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Abstract: An analytical theory of extraordinary optical transmission
(EOT) through realistic metallic screens perforated by a periodic array of
subwavelength holes is presented. The theory is based on our previous work
on EOT through perfect conducting screens and on the surface impedance
concept. The proposed theory is valid for the complete frequency range
where EOT has been reported, including microwaves and optics. A reason-
ably good agreement with electromagnetic simulations is shown in all this
frequency range. We feel that the proposed theory may help to clarify the
physics underlying EOT and serve as a first step to more accurate analysis.
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1. Introduction

First theories about extraordinary optical transmission (EOT) through metallic screens perfo-
rated by a periodic array of metallic holes [1] claimed the key role of surface plasmons (SPs) in
this physical effect [2]. However, the same effect was soon reported in some metals with posi-
tive real part of the permittivity [3], and in metallic screens operating at microwave frequencies
[4], where the behavior of metals is closer to a perfect conductor than to a solid plasma. In both
cases SPs can not exist at the air-metal interfaces. In the first case, Zenneck waves can still be
excited at such interfaces, and therefore they can be invoked in order to explain extraordinary
transmission using a similar theoretical framework [5]. The explanation of EOT through per-
fect conducting screens in the frame of SP theories was more difficult, because surface waves
can not be excited at flat perfect conducting interfaces. However, surface waves on corrugated
perfect conducting interfaces were well known since far [6], and these surface waves – renamed
as spoof plasmons – come to the rescue of the SP point of view [7]. At this point, it became
clear that EOT can be linked to any kind of surface waves supported by the interface between
air and the diffraction screen, and the results of SP theories become almost indistinguishable of
those obtained from standard diffraction theory [8], [9].

The interest on wave transmission through perforated metallic screens is not new and these
structures have been analyzed since far by electrical engineers. In [10] thick perfectly conduct-
ing screens were rigourously analyzed using the integral equation method. More recently, an
equivalent waveguide circuit model for EOT has been proposed [11]. This approach has the
advantage of also explaining EOT in configurations where excitation of surface waves is obvi-
ously impossible [12]. Using this point of view, some of the authors have recently developed an
approximate analytical theory of EOT through perfect conducting screens [13]. In this paper,
we present the generalization of this last theory to realistic metallic screens. The reported the-
ory is based on the equivalent waveguide model already developed in [11] and [13], and on the
surface impedance concept (see, for instance, [14] among others). In the frame of the present
approach, this last concept is used to model realistic metallic screens as a pair of coupled sur-
face impedances, yielding a “point to point” relation between the electric and magnetic fields
at each side of the screen. Using this approximation, we can analyze EOT through realistic
metallic screens from microwave frequencies (where metals behave as imperfect conductors)
to optical frequencies (where metals mainly behave as solid plasmas). Some numerical results
coming from our theory are compared with electromagnetic simulations of EOT in realistic
structures and a reasonably good agreement is reported. The scope and limits of the reported
approximation are also discussed.

2. Analysis

For simplicity, we will consider a square matrix of square holes perforated in a metallic diffrac-
tion screen as it is shown in Fig. 1 (the extension to rectangular holes and periodicities is
straightforward). Due to the symmetry of the structure and for an incident TEM wave with an
y-polarized electric field, the problem is equivalent to a TEM waveguide with electric walls at
y = −a/2, 0 and a/2; magnetic walls at x = −a/2, 0 and a/2 and a discontinuity in the re-
gion of the screen [13]. The scattered fields at both sides of the screen can be decomposed on

#122150 - $15.00 USD Received 4 Jan 2010; revised 10 Feb 2010; accepted 22 Feb 2010; published 15 Mar 2010

(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS  6507



even TE and TM modes [13]. Therefore, just at both interfaces of the screen (z = ±t/2) the
electromagnetic field can be expanded into the Fourier series

Fig. 1. Metallic screen perforated with square holes: front view (a) and two lateral cuts (b).
Front (c) and lateral (d) views of the structure unit cell or equivalent waveguide. The screen
has a finite thickness t.
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where E±
y and H±

x are the electric and magnetic fields at z =±t/2, T and R are the transmission
and reflection coefficients, CTE and CTM are the amplitudes of the TE and TM modes excited
in the screen, fn,m(x,y) = cos(2nπx/a)cos(2mπy/a), Y0 = −√
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is the propagation constant of the n,m mode (which are imaginary numbers below the first
Wood’s anomaly), and k0 = ω√ε0μ0 is the vacuum wavenumber.

