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Abstract: The COVID-19 outbreak has spread extensively around the world. Loss of smell and
taste have emerged as main predictors for COVID-19. The objective of our study is to develop a
comprehensive machine learning (ML) modelling framework to assess the predictive value of smell
and taste disorders, along with other symptoms, in COVID-19 infection. A multicenter case-control
study was performed, in which suspected cases for COVID-19, who were tested by real-time reverse-
transcription polymerase chain reaction (RT-PCR), informed about the presence and severity of their
symptoms using visual analog scales (VAS). ML algorithms were applied to the collected data to
predict a COVID-19 diagnosis using a 50-fold cross-validation scheme by randomly splitting the
patients in training (75%) and testing datasets (25%). A total of 777 patients were included. Loss of
smell and taste were found to be the symptoms with higher odds ratios of 6.21 and 2.42 for COVID-19
positivity. The ML algorithms applied reached an average accuracy of 80%, a sensitivity of 82%, and
a specificity of 78% when using VAS to predict a COVID-19 diagnosis. This study concludes that
smell and taste disorders are accurate predictors, with ML algorithms constituting helpful tools for
COVID-19 diagnostic prediction.

Keywords: COVID-19; machine learning; prediction model; SARS-CoV-2; smell; taste; visual ana-
log scale

1. Introduction

The COVID-19 outbreak has been the most threatening challenge healthcare systems
have faced in modern times, with the novel coronavirus SARS-CoV-2 spreading rapidly
around the world, causing more than 2 million deaths in a year according to the World
Health Organization (WHO), as well as an incalculable socioeconomic burden.

Diagnostic testing for COVID-19 has been shown to be critical to track the spread of
the virus, understand the epidemiology, inform case management, and eventually reduce
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transmission. In order to clarify priorities for testing, the WHO has provided definitions for
suspected, probable, and confirmed cases, as well as for contacts of the cases, which were
subsequently adopted by Centers for Disease Control and Prevention (CDC). Furthermore,
in order to optimize testing procedures, especially in areas with limited healthcare resources,
the identification of the most predictive symptoms would help select those individuals with
higher probabilities of being infected, establish guidelines for self-isolation, and eventually
contribute to the suppression of the spread of the virus.

Although SARS-Cov-2 accesses the respiratory system with most people experiencing
a mild or subclinical disease, especially in the early stages, clinical manifestations of COVID-
19 are broad and include common symptoms such as malaise, fever, cough, shortness of
breath, myalgia, sore throat, headache, nausea, or diarrhea [1,2]. Nevertheless, loss of
smell and taste have emerged as the most prevalent and predictive symptoms in mild
COVID-19 cases [3,4]. Smell and taste disorders that are related to upper respiratory tract
infections are caused by more than 200 viruses, of which, 10-15% are coronaviruses [5].
There is a need for studies that clarify the actual prevalence of smell and taste disorders in
COVID-19, which vary from 5.1% to 87% in different studies [5–13], possibly due to ethnical
and geographical differences [3,11]. Moreover, the symptoms of COVID-19 infection may
overlap with those of other common diseases such as allergies or routine viral illnesses,
making it difficult to distinguish between them.

Prediction models based on symptoms such as loss of smell and taste have been
proposed as helpful tools to predict COVID-19 diagnosis [9,10,14,15] as well as early
indicators of the effectiveness of containment measures in new outbreaks [16]. New
approaches based on machine learning (ML) techniques have also attracted attention from
researchers, who have recently used them to analyze and predict olfactory dysfunction
in other nasal pathologies [17]. ML methods draw on algorithms that can be applied to
a population-based systems approach, modelling complex interactions and associations
between multiple variables, showing a higher prediction accuracy when compared with
classical statistical methods. Therefore, this study focuses on two main objectives: (1)
develop a comprehensive machine learning (ML) modelling framework to assess the
predictive value of smell and taste disorders in the COVID-19 disease; and (2) analyze the
prevalence and association of loss of smell and taste, in combination with other common
symptoms, with a COVID-19 diagnosis.

2. Materials and Methods
2.1. Study Design, Setting, and Participants

This was a multicenter, cross-sectional case-control study of subjects aged 18 or older
that were suspected of having COVID-19, i.e., symptomatic or asymptomatic subjects in
close contact with a positive case, according to the recommendations from the WHO. The
subjects underwent laboratory testing via RT-PCR by collecting upper respiratory tract
specimens (nasopharyngeal and oropharyngeal). All subjects filled out a questionnaire
regarding the presence and the severity of their symptoms, including loss of smell and
taste. Those who were RT-PCR positive were assigned to the case group and those who
tested negative to the control group. The data was collected in four different hospitals
in the Spanish regions of Seville and Cadiz, between March and April 2020. This study
complies with the Declaration of Helsinki and was approved by the Ethics Committee of
the Virgen Macarena University Hospital in Seville, Spain. All participants were informed
about the study and gave their consent to participate.

