managed to
achieve the objective. This can be observed in how excess
generation is soldmainly to the community to help neighbors,
to reduce individual bills, and therefore overall, instead of
selling individually to the grid. By including this market in
the optimization, community resources are better utilized and
assets are valued more accurately (optimizing bids), which
implies better overall management.

B. STATE OF ART COMPARISON
The proposed market and its optimization have been com-
pared with an existing method in the literature to observe
the improvements it provides. For this purpose, the case
described has been compared with a method based on linear
programming (MILP) as described in [28], from now on
SoA method. This method is chosen because it is also
representative and analogous to the cooperativemode in game
theory, because prosumers’ assets are managed cooperatively
for common benefit.

The bills obtained with both methods are compared for
six cases based on the case study. The first case is in which
all prosumers have their own generation and storage system.
In the other five cases, one of the prosumers does not have
its own storage system. The results of this comparison are
shown in Table 8. The objective of these cases is to show the
differences between SoA method and the proposed method,
such as the inclusion of batteries, asset valuation and multiple
exchanges.

Taking into account the 6 cases, an average reduction of
1.92% is obtained by the proposed method. This reduction
increases when one of the prosumers has no storage. This
improvement in results is due to two points of improvement
provided by the method proposed in this paper mentioned
above. The first difference between bothmethods comes from
allowing a prosumer to exchange energy with more than one
member of the community. One prosumer can help more than
one neighbor to reduce their bill or their dependence on the
grid, while in the SoA method, a prosumer is not allowed to
transact electricity with two or more prosumers.

The difference in the number of hourly exchanges between
prosumers is shown in Fig. 11.

For example, in hour 12, one of the highest grid price in
solar production hours, there is a higher number of exchanges

FIGURE 11. Number of neighbors to which each prosumer sells energy
for the SoA method (a) and the proposed method (b).

in the proposed method compared to the comparison
method. Thanks to the proposed method, prosumers can give
cheap (surplus) energy to more members of the community
for use or storage, and not only to a single prosumer or the
grid. The same occurs in hours 20 and 21, where prices are
the highest, when prosumers 1 and 2 exchangewithmore than
one neighbor to reduce their bill.

Another contribution of the proposed method is the
incorporation and definition of the participation of storage
systems in the P2P market explained in Section 2, taking
advantage of its flexibility. In Fig. 12 shows the comparison
of the prosumer 1 battery behavior for the base case with the
management of SoA method.

In this Fig. 12, despite a similar behavior of the battery
some hours like 8 and 13, it can be observed the differences
in the battery management between the methods. First, with
the proposed method, the battery is used for fewer hours, only
when necessary (6 hours versus 9 hours), because it is valued
individually and differently from the other generation, thanks
to the P2P market implemented different technologies with
different prices. In several methods, such as the SoA method,
a price is fixed previously for exchanges between prosumers,
without distinguishing between the type of generation from
which the energy is produced. This is not a realistic approach,
in which energy from a battery has the same price as
photovoltaic, because its assets are not made profitable and
are not used correctly to reduce the bill.

At 11th hour, when the grid price is expensive and there
is surplus generation in the community, the proposed method
charges the battery around 50% (1.15 kWh). In the proposed
method, P2P market it uses to sell surplus PV generation
at low prices between prosumers, instead of selling to the

64312 VOLUME 10, 2022



C. Garcia-Santacruz et al.: Multi P2P Energy Trading Market, Integrating Energy Storage Systems

FIGURE 12. Evolution of the charge and discharge of the prosumer
battery 1 (a), the state of charge (b) with the SoA method and with the
proposed method and load-generation profile of prosumer 1 (c).

grid, to feed consumption and charge the batteries. Thus,
prosumer 1 takes the opportunity to buy cheap energy from
his neighbors in the P2Pmarket. In the SoAmethod, since the
price is pre-fixed between prosumers and not as the market
closes, surplus is only sold to prosumers when the price is
low. This is a handicap, since expensive network prices are
not compensated with the P2P market to reduce the bill.

Another difference between the methods is observed in
hour 20, where the proposed method discharges more energy.
In addition to feeding its own consumption, prosumer 1 helps
prosumers 3, 4 and 5 (0.76 kWh vs 0.05 kWh with SoA
method). This fact is specially relevant in prosumer 4, which
has its peak consumption in that hour. In hour 21, although it
is the most expensive hour, with the proposed method less
energy is sold between prosumers. Instead, the battery is
discharged to feed its own consumption: 0.53 kWh. This is
because the use of batteries is managed in order to ensure
that storage energy is purchased in the market in the most
expensive hour to reduce the bill, instead of buying expensive
energy in the market, as with the SoA method. With the

FIGURE 13. Evolution of total energy sold in the P2P market between
prosumers (a) and total energy sold to the grid (b).

proposed method, between hours 20 and 21, a total reduction
of 5.3% (the same as economic) of energy purchase from the
grid is achieved.

With the market definition, prosumers buy little quantity
of energy in expensive hours if there is no cheap energy
(photovoltaic), in such a way that storage energy is managed
to be used to feed their own consumption and not having
to buy in any market. In the case of the SoA method, more
energy is sold in expensive hours, which further increases the
bill, because the batteries have not been managed to reduce
own consumption as much as possible.

A summary of the transactions in the P2P market and
energy sale to the grid is shown in Fig.13. It is observed that
when there is solar surplus at 11 hours, the proposed method
sells it in the P2P market to the neighbors to reduce the bill or
store energy, while with the SoAmethod, it is preferred to sell
to the grid, without considering the possibility that this energy
can be used later. The proposed method sells solar surplus to
the grid at 13 hours, because in those hours, despite being the
lowest price, the consumption in the community is lower than
in the previous hours.

Therefore, by defining a market in a specific way, with
multiple exchanges, where prices are defined independently
according to how the market closes and not fixed in advance,
being parameters that can be decided in an optimization
process, the community assets can be better managed to
achieve the proposed objective.

VI. CONCLUSION
In this paper, a market to solve P2P exchanges is proposed,
with a clear definition of its structure and scalable to
numerous participants. It allows multiple exchanges of one
participant with several, agreeing on different prices among
them.

VOLUME 10, 2022 64313



C. Garcia-Santacruz et al.: Multi P2P Energy Trading Market, Integrating Energy Storage Systems

In this market, storage systems are treated specifically to
take advantage of the flexibility they offer to owners. Depend-
ing on the price at which the market it is closed, batteries can
be charged or discharged. This is an improvement that helps
to integrate storage into the markets. Another improvement is
that each prosumer can submit individual orders for its assets,
making it possible to identify which asset it exchanges with
the others. This allows for better valuation and profitability.

In addition, it is illustrated how this P2P market can be
implemented with an optimization algorithm for optimal
scheduling in the community. The results show how the
proposed method fills the gaps with existing methods, such as
allowing multiple exchanges and the identifying how much
each asset exchanges. This helps to improve results and
producing greater savings in the prosumers’ bill.

Future work will focus on extending the use and applica-
tion of this market in a community with a network model,
taking into account the constraints associated with the lines.
Another line of research is the use of this market together with
Blockchain technology to achieve privacy and fast payment
settlement in P2P energy trading.
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