In the small hole approximation, the E−
x and E+

x field components can be neglected due to
the presence of additional virtual electric and magnetic walls at y = 0 and x = 0 respectively
[13]. From standard waveguide theory, they are given by [6], [13]
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CTE
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where gn,m(x,y) = sin(2nπx/a)sin(2mπy/a)
Let us now consider the electromagnetic field inside the metallic screen. This is a well known

problem that can be solved using the surface impedance concept (see e.g. [14]). For most met-
als, the propagation constant ks = ω√εμ is complex and very large from microwaves to optics.
Assuming that it is still larger than all the transverse wavenumbers of all the meaningful Fourier
modes in (1)–(4), |ks| � 2nπ/a, the transverse dependence of the electromagnetic field inside
the metal can be neglected with regard to its z dependence, and the differential equation for the
electromagnetic field inside the metallic screen can be approximated by

{
∂ 2

∂ z2 + k2
s

}
Ey ≈ 0 ; iωμHx = −∂Ey

∂ z
. (9)

This equation can now be easily solved giving a “point to point” linear relation between the
electric and magnetic fields at both sides of the screen, which is independent of the specific
dependence of these fields on x and y. After some straightforward calculations this relation is
found as
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with
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, (11)

where Ys = (ks/k0)Y0 is the wave admittance inside the metal and where Zs,1 and Zs,2 are com-
monly referred as “surface impedances” [14].

The next step in the analysis is to apply the small hole approximation[13], which in our case
takes the form
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where subindex wg and h indicate integration in the waveguide and the hole cross sections, re-
spectively. Taking into account the orthogonality properties of fnm(x,y) and after some straight-
forward calculations, we obtain
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where δnm is the Kronencker delta fucntion. The above expressions, altogether with

CTM
nm,T ≈ m2

n2 CTE
nm,T and CTM

nm,R ≈ m2

n2 CTE
nm,R (16)

which are obtained from (7) and (8), allow for the determination of the coefficients CTE
nm,R, CTM

nm,R,
CTE

nm,T, and CTM
nm,T as linear functions of the reflection and transmission coefficients R and T .

We still need two more equations in order to determine R and T . These equations are ob-
tained applying the boundary conditions at both sides of the hole. It can be modeled as a hollow
metallic waveguide with an evanescent dominant TE10 mode. As far as the hole can be consid-
ered small, we can neglect the effect of higher order modes and consider that only this dominant
mode is excited in the hole. In this approximation, there is a relation similar to (10) between the
electromagnetic fields at both sides of the hole with Zs,1 and Zs,2 replaced by the hole surface
impedances

Zh,1 =
[1+ cos(kht)]
i sin(kht)Yh

and Zh,2 =
i sin(kht)

[1+ cos(kht)]Yh
, (17)

where kh =
√

k2
0 − (π/b)2 and Yh = (kh/k0)Y0 are the (imaginary) propagation constant and

wave admittance of the aforementioned TE10 k mode. Therefore, the fields at both sides of the
hole satisfy the following integral boundary conditions
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which yield
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(21)
with sinc(θ) = sin(θ)/θ .

Equations (14)-(16) and (20)-(21) make the system of equations that determines the values of
T and R, as well as the Cnm coefficients. In practical computations series must be truncated. As
it is discussed in [13], this truncation can be safely made at N,M = round(a/b). The accuracy of
the above formulas can be improved if the actual width of the hole b is replaced by an effective
width beff = b + 2δ , where δ is the skin depth of the metal. For lossy conductors δ can be
evaluated as δ =

√
2/(ωμσ), and for solid plasmas it can be evaluated as δ = λp/(2π), where

λp is the plasma wavelength.
The main approximation underlying our analysis is in Eqs. (12) and (13). This approximation

was first suggested in [15] and assumes that the size of the hole is so small that the variation of
the functions fnm(x,y) can be neglected through the hole (this approximation also implies that
n and m can not be taken very large, and leads to the condition N,M = round(a/b) mentioned
above). It is clear that the smaller the hole the better the approximation. Another key approxi-
mation is in Eqs. (7) and (8), which implies that Ex is neglected in the hole. This approximation
is suggested by the specific geometry of the problem and it is confirmed by electromagnetic
simulations (not shown). Both approximations were successfully applied in [13] for the analy-
sis of EOT through perfect conducting metallic screens. The surface impedance approximation
(9) - (11) can be only applied if the absolute value of the complex dielectric constant of the
screen is much larger than that of the surrounding medium. This condition is usually fulfilled
by most metals except at very high frequencies, in the ultraviolet range. Finally, we have con-
sidered only one mode in the hole in (18) - (19), which is justified if the hole is substantially
smaller than the periodicity. All these approximations, taken altogether, results in the system
of equations (14)-(16) and (20)-(21), whose coefficients are all analytical expressions, which
can be run in a PC with an almost negligible computation time. For instance, the typical com-
putation time for a frequency point in the plots shown below is less than 1μs using our model,
whereas the typical computation time for a single frequency point using the commercial solver
CST Microwave Studio is several min.

3. Numerical results

In Figs. 2 to 5 the transmission coefficient obtained from the reported theory and from elec-
tromagnetic simulations using CST Microwave Studio are plotted for frequencies ranging from
GHz to optical, and employing different hole sizes, screen thicknesses and metals. In Figs. 2
and 3 the metals are modeled by finite conductivity σ
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Fig. 2. Transmission coefficient in decibels versus normalized frequency (where fw = c/a is
the Wood’s anomaly frequency and c is the speed of light in vacuum) of the structure shown
in Fig. 1 for a = 30 mm ( fw ≈ 10 GHz), t = a/10 and different values of b. Solid lines
correspond to the analytical model and dotted lines correspond to data from CST. In the
main plot the metal is aluminium modeled by a finite conductivity (σ = 37.8×106 S/m). In
the inner plots the transmission of screens made of aluminium and copper (σ = 59.6×106

S/m) with b = a/6 is compared.

