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We present an analog version of the quantum approximate optimization algorithm suitable for current quan-
tum annealers. The central idea of this algorithm is to optimize the schedule function, which defines the adiabatic
evolution. It is achieved by choosing a suitable parametrization of the schedule function based on interpolation
methods for a fixed time. This algorithm provides an approximate result of optimization problems that may be
developed during the coherence time of current quantum annealers on their way towards quantum advantage.

I. INTRODUCTION

In nature, the dynamics of several relevant systems can be
derived from the solution of an optimization problem. Conse-
quently, the development of efficient optimization algorithms
has been a central field for computer science, and naturally,
this interest in optimization algorithms also arises in quantum
computing. One of the most important approaches for solving
optimization problems is by employing quantum annealers,
with remarkable advances by D-Wave company [1, 2]. In this
paradigm, a quantum system is adiabatically driven from an
initial Hamiltonian (at time t = 0), with a ground state that is
easy to prepare, to a final Hamiltonian (at time t = T ), whose
ground state codifies the solution of the optimization problem.
If the evolution time (T ) is sufficiently large, the adiabatic the-
orem ensures that after the evolution, the system will be in the
ground state of the instantaneous Hamiltonian [3, 4]. This
approach has been explored for a large variety of problems,
from quantum chemistry [5–7] to quantum finance [8] and
machine learning [9, 10]. Nevertheless, the adiabatic evolu-
tion demands a large execution time. This time is beyond the
coherence time for current quantum annealers, which turns the
process incoherent; thus, the possibility of reaching quantum
advantage is unclear.

On the other hand, hybrid quantum-classical algorithms
have received significant attention during the past few years
due to the possibility of being implemented in current noisy
intermediate-scale quantum (NISQ) devices. These algo-
rithms are focused on the minimization of a cost function. The
cost function is codified in the expectation value of quantum
observables, including the Hamiltonian, which is computed
by a quantum processor using parametrized quantum states
prepared via parametrized quantum gates. Finally, the min-
imization is obtained by using a classical optimization algo-
rithm over the parameters of the quantum gates. Some exam-
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ples of these classes of algorithms are the variational quan-
tum algorithms [11–13], the digital quantum approximate op-
timization algorithm (QAOA) [14, 15], the adaptive random
quantum eigensolver [16], and the digitized counterdiabatic
QAOA [17] among others. This hybrid approach has been
fruitful in different areas, from machine learning to quantum
chemistry problems [18–23]. Recently, several works have
developed faster versions of the hybrid algorithms or their im-
plementation in another paradigm beyond gate-based comput-
ing, such as variational algorithms in measured-based quan-
tum computing, and also some fully-quantum algorithms for
optimization problems [24–26].

This work proposes an analog version of QAOA by the suit-
able parametrization of a stepwise schedule function followed
by a classical optimization. This algorithm may be suitable for
current quantum annealers, finding optimal protocols for co-
herent evolution of the annealer quantum processor, exploiting
all the potential of such devices.

II. ANALOG QAOA

First of all, an adiabatic algorithm is a time evolution given
by the following time-dependent Hamiltonian

H(t) = [1 − λ(t/T )]Hi + λ(t/T )H f , (1)

where Hi is the initial Hamiltonian with a ground state that is
easy to prepare, H f is the problem Hamiltonian with ground
state containing the solution of the optimization problem, T is
the total evolution time and λ(x) is the schedule function with
λ(0) = 0 and λ(1) = 1. The time evolution is given by

U(t) = e−i
∫ t

0 {[1−λ(τ/T )]Hi+λ(τ/T )H f }dτ , (2)

and if we digitize the time, we obtain

U(t) ≈ e−i
∑N

k=0{[1−λ(k∆t)]Hi+λ(k∆t)H f }∆t , (3)
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where ∆t = T/N. Now, by the use of first order Trotter expan-
sion

U(t)≈
N∏

k=1

e−i{[1−λ(k∆t/T )]∆tHi+λ(k∆t/T )H f }∆t

≈

N∏
k=1

(
e−i[1−λ(k∆t/T )]∆tHi e−iλ(k∆t/T )∆tH f

)
. (4)