2.2. Study Variables

In addition to demographic variables such as age and sex, the presence of symptoms
such as loss of smell, loss of taste, nasal obstruction, nasal discharge, facial pain, cough,
and dyspnea were reported through categorical variables, and their severity was reported
through validated visual analog scales (VAS) ranging from 0 to 100. Fever and diarrhea
were also informed as categorical variables.
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2.3. Data Analysis and Statistical Methods

Statistical analysis was performed using the Statistics and Machine Learning Tool-
box in Matlab (v. R2018a, The MathWorks Inc, Natick, MA, USA). A single mean and
mode imputation method, adding randomly generated values from a normal distribution
with mean 0 and deviation 7.5, were used to impute continuous and categorical missing
variables, respectively [18]. We first compared the prevalence of categorical symptoms
between positive and negative COVID-19 groups using the χ2 test. To also analyze the
differences in the intensity of the symptoms reported between the two groups, Student’s
t-test was used with numerical VAS variables. In our analysis, a p-value of 0.05 or lower
was considered significant. For each symptom, the VAS cut-off value that better predicted
COVID-19 positivity was calculated by maximizing the Youden index using receiver oper-
ating characteristic (ROC) curves. We then recoded the continuous VAS variables into new
dichotomous ones, indicating whether the VAS score was higher or lower than the corre-
sponding cut-off value. Subsequently, the association of each symptom with a COVID-19
diagnosis was assessed through bivariate regression analysis.

To identify the symptoms most strongly associated with a COVID-19 diagnosis, we per-
formed backward and forward step-wise multivariate logistic regression (LR) algorithms
using both Akaike (AIC) and Bayesian (BIC) information criteria with the dichotomized
VAS dataset. We performed a holdout validation by randomly splitting the sample into
training and testing datasets in a ratio of 75:25. The performance of the obtained model
was assessed in terms of parameters such as the area under the curve (AUC), sensitivity
(SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV).
For the sake of clarity, the details of the model implementation and the holdout validation
can be seen in Figure 1a.

2.4. Machine Leaning (ML) Approach to Predict a COVID-19 Diagnosis

To assess the predictive value of smell and taste disorders in the COVID-19 disease,
we develop a comprehensive machine learning (ML) modelling framework including
logistic regression (LR) and two other ML algorithms, Random Forest (RF) and Support
Vector Machine (SVM), which were respectively implemented in order to evaluate their
discrimination accuracy when predicting a positive COVID-19 test result. For RF algorithm,
a bagged ensemble of 200 regression trees was trained to estimate predictor score values
using a curvature test, while a basis kernel approach was chosen for SVM. Five different
datasets including categorical variables, continuous VAS, and dichotomized VAS were
considered with the aim of assessing the discrimination ability of different types of vari-
ables when predicting COVID-19 infection. Specifically, (1) a first dataset considering the
(categorical) presence of the nine symptoms queried in the study (Dataset 1); (2) a second
dataset containing the (continuous) VAS scores reporting the intensity of the symptoms
(Dataset 2); and (3) a third dataset with dichotomized VAS variables reporting whether the
intensity of symptoms was higher or lower than a corresponding VAS cut-off value (Dataset
3). Datasets 1–3 also included sex and age as predictor variables. Afterwards, we also
analyzed the accuracy of simplified models containing a lower number of predictors, such
as (4) a reduced model considering four symptoms (loss of smell, loss of taste, fever, and
diarrhea) (Dataset 4); and (5) a parsimonious model including only two symptoms (loss of
smell and fever) (Dataset 5). A cross-validation scheme was designed by randomly splitting
the sample in training (75%) and testing (25%) datasets 50 times (i.e., 50-fold validation)
(See Figure 1b). The discrimination accuracy of the different datasets and ML algorithms
tested was evaluated in terms of mean AUC, SE, SP, PPV, and NPV parameters over 50
training/test split combinations. Therefore, we obtained 50 different train/test splits for
each of the five predictor datasets analyzed and each of the three ML algorithms considered
(LR, RF and SVM), which yields to a total number of 750 (5 × 3 × 50) model datasets
computed with this approach. Finally, permutation-based importance score ranking was
used to identify the most important predictor symptoms in RF algorithm.
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Figure 1. Modelling framework for the analysis of symptom associations and COVID-19 prediction. Data from 777 patients
were obtained from different hospitals in the South of Spain. (a) For the analysis of the association between the intensity
reported for loss of smell and taste, along with other symptoms, and a COVID-19 diagnosis, a first model was derived using
step-wise logistic regression (LR) with a holdout validation scheme, by splitting the sample into a training (75%) and a
testing dataset (25%). The performance of the model was assessed through ROC analysis, with AUC, SE, PPV and NPV
parameters being calculated for the holdout testing (25%) dataset. (b) For the analysis of the discrimination ability and
predictive value of different symptom variable datasets, including categorical (D1), continuous visual analog scales VAS
(D2), dichotomized VAS (D3) as well as simplified predictor datasets with a reduced number of symptoms (D4 and D5), a
comprehensive 50-fold cross-validation scheme was designed by assessing three different ML algorithms (LR, RF, and SVM).
The performance of the models obtained were calculated through the mean AUC, SE, SP, PPV and NPV values over the
50-cross validated estimates obtained for each model tested. LR = logistic regression. RF = random forest. SVM = support
vector machine, ROC= receiver operating characteristic, AUC= area under the curve, SE = sensitivity, SP = specificity, PPV=
positive predictive value, NPV= negative predictive value.

