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Abstract

Electromicrofluidic (EMF) devices are used to handle and move tiny amounts of liquids by electrical
actuation, including electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP). Monitoring
the liquid characteristics in one of these devices requires suitable sensing transducers incorporated
within the microfluidic structure. In the present work, we describe the incorporation of an optofluidic
photonic transducer in an EMF device to monitor the refractive index of aliquid during its
manipulation. The incorporated transducer consists of a responsive porous Bragg Microcavity (BM)
deposited via physical vapor oblique angle deposition. Besides reporting the manufacturing procedure
of the sensing-EMF device combining liquid handling and monitoring, the performance of the BM is
verified by infiltrating several liquids dripped on its surface and comparing the responses with those of
liquid droplets electrically moved from the delivery part of the chip to the BM location. This study
proved that modified EMF devices can incorporate photonic structures to analyze very low liquid
volumes (~0.2 L) during its handling.

1. Introduction

Measuring the Refractive Index (RI) of a liquid sample is one of the most common biological /chemical analysis
methods using optofluidic sensors. Although this method only reveals differences in liquids with different RI,
the availability of procedures relying on a microfluidic approach (i.e., handling minute amounts of liquid) may
be of interest for certain niche applications (e.g., to monitor solute concentration in solutions or mixture of
liquids) where the scarcity of samples is a bottleneck for a conventional RI detection [1]. Optofluidic RI sensors
based on plasmonics [2—6], photonic crystals [7-11] or photonic crystals fibers [12] are primarily composed of
periodic metallic or dielectric structures that can be used to confine and guide light. However, even if these
sensing techniques enable detection of liquids with extremely small volumes, in practice, the rudimentary
character of the currently available liquid delivery systems makes that still relatively large liquid volumes are
required for detection. Not to mention the difficulty of selectively and precisely positioning various analytes at
the detection spot where the light—matter interaction is the strongest [ 13].

Microfluidic devices offer a wide variety of methods for handling small amounts ofliquids in a controlled
way. The so-called electromicrofluidic (EMF) method, operating by changing the interfacial properties of the
driven liquids using electric forces, e.g., electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP), is
one of the most popular and successful procedures to generate and move droplets on an array of electrostatically
actuated electrodes [14—19]. EMF offers precise and programmable liquid positioning and is more reliable than
other microfluidics procedures. It consumes very little power and is easily scalable [20]. Moreover, an EMF
platform is ideal for accommodating and incorporating complex sensing modules. In recent years, EMF systems
have been used for biosensing applications that provide high throughputs of the parallel processing of multiple
samples on a single chip. Several works have already demonstrated the potential use of EMF devices for liquid
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handling [21-29] and sensing [30]. In particular, EMF devices integrating optical refractive index procedures,
such as surface plasmon resonance [31, 32] and microrings [33—-35], have been applied with promising results.
However, these systems usually involve time-consuming and expensive fabrication methods, which call for
more practical alternatives. In the present work we prove the feasibility of a new and simple approach to
incorporate a RI detecting sensor to a EMF device. The easiness of the preparation method, its solventloss
character and its compatibility with any kind of substrate, including polymers, make this approach very
interesting to incorporate of a miniaturized optofluidic sensor onto a selected part of the EMF chip. Moreover,
the reported experiments prove that the selective deposition of the sensor BM does not affect the electrical
response of the EMF chip.

The procedure relies on a recently reported results about the manufacturing by physical vapor oblique angle
deposition (PV-OAD) [36-38] of porous multilayers in the form of Bragg Microcavities (BMs). This system
consists of the successive stacking of porous layers of two transparent materials with different refractive indices
and was successfully tested for the detection of glucose solutions. Due to light interference processes, the optical
spectra of these multilayers present a resonant peak in the middle of a band gap that can be used for monitoring
the refractive index of liquids or solutions filling the pores. An outstanding characteristic of these porous BMs as
optofluidic sensor device is their capacity to monitor very low analyte volumes (~1 nL) [36—38]. The present
work constitutes an attempt to combine in a single chip system with an EMF device for handling small droplets
of liquids and with a porous BM chip, thus providing the double capacity of moving liquids at the microscale and
proceeding to their Rl analysis. For this purpose, we firstly describe the fabrication of a porous BM onto an EMF
chip. Secondly, we prove that the thus modified EFM chip retained its capacity of moving liquids between their
driving electrodes. Finally, to test the performance of this system, we compare the optofluidic response of the
BM incorporated in the EMF device electrically actuated with EWOD or DEP forces to move the liquid droplet
till the measurement point with the measurements of liquids manually dripped onto the BM surface. The
equivalent results obtained in the two cases prove the feasibility of the approach to integrate in a single chip the
capacity to move liquid droplet and to proceed to their analysis in an electrically operated way.