In quantum annealers, Hi is called the mixer Hamiltonian and
has the form Hi =

∑
j ω jσ

x
j , while H f is diagonal in the com-

putational basis in general.
On the other hand, the digital QAOA algorithm is given by

the unitary evolution parametrized by 2N real numbers

U(~α, ~β) =

N∏
k=1

(
e−iαk Hi e−iβk H f

)
. (5)

Here, ~α = {α1, . . . , αN}, and ~β = {β1, . . . , βN} are the parame-
ters to optimize with the cost function given by

〈φ|U(~α, ~β)†H fU(~α, ~β)|φ〉, (6)

where |φ〉 is the ground state of Hi. From Eqs. (4) and (5),
we can see that the digital version of QAOA is basically an
optimization of the schedule function λ(x) in its digital form.

Now, for the analog QAOA (AQAOA) we propose the time
evolution given by a time-dependent Hamiltonian in Eq. (1),
but using now an schedule function defined in stepwise man-
ner (see Fig. 1)

λ~p(x) = fk(x); k
∆t
T

=
k
N
≤ x ≤ (k + 1)

∆t
T

=
k + 1

N
; (7)

fk(x) = ax3 + bx2 + cx + d; fk(k/N) = pk,

fk(k + 1/N) = pk+1 ; (8)

and ~p = {0, p1, . . . , pN−1, 1}. It means that λ~p(x) is given by a
cubic interpolation function of the points (k/N, pk), with k =

{0, . . . ,N} and P0 = 0 and PN = 1. Therefore, now we have
the following unitary evolution

U~p(t) = e−i
∫ t

0 {[1−λ~p(τ/T )]Hi+λ~p(τ/T )H f }dτ, (9)

and the cost function

E(~p) = 〈Gi|U
†

~pH f U~p|Gi〉 . (10)

Here, U~p ≡ U~p(t), and |Gi〉 is the ground state of the initial
Hamiltonian Hi. We need to mention that Hi and H f can be
the Hamiltonians that quantum annealers can implement cur-
rently, where our requirement is only the manipulation of the
schedule function in the form of a cubic interpolation func-
tion. We note that the total evolution time T plays the role of
the circuit depth. In this case, it is independent of the number
of parameters to optimize, which is a fundamental difference
with the digital QAOA. We also require that this evolution is
coherent, such that T needs to be smaller than the coherence
time of the quantum annealer.

FIG. 1. Parametrized schedule function λ~p(x). The parameters p j

define the points ( j/N, p j), which are interpolated using a piecewise
monotonic cubic interpolation.

In the next section, we will test our AQAOA numeri-
cally for a cubic interpolation for different problem Hamil-
tonians H f . We need to mention that we do not consider
0 < p j < 1. As in the digital version of QAOA, the pa-
rameters are completely free and only bound by the experi-
mental setup limitations. Then, this class of interpolation al-
lows that λ~p(x) > 1 or λ~p(x) < 0. This is not a problem
because our method is inspired in the adiabatic evolution but
does not follow, in general, an adiabatic path. We highlight
that our AQAOA only focuses on minimizing the cost func-
tion and does not care about the distance to the adiabatic evo-
lution path. Finally, we request that the interpolation is soft,
which means continuity in the first derivative, and also mono-
tonic, which means that the second derivative will not change
of sign between two contiguous points.

III. NUMERICAL RESULTS

The performance of our algorithm is calculated using the
relative error of the energy obtained by our AQAOA, it means

εR =

∣∣∣∣∣∣∣∣
〈Gi|U

†

~pH f U~p|Gi〉 − 〈G f |H f |G f 〉

〈G f |H f |G f 〉

∣∣∣∣∣∣∣∣ , (11)

where |G f 〉 is the ground state of the final Hamiltonian H f .
Also, we can consider the fidelity

F = |〈G f |U~p|Gi〉|
2. (12)

Nevertheless, the last could fail as a good performance mea-
sure for degenerate ground states because our algorithm only
focuses on minimizing the energy and does not care about a
specific ground state.