3. Results
3.1. Demographic Characteristics of the Sample

The study included data from 777 subjects suspected of suffering from COVID-19,
collected in four different hospitals in the Spanish regions of Seville and Cadiz between
March and April 2020. Of these, 421 cases were positive via RT-PCR, and 257 (61%) were
female. Out of the 356 controls, 277 (78%) were female. There were no relevant differences
in age between cases and controls, and more women than men participated in the study
(69 vs. 31%). There were 64 patients out of 777 who had one or more missing values.
Overall, 103 missing values out of 6993 were imputed (1.5%).

3.2. Prevalence and Intensity of Symptoms between Cases and Controls

Table 1 shows the prevalence of symptoms for the 777 subjects included in the study.
There were 102 asymptomatic subjects, of which only 15 were positive for COVID-19. The
most common symptoms in subjects who tested positive for COVID-19 were cough (73%),
loss of taste (63%), fever (61%), and loss of smell (61%). Significant differences (p < 0.001)
between cases and controls were found in the prevalence of all symptoms, except for nasal
obstruction and discharge. Figure 2 shows the distribution of continuous variables (age and
self-reported VAS scores for symptoms) in each of the two groups. Interestingly, positive
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COVID-19 subjects reported a more intense loss of smell (51.4 ± 44.9 versus 7.9 ± 21.8;
p < 0.0001) and taste (49.6 ± 41.9 versus 8.7 ± 21; p < 0.0001) than negative subjects. In
addition, 278 out of the 312 subjects who reported loss of smell also reported loss of taste
(236 positive), and 85 reported both losses with a maximum intensity of 100 (82 positive).
A high correlation was found between loss of smell and loss of taste, with a Pearson
coefficient of 0.83 in the complete sample and of 0.79 in the positive COVID-19 group.
However, no correlation was found between loss of smell and any other symptoms, not
even those related to the nasal pathway, such as nasal obstruction and discharge. Significant
differences in the intensity reported for facial pain, cough, and dyspnea between groups
were also seen (p < 0.0001). Although still significant, the difference in the intensity reported
between groups for nasal obstruction was considerably lower (20.7 ± 31.7 versus 16 ± 27.9;
p = 0.0311). No differences were found for nasal discharge between groups (25.1 ± 30.7
versus 22 ± 28.5; p = 0.1481).
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Figure 2. Violin plots showing the distribution of self-reported VAS scores for symptom intensity. The white dots depict the
median value and the vertical gray lines the interquartile range (25th and 75th quantiles). Horizontal black lines represent
the mean value. Symptoms accompanied with an asterisk (*) showed significant differences in the Student’s t-test between
positive and negative groups: loss of smell, loss of taste, facial pain, cough, dyspnea (p < 0.0001), and nasal obstruction
(p = 0.0311). Nasal discharge (p = 0.1481) and age (p = 0.0628) were not significantly different between groups.
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Table 1. Prevalence of symptoms in the sample. Odds ratios and 95% CIs values were calculated using the counts (%) in the
table. p-values were calculated via χ2 test.

Symptom Total
(n = 777)

Cases
(n = 421)

Controls
(n = 356) Odds Ratio CI 95% p-Value

Loss of smell 312
(40%)

257
(61%)

55
(15%) 8.58 [6.06, 12.14] <0.0001

Loss of taste 332
(43%)

266
(63%)

66
(19%) 7.54 [5.41, 10.52] <0.0001

Nasal obstruction 262
(34%)

153
(36%)

109
(31%) 1.29 [0.95, 1.74] 0.0946

Nasal Discharge 378
(49%)

210
(50%)

168
(47%) 1.11 [0.84, 1.47] 0.4718

Facial Pain 161
(21%)

114
(27%)

47
(13%) 2.44 [1.67, 3.55] 0.6173

Cough 471
(61%)

307
(73%)

164
(46%) 3.15 [2.34, 4.25] <0.001

Dyspnea 260
(33%)

182
(43%)

78
(22%) 2.71 [1.98, 3.73] <0.001

Fever 339
(44%)

258
(61%)

81
(23%) 5.37 [3.92, 7.37] <0.001

Diarrhea 299
(39%)

220
(53%)

79
(22%) 3.84 [2.80, 5.26] 0.0011

3.3. VAS Cut-off Points That Optimally Predicted COVID-19 Diagnosis

The VAS cut-off points that optimally predicted COVID-19 diagnosis are shown in
Table 2, together with the crude ORs and confidence intervals derived from the bivariate
regression analysis. Table 2 also shows the discrimination accuracy, measured as the area
under the curve (AUC), together with the sensitivity (SE) and specificity (SP) calculated for
each symptom. Loss of taste (OR = 12.62; CI 95%: 8.50–18.73; p < 0.0001) and loss of smell
(OR = 10.85; CI 95%: 7.47–15.77; p < 0.0001) were the symptoms showing the highest ORs
and discrimination accuracy (AUC = 0.76). Cough and dyspnea showed an AUC equal
to 0.65 and 0.61, respectively, following loss of taste and smell. Nasal obstruction (AUC
= 0.53), nasal discharge (AUC = 0.52) and facial pain (AUC = 0.57) were not predictive of
COVID-19 in the regression analysis.