2. Experimental methods

2.1. Electromicrofluidic device preparation

Figure 1(a) shows that the EMF device consists of two parallel plates with an unpatterned ground electrode on
the top plate, the patterned driving electrode on the bottom plate and a spacer of 50 pm between them. We used a
top glass plate (thickness 0.7 mm) coated with transparent indium tin oxide [39] (ITO, thickness 200 nm) to
enable optical analyses and direct observation during the experiments. To facilitate liquid handling, the top ITO
glass was spin-coated with a hydrophobic layer (Teflon” AF 1600, DuPont, thickness 120 nm). The bottom black
BT (Bismaleimide Triazine) resin plate with Cu driving electrodes patterns was covered with a dielectric layer. It
was manufactured by Chip Win Technology Co., Ltd, Taiwan. A Teflon layer (thickness 120 nm) was also coated
on the bottom plate to make the surface hydrophobic. Before assembly of the two plates, the liquids were
manually pipetted on the bottom plate; the top plate was then carefully placed and adhered onto appropriate
spacers (thickness 50 m) attached to the bottom plate. The multiple driving electrodes on the bottom plate
were individually activated through single pole double throw (SPDT) relays (LU-5, Rayex Electronics). The
electric potential of the electrodes was switched between the electric ground and high potentials. AC electric
signals with a frequency of 1 kHz were generated by a function generator (33210 A, Agilent Technologies) and
amplified through an amplifier (A-304, A. A. Lab Systems). The relays were switched by the digital output signals
of a data-acquisition device (USB-6509, National Instruments) programmed with LabVIEW software.

2.2. Fabrication of porous Bragg Microcavities

To incorporate the porous BM onto the EMF chip we proceeded to its deposition by PV-OAD on the desired
driving electrode (from now on the BM-electrode) of the chip by covering the rest with an aluminum shadow
mask. Simultaneously, deposition by electron beam evaporation was also performed on ITO substrates and on
silicon wafers. As reported in previous works alternating layers were stack deposited by evaporation at a zenithal
angle of deposition (o) of 70° [36, 37]. The BM stack consisted of 15 alternating layers of TiO, and SiO», starting
and ending with TiO,, each of them with a thickness of about 85 nm except for the central layer that, acting as
optical defect, had a thickness of ca. 200 nm.

2.3. Optical monitoring of the BM-electrode

Reflectance-visible spectra of the different parts of the device including the BM-electrode were taken using a
home-made optical setup consisting of an extensive source oflight (range 350—900 nm, Halogen Reflector Lamp
Decostar Osram”) collimated to a spot of around 1 mm? and a camera connected to a computer with a detector
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Figure 1. (a) Cross section scheme of the EMF device incorporating electrode and hydrophobic Teflon layers to facilitate the
manipulation of liquids and light beam interrogation through the BM deposited onto one electrode. Note that the different parts of
the chip are not plotted in the same scale. (b) Cross sectional SEM micrographs of the porous BM. A scheme of the stack indicating the
composition of each layer, TiO, (green) or SiO, (orange) is overprinted onto the micrograph. (c) EMF device after depositinga BM
onto a selected driving electrode (the BM-electrode). The green and blue squares are zoom views of this zone covered with the
deposited BM taken without and with external illumination, respectively. (d) Visible reflectance spectra of selected zones of the chip:
the BM-electrode zone, a driving electrode and the black background. The spectrum of a BM deposited onto a transparent ITO

substrate is included as a reference.

placed in the center of the camera. The impinging and reflected beam directions were 20° apart (incidence 10°
off normal). Spectra were recorded before and after infiltrating the BM with liquids either dripped manually
with a pipette or moved to the BM-electrode by EWOD or DEP actuation. The room temperature during the
experiments was 20 °C.

Assilicon wafer covered with the BM was diced to take Scanning Electron Microscopy (SEM) cross section
micrographs in a Hitachi S4800 field emission microscope working at 2 keV primary beam energy. Both
detecting modes, Secondary Electron (SE) and Back Scattered Electron (BSE) were used to highlight either
topographic or compositional information, respectively.

3. Results and discussion

3.1. Characterization of the BM deposited onto EMF device

Figure 1(b) shows SEM micrographs of the BM deposited onto a silicon wafer, together with an overprinted
scheme of the layers stack. The BSE micrograph reveals the composition of each layer of the stack with the TiO,
corresponding to the brighter layers and the SiO; to the darker ones. Meanwhile, the SEM micrograph shows the
typical slanted nanocolumnar microstructure of the PVD-OAD films and highlights the high porosity of these
layers that in previous works we have estimated around 50%. Figure 1(c) presents the EMF device with the BM
deposited on a pre-selected driving electrode (the BM-electrode) that remained uncovered by the mask during
deposition. This part presented an orange color that was taken as hint of the successful deposition of the BM,
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Figure 2. (a) Visible reflectance spectra recorded around the resonant peak for air and several liquids infiltrated in the BM-chips that
were delivered by hand dripping. (b) Plot of the shift of the resonant peak as a function of the refractive index of the infiltrated liquid.
To help the eye a line connects the points.

