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Abstract
Electromicrofluidic (EMF) devices are used to handle andmove tiny amounts of liquids by electrical
actuation, including electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP).Monitoring
the liquid characteristics in one of these devices requires suitable sensing transducers incorporated
within themicrofluidic structure. In the present work, we describe the incorporation of an optofluidic
photonic transducer in an EMFdevice tomonitor the refractive index of a liquid during its
manipulation. The incorporated transducer consists of a responsive porous BraggMicrocavity (BM)
deposited via physical vapor oblique angle deposition. Besides reporting themanufacturing procedure
of the sensing-EMFdevice combining liquid handling andmonitoring, the performance of the BM is
verified by infiltrating several liquids dripped on its surface and comparing the responses with those of
liquid droplets electricallymoved from the delivery part of the chip to the BM location. This study
proved thatmodified EMFdevices can incorporate photonic structures to analyze very low liquid
volumes (∼0.2 μL) during its handling.

1. Introduction

Measuring the Refractive Index (RI) of a liquid sample is one of themost commonbiological/chemical analysis
methods using optofluidic sensors. Although thismethod only reveals differences in liquids with different RI,
the availability of procedures relying on amicrofluidic approach (i.e., handlingminute amounts of liquid)may
be of interest for certain niche applications (e.g., tomonitor solute concentration in solutions ormixture of
liquids)where the scarcity of samples is a bottleneck for a conventional RI detection [1]. Optofluidic RI sensors
based on plasmonics [2–6], photonic crystals [7–11] or photonic crystals fibers [12] are primarily composed of
periodicmetallic or dielectric structures that can be used to confine and guide light. However, even if these
sensing techniques enable detection of liquids with extremely small volumes, in practice, the rudimentary
character of the currently available liquid delivery systemsmakes that still relatively large liquid volumes are
required for detection.Not tomention the difficulty of selectively and precisely positioning various analytes at
the detection spotwhere the light–matter interaction is the strongest [13].

Microfluidic devices offer awide variety ofmethods for handling small amounts of liquids in a controlled
way. The so-called electromicrofluidic (EMF)method, operating by changing the interfacial properties of the
driven liquids using electric forces, e.g., electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP), is
one of themost popular and successful procedures to generate andmove droplets on an array of electrostatically
actuated electrodes [14–19]. EMF offers precise and programmable liquid positioning and ismore reliable than
othermicrofluidics procedures. It consumes very little power and is easily scalable [20].Moreover, an EMF
platform is ideal for accommodating and incorporating complex sensingmodules. In recent years, EMF systems
have been used for biosensing applications that provide high throughputs of the parallel processing ofmultiple
samples on a single chip. Several works have already demonstrated the potential use of EMFdevices for liquid
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handling [21–29] and sensing [30]. In particular, EMFdevices integrating optical refractive index procedures,
such as surface plasmon resonance [31, 32] andmicrorings [33–35], have been appliedwith promising results.
However, these systems usually involve time-consuming and expensive fabricationmethods, which call for
more practical alternatives. In the present workwe prove the feasibility of a new and simple approach to
incorporate a RI detecting sensor to a EMFdevice. The easiness of the preparationmethod, its solventloss
character and its compatibility with any kind of substrate, including polymers,make this approach very
interesting to incorporate of aminiaturized optofluidic sensor onto a selected part of the EMF chip.Moreover,
the reported experiments prove that the selective deposition of the sensor BMdoes not affect the electrical
response of the EMF chip.

The procedure relies on a recently reported results about themanufacturing by physical vapor oblique angle
deposition (PV-OAD) [36–38] of porousmultilayers in the formof BraggMicrocavities (BMs). This system
consists of the successive stacking of porous layers of two transparentmaterials with different refractive indices
andwas successfully tested for the detection of glucose solutions. Due to light interference processes, the optical
spectra of thesemultilayers present a resonant peak in themiddle of a band gap that can be used formonitoring
the refractive index of liquids or solutionsfilling the pores. An outstanding characteristic of these porous BMs as
optofluidic sensor device is their capacity tomonitor very low analyte volumes (~1 nL) [36–38]. The present
work constitutes an attempt to combine in a single chip systemwith an EMFdevice for handling small droplets
of liquids andwith a porous BMchip, thus providing the double capacity ofmoving liquids at themicroscale and
proceeding to their RI analysis. For this purpose, wefirstly describe the fabrication of a porous BMonto an EMF
chip. Secondly, we prove that the thusmodified EFMchip retained its capacity ofmoving liquids between their
driving electrodes. Finally, to test the performance of this system, we compare the optofluidic response of the
BM incorporated in the EMFdevice electrically actuatedwith EWODorDEP forces tomove the liquid droplet
till themeasurement point with themeasurements of liquidsmanually dripped onto the BM surface. The
equivalent results obtained in the two cases prove the feasibility of the approach to integrate in a single chip the
capacity tomove liquid droplet and to proceed to their analysis in an electrically operatedway.