Table 2. Crude odds ratio (OR) for the associations between the VAS collected for each symptom and COVID-19 test. The
VAS cut-off points that better predicted test positivity (by maximizing the Youden Index) are also shown, together with
their sensitivity and specificity.

OR CI 95% p-Value VAS Cutoff Points AUC Sensitivity Specificity

Loss of smell 10.85 7.47 15.77 <0.0001 21 0.76 0.60 0.88
Loss of taste 12.62 8.50 18.73 <0.0001 44 0.76 0.59 0.90
Nasal obstruction 1.75 1.19 2.56 0.0046 52 0.53 0.21 0.87
Nasal discharge 1.46 1.06 2.02 0.0232 41 0.52 0.30 0.77
Facial pain 2.54 1.73 3.74 <0.0001 15 0.57 0.26 0.88
Cough 3.19 2.36 4.31 <0.0001 3 0.65 0.73 0.54
Dyspnea 3.06 2.16 4.33 <0.0001 28 0.61 0.36 0.84

3.4. Multivariate Logistic Regression (LR) Model

A multivariate COVID-19 prediction model was derived by performing logistic step-
wise backward-forward regression considering the nine dichotomized symptom variables
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as well as sex and age as predictors. The model with the lowest Bayesian Information
Criterion (BIC), see equation below, was selected as the best model:

x = −1.76 + 0.88 × ((1 if VAS for loss of smell ≥ 21) or
(0 if VAS for loss of smell < 21)) + 1.83 ×((1 if VAS for loss of taste ≥ 44) or

(0 if VAS for loss of taste < 44)) + 0.79 × ((1 if VAS for dyspnea ≥ 28) or
(0 if VAS for dyspnea < 28)) + 0.61 × ((1 if fever)

or (0 if no fever)) + 0.70 × ((1 if diarrhea)
or (0 if no diarrhea)) − 1.13 × ((1 if female) or (0 if male))

(1)

In this model, loss of taste, loss of smell, fever, diarrhea, and dyspnea were positively
and independently associated with a positive COVID-19 test, while being female was
negatively associated. Other variables and symptoms such as age, nasal obstruction, nasal
discharge, facial pain, and cough were not associated with a COVID-19 diagnosis. Odds
ratios, confidence intervals, and p-values are shown in Table 3. Alternatively, a forest
plot diagram can be seen in Figure 3a. Loss of taste and smell were the two symptoms
that exhibited the highest ORs. Specifically, subjects reporting a VAS score greater than
21 for loss of smell had an odds ratio 2.7 times higher of being positive for COVID-19
(OR = 2.7; CI 95%: 1.42–5.12; p = 0.002). This odds ratio increased up to 6 times for those
that reported a VAS score greater than 44 for loss of taste (OR = 6.02; CI 95%: 3.10–11.69;
p < 0.001). The x value obtained from this LR model (Equation 1) was converted into
probabilities through the exp(x)/(1 + exp(x)) transformation. In our analysis, we assumed
that a positive COVID-19 case is predicted when the probability is greater than 0.5. Figure
3b shows ROC curves for COVID-19 prediction when the BIC-derived LR model was
assessed with the 25% testing dataset. In the testing set, the prediction model had an area
under the curve (AUC) of 0.78 (0.72–0.83), a sensitivity of 0.72 (0.69–0.75), a specificity of
0.84 (0.82–0.87), a positive predictive value of 0.83 (0.80–0.85), and a negative predictive
value of 0.74 (0.71–0.77). When selecting a model with the lowest Akaike criterion in the
stepwise regression analysis, similar values of classification performance were obtained
(AUC = 0.78, SE = 0.76, SP = 0.80, PPV = 0.80, NPV = 0.76). However, the AIC model also
included nasal obstruction with an OR of 0.63, indicating that subjects that reported a more
severe nasal obstruction (with a VAS score higher than 52) were more likely to test negative
for COVID-19.

Table 3. Odds ratios (OR), 95% confidence intervals and p-values obtained for the step-wise multi-
variate logistic regression model under BIC criterion.

OR CI 95% p-Value

Loss of smell 2.42 1.30 4.50 0.0053
Loss of taste 6.21 3.21 12.04 <0.001
Dyspnea 2.21 1.34 3.64 0.002
Fever 1.84 1.18 2.87 0.007
Diarrhea 2.02 1.29 3.16 0.002
Sex 3.11 1.97 4.90 <0.001
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were dichotomized into two categories: being higher or lower than the corresponding VAS cutoff point. VAS cutoff points
for each symptom were previously calculated using ROC analysis and are listed in Table 2. Error bars denote 95% CIs; (b)
ROC curve for prediction of COVID-19 in the (25%) holdout testing dataset. AUC, SE, SP, PPV, and NPV mean values are
shown together with their 95% CIs. The confidence region of the ROC curve is depicted in blue.