providing a straightforward way to localize it onto the device. An optical characterization of the different parts of
the EMF device in the form of reflectance spectra is shown in figure 1(d), together with an equivalent spectrum of
areference BM sample deposited onto an ITO substrate which is included for comparison. This reference
spectrum depicts the typical wide reflectance gap and resonance peak of this type of 1D photonic structure (blue
line in Figure 1(d)). As reported in previous works [36—38], this resonant peak at around 460 nm can be used to
monitor changes in the BM when it is liquid-infiltrated. The reflectance spectrum recorded for the BM deposited
onto the EMF chip depicts a similar spectrum where the resonant peak was less well defined and appeared
slightly shifted to shorter wavelengths (red line in Figure 1(d)). We attributed this slight loss of optical quality for
the BM deposited onto the EMF device to the roughness of the driving electrode. Optical spectra of the black
background and of a driving electrode of the EMF, also reported in Figure 1, were recorded to identify their
possible contributions to the BM spectrum in case of misalignment of the incident beam. The high reflectivity of
the BM-electrode zone in comparison with the black background and a driving electrode of the DMF device
could be appreciated with the bare eyes in the dashed blue square of Figure 1(c) and was characterized by the
spectrum presented in Figure 1(d).

3.2. Optofluidic response of the BM-EMF chip.

Figure 2 presents the optofluidic characterization of the BM-electrode when delivering the liquids directly onto
the BM with a pipette. Dripping liquids onto this zone should fill the pores of the BM and, according to previous
analysis, would induce changes in the optical response of the BM transducer [36—38], Effectively, Figure 2(a)
shows that the infiltration with different liquids led to a shift of the optical spectra to larger wavelengths (i.e., a
redshift), that in the case of mineral oil reached up to 21 nm. The representation of the magnitude of these shifts
as a function of the refractive index of the infiltrating liquid in Figure 2(b) shows a clear dependence that can be
used to differentiate a specific liquid from others with different refractive index. The plot shows that below a RI
of 1.38 the accuracy of the sensor decreases preventing to discriminate liquids below this point.

3.3. Liquid movement in the EMF-device

Isopropanol (mainly driven by EWOD) and silicone oil (mainly driven by DEP) were used to determine the
working parameters of the EMF device to move liquid droplets from one driving electrode to the other on the
chip. Droplets of these liquids were moved by electrical actuation and the displacement from one electrode to
another took around 0.2 s. A square wave signal of voltage 360 V., and a frequency of 1 kHz were supplied to
move the liquid droplets, as well as to split the liquid into small droplets of volume 0.2 pl. A succession of
pictures showing the formation of specific silicone oil patches in the EMF-device is presented in Figure 3.

3.4. Optofluidic response of the BM-electrode infiltrated with silicone oil by dielectrophoretic forces

Main objective of this work was to investigate the ability of liquid droplet manipulation on an EMF device
incorporated with aliquid transducer. To that end, a big silicone oil droplet was split into smaller droplets and
one of them was delivered to the BM-electrode by means of the DEP forces by electrical actuation on the device.
Figure 4 is the optofluidic response of the BM-electrode showing that the resonant peak of the BM experienced
the same redshift (i.e., 15 nm) as that found when dripping the silicone oil by a pipette (cf Figure 2). This
evidence proved the successful integration of an optofluidic BM transducer onto the EMF device and the
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Figure 3. Series of pictures of the EMF device showing the splitting of silicone oil in a smaller droplet in a driving electrode by DEP
forces. For clarity reasons the silicone oil is colored in blue. The time frame is included at the bottom left of each panel.
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Figure 4. Visible reflectance spectra recorded around the resonant peak for the BM-electrode with air and when it was infiltrated with
silicone oil by means of DEP forces.

successful driving of liquid droplets by DEP actuation. These results showed that the porous BM has worked
acceptably well in combination with the EMF optofluidic device and we attributed the lesser shift observed in
comparison with the reference BM to some microstructural changes induced by the growth of the porous thin
films on the Teflon coating covering the ITO layer of the EMF device.

4. Conclusions

In this work, an optofluidic device combining a porous thin film photonic structure on an EWOD/DEP-based
EMEF device is presented for the first time. For this aim, porous BMs have been successfully deposited onto one
driving electrode of an EMF device. The thin film deposition process did not affect the electromicrofluidic
features of the EMF device, an outstanding result that proves that optofluidic transducers and EMF systems can
be integrated in a unique device. The optofluidic transducer preserved its performance when incorporated onto
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the EMF device, as proved by manually delivering the liquid onto the sensing region and by electrical driving the
liquid analyte droplet to the zone containing the BM. An additional advantage of integrating the BM into an
EME device is the lower volume needed for analysis in comparison with the amount required when using other
rudimentary sample delivery systems.
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