For all our examples, we will use the following initial
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FIG. 2. Performance of the AQAOA for the one-qubit case given
by Hamiltonian of Eq. (14). The horizontal axis is the total time
T considered for the algorithm in units of ω−1. We calculate the
relative error (a) and the fidelity (b), considering one (blue stars),
two (orange stars), four (green stars), and eight (red stars) parameters
for the algorithm. The black triangles show the performance using
a linear schedule function. Figure (c) shows the schedule function
for one (blue line), two (orange line), four (green line) and eight (red
line) free parameters (dots) for T = 3.

Hamiltonian

Hi =
ωi

2

n∑
j=1

σ
( j)
x , (13)

where σ( j)
x , is the x-Pauli matrix of the jth qubit, ωi is the ini-

tial frequency gap for all the qubits, and n is the total number
of qubits.

A. One-qubit case

For our first example, we consider the following final
Hamiltonian for one qubit

H f =
ω f

2
σ(1)

z . (14)

For simplicity, we consider the same frequency for the initial
and final Hamiltonian (ωi = ω f ). The performance of our
algorithm is collected in Fig. 2a for the relative error εR, and
Fig. 2b for the fidelity. Each point (star) represents the perfor-
mance of the algorithm for different total algorithmic time T
and a different number of parameters in the minimization pro-
cess, namely, one parameter (blue stars), two parameters (or-

ange stars), four parameters (green stars), and eight parame-
ters (red stars). Moreover, we compare the performance of our
algorithm with the performance of adiabatic quantum comput-
ing using the most common schedule function, i.e., the linear
schedule function λ(t) = t/T (black triangles). From these
two figures, we can see that a time of T = 4 [ω−1

i ] is enough
for our algorithm to find the solution of the problem with only
two parameters, while the linear function needs approximately
double time. On the other hand, the algorithm performance
using one parameter for the optimization process follows the
same performance as the linear schedule function. If we con-
sider a superconducting flux qubit ωi ∼ 2 [GHz], then for a
time T ∼ 2 [ns], our algorithm produces the correct solution
using two parameters for a single qubit Hamiltonian. Finally,
Fig. 2c shows optimal schedule functions for one (blue), two
(orange), four (green), and eight (red) free parameters. We
point out that the end points (0.0) and (1,1) are fixed. The
oscillations in the schedule functions mean that we are not
following an adiabatic evolution, which is also observed by
the fact that we have zones where λ~p(x) > 1 and λ~p(x) < 0. It
implies that the adiabatic theorem does not constrain the time
for our final result.

B. Hydrogen Molecule

Our next example is a non-stoquastic Hamiltonian describ-
ing a hydrogen molecule [27] with a bond length of 0.2 [Å]

H f = g0I+g1σ
(1)
z +g2σ

(2)
z +g3σ

(1)
z σ(2)

z +g4σ
(1)
y σ(2)

y +g5σ
(1)
x σ(2)

x ,
(15)

with g0 = 2.8489, g1 = 0.5678, g2 = −1.4508, g3 = 0.6799,
and g4 = g5 = 0.0791. The performance of our algorithm
is shown in Fig. 3a for the relative error εR and Fig. 3b for
the fidelity. In this case, we consider the same number of pa-
rameters that in the previous case, and again we compare the
performance of the algorithm with the performance using the
linear schedule function, black triangles in the figure. From
these two figures, we can see that for a time of T = 8 [ω−1

i ] the
AQAOA algorithm can find the solution of the problem with
only two parameters with a fidelity larger than 0.99. In this
case, the performance of the algorithm using only one param-
eter for the optimization process improves the performance of
the linear schedule function, obtaining fidelities over 0.95 for
a time T = 10 [ω−1

i ]. If we consider a quantum annealer based
on flux qubits, our algorithm gets the correct solution using
two parameters for T ∼ 4 [ns]. Finally, Fig. 3c shows optimal
schedule functions for a different number of parameters.