3.5. ML Results: Comparison of Accuracy between Algorithms and Model Datasets

Table 4 lists mean AUC, SE, SP, PPV, and NPV values obtained for each dataset and
ML algorithm considered. Alternatively, Figure 4 shows boxplots for the distribution of
the 50-fold cross-validation estimates for AUC, SE, and SP values; for the various datasets
(Datasets 1–5) and ML algorithms (LR, RF, and SVM) considered. Dataset 2 (continuous
VAS scores for the intensity of symptoms) was the most predictive set of variables for
COVID-19, with mean AUC values near 0.78 for LR and 0.80 for RF and SVM algorithms,
respectively. Dataset 3 (dichotomized VAS) was the next most predictive dataset with
similar mean AUC values (0.77 for LR and 0.79 for RF and SVM). A predictor dataset that
reported only the presence or absence of the symptom (Dataset 1) obtained lower mean
AUC values between 0.76 and 0.78, which also showed to be the least specific, with mean
SP values of 0.72 for LR and SVM and of 0.75 for RF algorithms. Although Datasets 4 and
5, which included only four and two symptoms respectively, had lower mean AUC values
than the other datasets, especially for RF and SVM, they were still higher than 0.75. Finally,
permutation-based importance scores calculated for RF algorithm ranked loss of taste, loss
of smell, fever, and diarrhea as most relevant symptoms for COVID-19 diagnosis.
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Table 4. Mean AUC, SE, SP, PPV, and NPV values obtained over the 50-fold cross-validation estimates for different datasets
(Datasets D1–D5) and three different ML algorithms (LR, RF, and SVM).

AUC SE SP PPV NPV

Dataset 1 (11 predictors)

• Loss of smell, loss of taste, nasal obstruction, nasal discharge,
facial pain, cough, dyspnea, fever, diarrhea (Yes/No)

• Age and sex

LR 0.759 0.792 0.722 0.772 0.747

RF 0.777 0.798 0.752 0.792 0.758

SVM 0.771 0.811 0.724 0.777 0.764

Dataset 2 (11 predictors)

• Loss of smell, loss of taste, nasal obstruction, nasal discharge,
facial pain, cough, dyspnea (VAS 0–100)

• Fever, Diarrhea (Yes/No)
• Age and sex

LR 0.777 0.783 0.771 0.803 0.751

RF 0.798 0.818 0.775 0.812 0.782

SVM 0.799 0.818 0.778 0.814 0.783

Dataset 3 (11 predictors)

• Loss of smell, loss of taste, nasal obstruction, nasal discharge,
facial pain, cough, dyspnea (VAS > cutoff/VAS < cutoff)

• Fever, Diarrhea (Yes/No)
• Age and Sex

LR 0.773 0.787 0.757 0.794 0.751

RF 0.791 0.812 0.765 0.804 0.775

SVM 0.794 0.826 0.755 0.800 0.786

Dataset 4 (4 predictors)

• Loss of smell, loss of taste: VAS (0–100)
• Fever, Diarrhea (Yes/No)

LR 0.764 0.737 0.798 0.812 0.718

RF 0.755 0.768 0.741 0.779 0.731

SVM 0.759 0.784 0.730 0.776 0.742

Dataset 5 (2 predictors)

• Loss of Smell (VAS 0–100)
• Fever (Yes/No)

LR 0.768 0.812 0.715 0.772 0.762

RF 0.768 0.797 0.733 0.780 0.753

SVM 0.765 0.799 0.724 0.775 0.753
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(a) AUC, (b) SE, and (c) SP parameters for different predictor datasets (D1–D5, see description in Table 4) and ML algorithms
(LR, RF, and SVM). The red line represents the mean value (calculated over the 50-fold cross-validation estimates), and the
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4. Discussion

We have shown in our study the high accuracy of smell and taste disorders in predict-
ing the COVID-19 disease using different predictive analysis models. The main outcomes
from our study are (1) loss of smell and taste are highly prevalent symptoms and are
strongly associated with COVID-19 positivity. (2) VAS reporting the intensity of loss of
smell and taste were the most relevant predictors for COVID-19 diagnosis. (3) ML al-
gorithms can accurately predict COVID-19 diagnosis, thus constituting helpful tools to
identify subjects with a higher probability of being infected.