2. Experimentalmethods

2.1. Electromicrofluidic device preparation
Figure 1(a) shows that the EMFdevice consists of two parallel plates with an unpatterned ground electrode on
the top plate, the patterned driving electrode on the bottomplate and a spacer of 50 μmbetween them.Weused a
top glass plate (thickness 0.7 mm) coatedwith transparent indium tin oxide [39] (ITO, thickness 200 nm) to
enable optical analyses and direct observation during the experiments. To facilitate liquid handling, the top ITO
glass was spin-coatedwith a hydrophobic layer (Teflon®AF 1600,DuPont, thickness 120 nm). The bottomblack
BT (Bismaleimide Triazine) resin plate withCu driving electrodes patterns was coveredwith a dielectric layer. It
wasmanufactured byChipWinTechnologyCo., Ltd, Taiwan. ATeflon layer (thickness 120 nm)was also coated
on the bottomplate tomake the surface hydrophobic. Before assembly of the two plates, the liquids were
manually pipetted on the bottomplate; the top plate was then carefully placed and adhered onto appropriate
spacers (thickness 50μm) attached to the bottomplate. Themultiple driving electrodes on the bottomplate
were individually activated through single pole double throw (SPDT) relays (LU-5, Rayex Electronics). The
electric potential of the electrodes was switched between the electric ground andhigh potentials. AC electric
signals with a frequency of 1 kHzwere generated by a function generator (33210 A, Agilent Technologies) and
amplified through an amplifier (A-304, A. A. Lab Systems). The relays were switched by the digital output signals
of a data-acquisition device (USB-6509,National Instruments) programmedwith LabVIEWsoftware.

2.2. Fabrication of porous BraggMicrocavities
To incorporate the porous BMonto the EMF chipwe proceeded to its deposition by PV-OADon the desired
driving electrode (fromnowon the BM-electrode) of the chip by covering the rest with an aluminum shadow
mask. Simultaneously, deposition by electron beam evaporationwas also performed on ITO substrates and on
siliconwafers. As reported in previous works alternating layers were stack deposited by evaporation at a zenithal
angle of deposition (α) of 70° [36, 37]. The BM stack consisted of 15 alternating layers of TiO2 and SiO2, starting
and endingwith TiO2, each of themwith a thickness of about 85 nm except for the central layer that, acting as
optical defect, had a thickness of ca. 200 nm.

2.3.Opticalmonitoring of the BM-electrode
Reflectance-visible spectra of the different parts of the device including the BM-electrode were taken using a
home-made optical setup consisting of an extensive source of light (range 350–900 nm,Halogen Reflector Lamp
DecostarOsram®) collimated to a spot of around 1mm2 and a camera connected to a computer with a detector
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placed in the center of the camera. The impinging and reflected beamdirections were 20° apart (incidence 10°
off normal). Spectrawere recorded before and after infiltrating the BMwith liquids either drippedmanually
with a pipette ormoved to the BM-electrode by EWODorDEP actuation. The room temperature during the
experiments was 20 °C.

A siliconwafer coveredwith the BMwas diced to take Scanning ElectronMicroscopy (SEM) cross section
micrographs in aHitachi S4800 field emissionmicroscopeworking at 2 keV primary beam energy. Both
detectingmodes, Secondary Electron (SE) andBack Scattered Electron (BSE)were used to highlight either
topographic or compositional information, respectively.

3. Results and discussion

3.1. Characterization of the BMdeposited onto EMFdevice
Figure 1(b) shows SEMmicrographs of the BMdeposited onto a siliconwafer, togetherwith an overprinted
scheme of the layers stack. The BSEmicrograph reveals the composition of each layer of the stackwith the TiO2

corresponding to the brighter layers and the SiO2 to the darker ones.Meanwhile, the SEMmicrograph shows the
typical slanted nanocolumnarmicrostructure of the PVD-OAD films and highlights the high porosity of these
layers that in previous workswe have estimated around 50%. Figure 1(c) presents the EMFdevice with the BM
deposited on a pre-selected driving electrode (the BM-electrode) that remained uncovered by themask during
deposition. This part presented an orange color thatwas taken as hint of the successful deposition of the BM,