C. Ising and Heisenberg Hamiltonians

Finally, we consider the scaling in the total algorithmic time
T for two kinds of nearest-neighbor Hamiltonians. First, we
consider the stoquastic Hamiltonian of an Ising chain given by

H f =
1
2
ω f

N∑
k=1

σ(k)
z − J

N−1∑
k=1

σ(k)
z σ(k−1)

z , (16)
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FIG. 3. Performance of the AQAOA for the Hydrogen-molecule case
given by the Hamiltonian of Eq. (15). The horizontal axis is the total
time T considered for the algorithm in units of ω−1. We calculate
the relative error (a) and the fidelity (b), considering one (blue stars),
two (orange stars), four (green stars), and eight (red stars) parameters
for the algorithm. The black triangles show the performance using
a linear schedule function. Figure (c) shows the schedule function
for one (blue line), two (orange line), four (green line) and eight (red
line) free parameters (dots) for T = 5.

FIG. 4. Performance of the AQAOA for an Ising chain (blue) and
homogeneous Heisenberg chain (orange) with different number of
sites. (a) Total running time T necessary for fidelity over 0.99 using
the same number of parameters as sites in the chain. (b) The relative
error εR for the same cases than in (a).

and second the non-stoquastic Hamiltonian of a homogeneous
Heisenberg chain which reads

H f =
1
2
ω f

N∑
k=1

σ(k)
z

−J
N−1∑
k=1

(
σ(k)

x σ
(k−1)
x + σ(k)

y σ(k−1)
y + σ(k)

z σ(k−1)
z

)
. (17)

For simplicity we consider in both cases ωi = ω f = 2J. We
use N parameters for the optimization process for the chain
of N sites. This means that if we consider a chain of N = 5
sites for the Ising or Heisenberg Hamiltonians, we use 5 pa-
rameters in the parametrization of the schedule function. Fur-
thermore, we are interested in the time T needed to get a so-
lution with fidelity over 0.99. These results are collected in
Fig. 4a, which shows T for an Ising chain (blue dots) and ho-
mogeneous Heisenberg chain (orange dots) as a function of
the number of sites N . Moreover, Fig. 4b shows the corre-
sponding relative error εR for the same cases than in Fig. 4a.
We note that for the homogeneous Heisenberg chain, the time
T decreases with the number of the qubits in the system. This
suggests that with a time T = 3 [ω−1

i ] the algorithm can obtain
results with fidelities larger than 0.99 with N parameters for a
chain of N sites. On the other hand, the time T for the Ising
chain increases with the number of sites and reaches a maxi-
mum value in N = 8 sites with a time T ∼ 10 [ω−1

i ]. Finally,
in a superconducting circuit platform, an advanced architec-
tures for quantum computing, the frequency ωi is in the order
of a few GHz. It implies that for most superconducting circuit
setups ωi > 1 [GHz] ⇒ ω−1

i < 1 [ns], while considering
typical coherent times in the scale of microseconds, it means
larger than 103ω−1

i . Therefore, our AQAOA algorithm gives
an interesting approach to achieve fast and high-fidelity ap-
proximations for optimization problems suitable for quantum
annealers in a coherent manner.

IV. CONCLUSIONS

In this work, we introduced an analog version of the quan-
tum approximate optimization algorithm suitable for current
quantum annealers. Our algorithm is based on a general
parametrization of the schedule function, which produces any
function if we consider enough parameters. By optimizing
this parametrization in the same way than in the standard
QAOA algorithm, we can coherently produce fast and large-
fidelity solutions. We test our algorithm numerically for dif-
ferent cases. First, for a single qubit Hamiltonian; second, for
the ground state energy of the Hydrogen molecule; and, third,
for an Ising and homogeneous Heisenberg chain with different
number of sites. The latter ranges from 2 to 10, obtaining in
all studied cases high fidelities with a relatively low number
of parameters, amounting to the same number of parameters
than the qubits in the Hamiltonian.

Furthermore, a possible experimental implementation of
our AQAOA depends on two features: first, a quantum an-
nealer capable of producing the desired final or problem
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Hamiltonian H f , and, second, a quantum annealer with a
schedule function that can be manipulated. The experimental
limitations on the final Hamiltonian will determine the classes
of problems that we can solve, and depending on the experi-
mental manipulability of the schedule function, our optimiza-
tion process will require more or fewer constraints.

Finally, this work paves the way for efficient implemen-
tations of optimization algorithms in analog devices such as

current quantum annealers, exploiting the inherent quantum
nature of the device.
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