4.1. Prevalence of Smell and Taste Disorders in COVID-19 Subjects

Many authors have highlighted the high prevalence of loss of smell and taste in
COVID-19 patients. A meta-analysis demonstrated a prevalence of 52.73% (95% CI:
29.64–75.23%) and 43.93% (95% CI: 20.46–68.95%) for olfactory and gustatory dysfunction
among COVID-19 patients, reaching 86.60% in studies that used validated instruments [19].
Another meta-analysis, including 42 studies and 38,198 patients, showed an estimated
random prevalence of olfactory dysfunction of 43%, taste dysfunction of 44.6%, and overall
chemosensory dysfunction of 47.4%. Both the ethnic groups and the geographical regions
where the virus has spread have shown to play a fundamental role in the variability ob-
served for the prevalence of chemosensory disorders, reported to be 3–6 times higher in
Caucasians than in East Asians [11]. In our study, based on the south of Spain Caucasian
population, a prevalence of 61% for loss of smell in positive COVID-19 patients versus that
of 15% in controls was found. For loss of taste, a prevalence of 63% versus 19% was found,
thus showing highly significant differences between groups. These results corroborate
those found in other similar case-control studies, such as one that included 1480 patients
suffering from influenza-like symptoms, where loss of smell and taste were reported in
68% and 71% of COVID-19 positive subjects, respectively, compared to 16% and 17% of
COVID-19-negative patients, respectively (p < 0.001) [20]. Similarly, in a multicenter cross-
sectional study including 989 patients, smell and taste dysfunction were at least twice as
common in COVID-19 positive cases than in controls, with more than a half suffering from
a severe loss of smell or taste, and more than 90% suffering from both impairments [21]. We
observed a similar percentage of subjects (89%) that reported both loss of smell and taste,
30% of which reported the maximum VAS score of 100 for both disorders. A systematic
review and meta-analysis reported an overall prevalence of smell or taste dysfunction of
47%, with an estimate of 67% in mild-to-moderate symptomatic patients, similar to that
found in our study. This study also concluded that loss of smell and taste appeared earlier
than other symptoms in 20% of cases and concomitant in 28% [22]. Systematic reviews
have shown frequencies ranging between 22 and 86% for anosmia and 33 and 56% for
dysgeusia [23,24]. Although women have been reported to be more often affected by these
disorders, the high variability observed in studies has not allowed authors to identify a
clear relationship between the prevalence of these disorders and gender [11]. Our results
showed a prevalence of 65% and 55% for loss of smell in women and men, respectively,
increasing to 71% and 51%, respectively, for loss of taste.

4.2. Predictive Value of Smell and Taste Disorders in the COVID-19 Disease

Loss of smell and taste have been shown to be strongly associated with COVID-19. In
a study with 2,618,862 participants who reported their symptoms on a smartphone-based
app, those who reported loss of smell and taste had an odds ratio of 6.74 (95% CI: 6.31–7.21)
of being positive for COVID-19 [9]. Similarly, a systematic review including 2757 patients
showed those that reported loss of smell and taste had 6-times higher odds of being positive
for COVID-19, and those suffering from anosmia and ageusia had an odds ratio 10-times
higher [23]. In line with these results, we have shown in our study a crude odds ratio of
10.9 (95% CI: 7.5–15.8) and 12.7 (95% CI: 8.50–18.7) for loss of smell and taste, respectively,
of being positive for COVID-19 when compared with a negative control group.
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Despite their high or low prevalence in patients, common COVID-19 symptoms have
also been studied in order to assess their independent association with a positive diagnosis.
In a multivariate analysis of 302 cases and controls, smell or taste changes, fever, and body
ache were associated with COVID-19 positivity, whereas shortness of breath and sore throat
were associated with a negative test result (p < 0.05) [10]. In [9], the authors performed a
multivariate analysis concluding that loss of smell and taste, fatigue, persistent cough, and
loss of appetite was the combination of symptoms most strongly correlated with COVID-19.
Other symptoms also included fever, diarrhea, shortness of breath, delirium, abdominal
pain, chest pain, and hoarse voice. In our study, the symptoms most strongly associated
with COVID-19 positivity were loss of taste and smell, fever, diarrhea and dyspnea (see
Figure 3). On the other hand, age, nasal obstruction, nasal discharge, facial pain, and cough
were not independently associated with COVID-19. Although the prevalence of loss and
taste disorders was greater in women than in men in our study, being a woman was found
to be negatively associated with COVID-19 positivity (OR = 0.32; 95% CI: 0.20–0.51), in line
with previous studies where women were found to be less likely to test positive [9,25]. In
addition, based on AIC criterion, our LR model showed an OR of 0.63 for nasal obstruction
(OR: 0.63, 95% CI: 0.34–1.15), which agrees with previous systematic reviews that found
that pharyngodynia, nasal congestion, and rhinorrhea were less frequent symptoms in
COVID-19 patients [26]. Although underlying mechanisms require further elucidation,
the higher association of loss of smell compared with other common sinonasal symptoms,
such as rhinorrhea or nasal obstruction, may suggest a greater affectation of the olfactory
neuroepithelium due to COVID-19 [27–29]. The comparatively enhanced human airway
expression of ACE2 (the binding mechanism that mediates SARS-CoV-2 entry into cells) in
the olfactory neuroepithelium has been suggested as a possible cause of the neurological
symptoms observed in COVID-19 patients and a main point of access for the virus into
the central nervous system (CNS) [30]. The involvement of facial, glossopharyngeal,
and the vagus nerve in the oral mucosa, which is responsible for the transport of taste
signals into the solitary nucleus in the brainstem, has also been proposed to be the reason
behind taste dysfunction in up to 88% of the COVID-19 patients [8]. The high neurological
susceptibility to COVID-19 can be explained by the fact that the virus uses various potential
routes to access the brain, including the respiratory and gastrointestinal tracts [31]. In
addition, SARS-Cov-2 has been found in tears and conjunctival secretions [32], with ocular
manifestations also suggesting the eyes to be an entry for the virus through the trigeminal
nerve into the CNS [33]. However, other inflammatory mechanisms have been proposed
for the dysgeusia, both in the presence or absence of olfactory symptoms, as an early or
sole presentation of COVID-19 before the lungs or other organs are infected [34]. In our
study, 278 out of the 312 subjects who reported loss of smell also reported loss of taste, with
a correlation of 0.79 among positive COVID-19 patients.