Fig. 3. Transmission coefficient in decibels versus normalized frequency for a = 300 μm
( fw = c/a ≈ 1 THz), b = a/6 and different values of t. Solid lines correspond to the ana-
lytical model and dotted lines correspond to data from CST. In the main plot the metal is
copper modeled by a finite conductivity (σ = 59.6×106 S/m). In the inner plots the trans-
mission of screens made of aluminium (σ = 37.8×106 S/m) and copper with t = a/20 is
compared.
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Fig. 4. Transmission coefficient in decibels versus normalized frequency for a = 1 μm
( fw = c/a ≈ 300 THz), t = a/10 and different values of b. Solid lines correspond to the
analytical model and dotted lines correspond to data from CST. In the main plot the metal is
silver modeled by a Drude-Lorentz permittivity (ωp = 2π ×2175 THz and fc = 2π ×4.35
THz). In the inner plots the transmission of screens made of silver and copper (ωp = 2π ×
1914 THz and fc = 2π ×8.34 THz) with b = a/4 is compared.

Fig. 5. Transmission coefficient in decibels versus normalized frequency for a = 1 μm
( fw = c/a ≈ 300 THz), b = a/6 and different values of t. Solid lines correspond to the
analytical model and dotted lines correspond to data from CST. In the main plot the metal
is silver modeled by a Drude-Lorentz permittivity (ωp = 2π×2175 THz and fc = 2π×4.35
THz). In the inner plots the transmission of screens made of silver and copper (ωp = 2π ×
1914 THz and fc = 2π ×8.34 THz) with t = a/10 is compared.
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ε ≈ i
σ

ωε0
(22)

and in Figs. 4 and 5 by a Drude-Lorentz permittivity

ε ≈ ε0

(

1− ω2
p

ω(ω − i f ′c)

)

, (23)

where ωp is the plasma frequency and f ′c is the collision frequency of electrons. For thin screens,
with thicknesses of the order of the mean free path of the electrons or less, this frequency is
affected by the collisions with the boundaries of the screen and differs from its value for bulk
metals. Although the accurate determination of the corresponding correction to the electron
frequency of collision is outside the scope of this paper, in order to make our results as realistic
as possible, we introduced the correction proposed in [16], which for a plane metallic slab can
be written as:

f ′c = fc

(
1+

le
2t

)
(24)

here fc is the collision frequency for bulk metals. Since the same correction was included
in theoretical calculations and in electromagnetic simulations, the comparison of the results
obtained from both approaches is not affected by this correction.

A very good qualitative agreement and reasonably good quantitative agreement in the posi-
tion of the transmission peaks in relation to the Wood’s anomaly frequency and their shape is
found between theory and simulations (Figs. 2 to 5) for presented values of the screen thickness
and hole size. The accuracy is higher for small holes (as we employ more modes in the Fourier
expansion) and wider thickness (the hole is closer to a waveguide). This agrement is present for
frequencies ranging from microwaves to optics, making apparent the wide range of application
of the reported theory. A specific comment deserves the accurate prediction of the amplitude of
the peaks by the theory, a fact that shows its usefulness for the quantitative analysis of losses in
EOT through metallic screens.

At this point it may be worth to mention that, apart from the geometrical parameters such
as periodicity a, hole size b and screen thickness t, the impedances Zs,1, Zs,2 (11) are the only
parameters which characterize the structure in our theory. These impedances summarize all
the constitutive electromagnetic properties of the screen, and determine its response regarding
EOT. In the limit of perfectly conducting screens it is 1/Ys → 0 and Zs,2 → 0, in which case
(10) reduces to E+

y = E−
y = 0 and the analysis reduces to that reported in [13], which can be

considered as a particular case of the present theory.

4. Conclusion

Along this paper an analytical theory of EOT through realistic metallic screens perforated by
a periodic array of subwavelength holes has been proposed. This theory is based on the equiv-
alent waveguide model previously reported in [11] and [13], and on the surface impedance
approach (10)-(11), which characterizes the material properties of the screen. The combination
of both approaches allows for the development of an analytical theory valid for frequencies
ranging from microwaves to optics, which includes the whole frequency range where EOT has
been reported. Thus, the proposed theory provides an unifying approach to the phenomenon of
EOT through metallic screens, identifying and clarifying the role of the most relevant physical
parameters: periodicity, hole size and screen impedance. Apart from this theoretical interest,
the good agreement between theory and electromagnetic simulations shows that the present
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approach also provides a very efficient numerical tool for the analysis of EOT in realistic struc-
tures. It can be used directly or as a preliminary step before going to more sophisticated and
time consuming numerical analysis.
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