Figure 1. (a)Cross section scheme of the EMFdevice incorporating electrode andhydrophobic Teflon layers to facilitate the
manipulation of liquids and light beam interrogation through the BMdeposited onto one electrode. Note that the different parts of
the chip are not plotted in the same scale. (b)Cross sectional SEMmicrographs of the porous BM.A scheme of the stack indicating the
composition of each layer, TiO2 (green) or SiO2 (orange) is overprinted onto themicrograph. (c)EMFdevice after depositing a BM
onto a selected driving electrode (the BM-electrode). The green and blue squares are zoomviews of this zone coveredwith the
deposited BM takenwithout andwith external illumination, respectively. (d)Visible reflectance spectra of selected zones of the chip:
the BM-electrode zone, a driving electrode and the black background. The spectrumof a BMdeposited onto a transparent ITO
substrate is included as a reference.
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providing a straightforwardway to localize it onto the device. An optical characterization of the different parts of
the EMFdevice in the formof reflectance spectra is shown infigure 1(d), together with an equivalent spectrumof
a reference BM sample deposited onto an ITO substrate which is included for comparison. This reference
spectrumdepicts the typical wide reflectance gap and resonance peak of this type of 1Dphotonic structure (blue
line in Figure 1(d)). As reported in previousworks [36–38], this resonant peak at around 460 nmcan be used to
monitor changes in the BMwhen it is liquid-infiltrated. The reflectance spectrum recorded for the BMdeposited
onto the EMF chip depicts a similar spectrumwhere the resonant peakwas less well defined and appeared
slightly shifted to shorter wavelengths (red line in Figure 1(d)).We attributed this slight loss of optical quality for
the BMdeposited onto the EMFdevice to the roughness of the driving electrode. Optical spectra of the black
background and of a driving electrode of the EMF, also reported in Figure 1, were recorded to identify their
possible contributions to the BM spectrum in case ofmisalignment of the incident beam. The high reflectivity of
the BM-electrode zone in comparisonwith the black background and a driving electrode of theDMFdevice
could be appreciatedwith the bare eyes in the dashed blue square of Figure 1(c) andwas characterized by the
spectrumpresented in Figure 1(d).

3.2.Optofluidic response of the BM-EMF chip.
Figure 2 presents the optofluidic characterization of the BM-electrodewhen delivering the liquids directly onto
the BMwith a pipette. Dripping liquids onto this zone shouldfill the pores of the BMand, according to previous
analysis, would induce changes in the optical response of the BM transducer [36–38], Effectively, Figure 2(a)
shows that the infiltrationwith different liquids led to a shift of the optical spectra to larger wavelengths (i.e., a
redshift), that in the case ofmineral oil reached up to 21 nm. The representation of themagnitude of these shifts
as a function of the refractive index of the infiltrating liquid in Figure 2(b) shows a clear dependence that can be
used to differentiate a specific liquid fromothers with different refractive index. The plot shows that below aRI
of 1.38 the accuracy of the sensor decreases preventing to discriminate liquids below this point.

3.3. Liquidmovement in the EMF-device
Isopropanol (mainly driven by EWOD) and silicone oil (mainly driven byDEP)were used to determine the
working parameters of the EMFdevice tomove liquid droplets fromone driving electrode to the other on the
chip. Droplets of these liquids weremoved by electrical actuation and the displacement fromone electrode to
another took around 0.2 s. A squarewave signal of voltage 360Vpp and a frequency of 1 kHzwere supplied to
move the liquid droplets, as well as to split the liquid into small droplets of volume 0.2 μl. A succession of
pictures showing the formation of specific silicone oil patches in the EMF-device is presented in Figure 3.

3.4.Optofluidic response of the BM-electrode infiltratedwith silicone oil by dielectrophoretic forces
Main objective of this workwas to investigate the ability of liquid dropletmanipulation on anEMFdevice
incorporatedwith a liquid transducer. To that end, a big silicone oil droplet was split into smaller droplets and
one of themwas delivered to the BM-electrode bymeans of theDEP forces by electrical actuation on the device.
Figure 4 is the optofluidic response of the BM-electrode showing that the resonant peak of the BMexperienced
the same redshift (i.e., 15 nm) as that foundwhen dripping the silicone oil by a pipette (cf Figure 2). This
evidence proved the successful integration of an optofluidic BM transducer onto the EMFdevice and the

Figure 2. (a)Visible reflectance spectra recorded around the resonant peak for air and several liquids infiltrated in the BM-chips that
were delivered by hand dripping. (b)Plot of the shift of the resonant peak as a function of the refractive index of the infiltrated liquid.
To help the eye a line connects the points.
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successful driving of liquid droplets byDEP actuation. These results showed that the porous BMhasworked
acceptably well in combinationwith the EMFoptofluidic device andwe attributed the lesser shift observed in
comparisonwith the reference BM to somemicrostructural changes induced by the growth of the porous thin
films on the Teflon coating covering the ITO layer of the EMFdevice.

4. Conclusions

In this work, an optofluidic device combining a porous thin filmphotonic structure on an EWOD/DEP-based
EMFdevice is presented for thefirst time. For this aim, porous BMs have been successfully deposited onto one
driving electrode of an EMFdevice. The thin film deposition process did not affect the electromicrofluidic
features of the EMFdevice, an outstanding result that proves that optofluidic transducers and EMF systems can
be integrated in a unique device. The optofluidic transducer preserved its performancewhen incorporated onto

Figure 3. Series of pictures of the EMFdevice showing the splitting of silicone oil in a smaller droplet in a driving electrode byDEP
forces. For clarity reasons the silicone oil is colored in blue. The time frame is included at the bottom left of each panel.

Figure 4.Visible reflectance spectra recorded around the resonant peak for the BM-electrode with air andwhen it was infiltratedwith
silicone oil bymeans ofDEP forces.
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the EMFdevice, as proved bymanually delivering the liquid onto the sensing region and by electrical driving the
liquid analyte droplet to the zone containing the BM.An additional advantage of integrating the BM into an
EMFdevice is the lower volumeneeded for analysis in comparisonwith the amount requiredwhen using other
rudimentary sample delivery systems.
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