4.3. Prediction Models for COVID-19 Diagnosis Based on Smell and Taste Disorders

Prediction models that combine several variables or features to estimate the risk of
being infected with COVID-19 have been proposed as useful tools to assist medical staff in
triaging patients, especially when allocating limited healthcare resources. In Table 5, we
summarize the main prediction models in the literature that have analyzed the predictive
value of loss of smell and taste [9,10,14,15,35], and we compare their results with those ob-
tained in our study. The studies reported in the literature are mainly based on stepwise LR
models and have reported accuracy values ranging from 0.63 to 0.82. Details on the sample
size, demographic characteristics, testing, and validation methods, as well as predictor
variables, are comparatively listed in Table 5. In our study, we have also developed an
LR model which included loss of smell, loss of taste, dyspnea, fever, diarrhea, and gender
as significant predictor variables for COVID-19, reaching a classification accuracy (AUC)
of 0.78, a sensitivity (SE) of 0.72, and a specificity (SP) of 0.84. We have furthered these
results by implementing a COVID-19 prediction workflow including other ML algorithms
such as RF and SVM to test the performance of different datasets as well as the importance
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of different predictor variables. Unlike previous works that reported prediction models
mainly based on LR algorithms and the presence or absence of symptoms [9,10,14], the ML
workflow designed in this study detected higher discrimination accuracy for continuous
VAS predictors quantifying the intensity of symptoms (See Table 4). This agrees with pre-
liminary results in [15], where VAS reached greater AUC values than categorical questions
when predicting COVID-19. As expected, different datasets including different predictor
variables and/or a reduced number of symptoms led to different accuracy values (see
Figure 4), with each model reaching a different trade-off between AUC, SE, SP, PPV, and
NPV values. An ML framework evaluating the accuracy of different datasets might help
to define better screening strategies in different outbreak scenarios and populations. For
instance, a parsimonious model that considered only the intensity of the loss of smell and
the presence of fever reached a mean accuracy of 0.77 and a greater sensitivity of 0.81 in
our study, and it still showed a high specificity of 0.72. More importantly, for all datasets
assessed, our ML analysis approach confirmed loss of smell and taste as the two main
predictors for COVID-19.

Table 5. Table summarizing the main characteristics of COVID-19 prediction models reported in the literature based on loss of smell
and taste.

Menni et al. [9] Roland et al.
[10]

Clemency et al.
[14]

Kowall et al.
[35]

Gerkin et al.
[15] Our Study

Sample (UK)6452+/9186−
(US)726+/2037− 145+/157− 225+/736− 296+/1641− 4148+/546− 421+/356−

Demographic
Data

(UK) Positive
group:
Mean Age:
41.25
71.88% female
Negative group:
Mean Age: 43.2
76.40 % female

Mean age: 39
Sex: 72% female N/A

Mean age: 53.5
years
Sex: 61.3%
females in the
negative group
and 57.8% in
the positive
group

Positive group:
Mean Age: 40.6
74% female
Negative group:
Mean Age: 43.2
78% female

Positive group:
Mean Age: 47.3
61% female
Negative group:
Mean Age: 45.2
78% female

Data collection
App-based
symptom
tracker

Public survey
posted on social
media

Nurse call
center for
healthcare
workers (HCW)

Self-
administered
questionnaire

Online survey
Self-
administered
questionnaire

Variable Types Categorical Categorical Categorical Categorical Categorical,
continuous VAS

Categorical,
Continuous
VAS

Classification
Methods

• Stepwise
(forward and
backward)
• Logistic
Regression
• Akaike
Information
Criterion (AIC)
Classifier
threshold at 0.5

• Stepwise
Logistic
Regression
• (p = 0.05 for
entry and 0.10
for removal
with maximum
iterations set at
20)
Classifier
threshold at 0.5

Logistic
regression with
maximum
positive
likelihood ratio
(PLR) criterion

Stepwise
backward
logistic
regression
(p = 0.10 for
entry and for
removal)

L1 regularized
logistic
regression
(penalty α = 1)

• Stepwise
(forward and
backward)
• Logistic
Regression
• Bayesian
Information
Criterion (BIC)
• Random
Forest (RF)
• Support
Vector Machine
(SVM)
Classifier
threshold at 0.5
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Table 5. Cont.

Menni et al. [9] Roland et al.
[10]

Clemency et al.
[14]

Kowall et al.
[35]

Gerkin et al.
[15] Our Study

Predictors

Age, sex, loss of
smell and taste,
severe or
significant
persistent
cough, severe
fatigue,
skipped meals

(1) Smell or
taste change,
fever, body
ache, shortness
of breath, sore
throat
(2) Smell or
taste change,
fever and/or
myalgia

(1) Fever,
shortness of
breath, dry
cough
(2) Fever, loss of
taste or smell
(3) Fever,
shortness of
breath, dry
cough, loss of
taste or smell

Age, sex, age,
return from
abroad, close
contact with a
confirmed case,
the presence of
fever, cough,
exhaustion,
taste or smell
disorder,
current
smoking,
general health
condition and
number of
comorbidities

(1) Loss of
smell, time
duration
(2) Model with
70 features

Five model
datasets (see
Table 4)
including
different
variables
among: age,
sex, loss of
smell, loss of
taste, nasal
obstruction,
nasal discharge,
facial pain,
cough, dyspnea,
fever and
diarrhea

Validation
method

• Holdout
80:20%
•
training/test
• 10-fold
cross-
validation in
the UK sample
• US
validation
sample

Holdout 75:25%
training/test N/A Holdout 60:40%

training-test

100-fold cross-
validation with
80:20%
training-test

• Holdout
75:25%
training-test
• 50-fold
cross-
validation with
• 75:25%
training-test

Accuracy
Parameters

AUC = 0.76
SE = 0.66
SP = 0.83
PPV = 0.58
NPV = 0.87

(1) AUC = 0.82
SE = 0.56
(2) AUC = 0.75
SE = 0.70
SP = 0.73

(1) AUC = 0.63
SE = 0.93
SP = 0.09
(2) AUC = 0.75
SE = 0.89
SP = 0.48
(3) AUC = 0.77
SE = 0.98
SP = 0.08

AUC = 0.821
AUC = 0.72
SE = 0.85
SP = 0.75

AUC = 0.80
SE = 0.82
SP = 0.78
PPV = 0.81
NPV = 0.78

4.4. Limitations

A recent systematic review concluded that most prediction models for COVID-19
are poorly reported, at high risk of bias, and probably report an over-optimistic perfor-
mance [36–38]. Therefore, there are many limitations when transferring the prediction
models into the clinical practice, which cast doubt on their true applicability, especially
for different outbreak scenarios and/or populations. In the context of a global pandemic
where millions of patients have been infected, our study includes a relatively low sample
size of 777 patients who were recruited while the COVID-19 outbreak spread rapidly.
This has probably led to a higher positive predictive value in our models. In this sense,
we have tried to improve the quality and applicability of the methods reported in this
study by designing a comprehensive ML cross-validation workflow, calculating the mean
value and the deviation of classification parameters (AUC, SE, SP, PPV, and NPV) over 50
cross-validated training and testing cohorts. Furthermore, we have implemented different
ML algorithms (LR, RF, and SVM) and evaluated the performance of different datasets
including categorical, continuous, and dichotomized VAS predictors.
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Prediction models are aimed at screening potential COVID-19 cases that should be
tested. Therefore, the misclassified cases from the proposed rules could potentially expose
others. In this study, we have reported the cut-off points in the ROC curve that reached
a trade-off between sensitivity and specificity by maximizing the Youden Index. An
alternative approach aimed at maximizing the sensitivity and reducing the number of
misclassified positive cases may be achieved by lowering the cut-offs here reported, albeit
at a cost of reducing the specificity and accuracy of the prediction rules proposed. A major
limitation of our study is that we have not included asymptomatic cases randomly selected
from the general population, which would probably have changed the performance and
predictive values of our models. The asymptomatic cases included were those considered
suspected cases according to the criteria given by the WHO. In addition, there is a high
disparity reported in the performance of COVID-19 RT-PCR diagnostic testing [39]. We
only considered the first test performed to classify a subject as a positive case or control,
which probably diminished the likelihood of being COVID-19 positive. It is recognized
that a single negative RT-PCR test may sometimes be insufficient to confirm negativity.

Lastly, we consider that the quantitative assessment of symptoms by means of VAS
allowed us to increase the discrimination accuracy of the prediction models performed, as
demonstrated with the ML workflow proposed in this study. In addition, we were also able
to find the cut-off point values that better predicted COVID-19 positivity, which allowed
us to obtain meaningful conclusions regarding the association between the intensity of
symptoms, such as loss of smell and taste, and COVID-19 diagnosis. However, we also rec-
ognize that VAS, although validated, cannot replace objective measures for the assessment
of taste or smell sensation.

5. Conclusions

Our study concludes that loss of smell and taste can accurately predict the COVID-
19 disease. This work reviews and furthers the use of prediction models and machine
learning algorithms for COVID-19 diagnosis, and the high predictive value of smell and
taste disorders in the disease. These models may constitute helpful tools to optimize the
screening of suspected cases in the context of new COVID-19 outbreaks. Through this
study, we have demonstrated that a robust machine learning workflow can be used to
accurately predict a COVID-19 diagnosis through a combination of symptoms and features,
from which loss of smell and taste were the most relevant.
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