
ARTICLE

International Journal of Advanced Robotic Systems

An Address Event Representation-based
Processing System for a Biped Robot
Regular Paper

Uziel Jaramillo-Avila1, Horacio Rostro-Gonzalez1*, Luis A. Camuñas-Mesa2,
Rene de Jesus Romero-Troncoso1 and Bernabe Linares-Barranco2

1 Universidad de Guanajuato, DICIS, Salamanca, Mexico
2 Instituto de Microelectronica de Sevilla, IMSE-CNM, Spain
*Corresponding author(s) E-mail: hrostrog@ugto.mx

Received 01 September 2015; Accepted 28 January 2016

DOI: 10.5772/62321

© 2016 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

In recent years, several important advances have been
made in the fields of both biologically inspired sensorial
processing and locomotion systems, such as Address Event
Representation-based cameras (or Dynamic Vision Sen‐
sors) and in human-like robot locomotion, e.g,. the walking
of a biped robot. However, making these fields merge
properly is not an easy task. In this regard, Neuromorphic
Engineering is a fast-growing research field, the main goal
of which is the biologically inspired design of hybrid
hardware systems in order to mimic neural architectures
and to process information in the manner of the brain.
However, few robotic applications exist to illustrate them.
The main goal of this work is to demonstrate, by creating a
closed-loop system using only bio-inspired techniques,
how such applications can work properly. We present an
algorithm using Spiking Neural Networks (SNN) for a
biped robot equipped with a Dynamic Vision Sensor,
which is designed to follow a line drawn on the floor. This
is a commonly used method for demonstrating control
techniques. Most of them are fairly simple to implement
without very sophisticated components; however, it can
still serve as a good test in more elaborate circumstances.
In addition, the locomotion system proposed is able to
coordinately control the six DOFs of a biped robot in
switching between basic forms of movement. The latter has

been implemented as a FPGA-based neuromorphic system.
Numerical tests and hardware validation are presented.

Keywords Address Event Representation, Neuromorphic
Systems, Dynamic Vision Sensors, Biped Robot Locomo‐
tion, Spiking Neurons

1. Introduction

Spiking Neural Networks (SNN) comprise an information-
processing paradigm inspired by the ways in which
biological nervous systems, such as the brain, process
information [1]. In this regard, electronic and computer
engineers contribute to our understanding of the brain’s
computation as follows [2]:

1. Developing sensors, data-processing algorithms and
simulation platforms used by computational neuro‐
scientists.

2. Undertaking research that links empirical neuro‐
science evidence with hypotheses about how neuro‐
biological systems manipulate information.

3. Imitating biological-computation mechanisms in
specific applications, e.g., robotic systems.

1Int J Adv Robot Syst, 2016, 13:39 | doi: 10.5772/62321

http://crossmark.crossref.org/dialog/?doi=10.5772%2F62321&domain=pdf&date_stamp=2016-01-01

The algorithm proposed in this work is inspired by the idea
that biological cortical structures are composed of a small
number of processing layers, and that neurons of the visual
cortex are selectively sensitive to the orientation of the lines
and edges in the visual field.

Interpreting visual stimuli in human or animals might
appear to be an effortless process, but this is because its
complexity is far from being fully understood. However,
huge efforts and advances have been made for this cause
in the last few decades. Between 1950 and 1960, Hubel and
Wiesel’s study of cats found that neurons of the visual
cortex are selectively sensitive to the orientation of lines
and edges in the visual field [3, 4].

Later, inspired by the works of Hubel and Wiesel, the
concept of cognition was introduced by Fukushima in [5]
and improved in [6]. It consists of a multilayered structure
that is self-organized by "learning without a teacher", and
acquires an ability to recognize stimulus patterns based on
the geometrical similarity (Gestalt) of their shapes without
being affected by their positions. The principles of such
papers have served as inspiration for the techniques used
in Address Event Representation (AER) cameras. We also
note that a cell has synapses that are afferent only from a
group of cells situated in a particular area predetermined
for each cell. This area is named the connectable area of the
cell, which is determined by the spread of the dendrites and
of the axon terminals of each cell.

Besides these features, biological cortical structures are
composed of a small number of processing layers, no more
than 10, where a wavefront of spikes crosses from the
sensing layer to the resulting layer while different opera‐
tions are performed, as explained by [7]. For different
applications, each layer has a specific goal. For example, for
characters’ detection, the kernel of a layer might be focused
on deleting background noise and, in some other applica‐
tions, on detecting clusters of data, straightness or curved
lines, etc. Such techniques are favourable in the sense that
tolerating a small positional error at a given time at each
stage, rather than all in one step, plays an important role in
endowing the network with the ability to recognize even
distorted patterns [8].

Conventional image-processing techniques are based on
the principle that a video recorder registers a given number
of images per second, which, when played in sequence,
make up a video. These images are usually called frames
and their rates can vary depending on the application:
between 30 and 60 frames/second are used in most of the
conventional applications. Various important techniques
have been successfully developed for pattern recognition,
e.g., examining colour or texture in images. Using frames
implies that the sensor must register a whole image each
time, line by line, which can prove to be a restriction on the
speed of the processing.

In recent years, a different approach to the problem has
begun to grow in popularity. It uses Dynamic Vision
Sensors (DVS) that do not depend on frames, but rather on
registering changes of lighting in specific sections of the
area being sensed, and on using the coordinates of such an
area, or pixel, to perform the processing. Under this logic,
assuming that the background is fixed to some extent,
events will only be registered when a movement is detect‐
ed. This technology is commonly known as Address Event
Representation (AER); it uses mixed analogue and digital
principles and exploits pulse-density modulation for
coding information, as explained in [9]. A difficulty of
pattern recognition techniques lies in separating the
important data from the noise and background. This is
bypassed to some extent in AER sensors, where only the
areas in which light changes are detected, registered and
transmitted.

Current DVSs work within a range of resolution around
128x128 pixels, usually giving as the output the address of
the pixels that were activated – a sign indicating whether it
was a positive or negative change in the lighting – and
giving a time stamp of the event [7, 10, 11]. These events are
registered into a buffer, which waits until it is full and then
proceeds to be transmitted to a CPU for processing. Some
examples of applications tested by Address Event Repre‐
sentation techniques are: the tracking of vehicles on a
highway, presented in [12]; a robot arm that acts as a
football goalkeeper by blocking incoming balls in [13]; a
robot that uses AER auditory sensory input to feedback its
central pattern generator [14] and a pencil balancer [15].
This last example requires a very fast response, providing
a good demonstration of the fast-response capabilities of
AER; usually, position encoders are used to make this kind
of control.

Once the events are registered, diverse processing methods
can be applied to extract the useful information. For
example, clusters of events are formed around an object of
interest, such as a ball or a car in the road. A moving edge
will tend to produce events that are correlated closer in time
with nearby events from the same edge; as opposed to
noise, that tends to be more erratic and not easily correlated
with neighbours or with past events for the same pixel [16].

2. Materials

Most robots that are designed for the purpose of line
following are wheeled, which in itself simplifies a lot of the
stability and the dynamics of the movements. Basic vision
sensors are normally used, generally only in order to detect
drastic changes in the lighting and give an on/off output
per sensor. Considering such circumstances, it was decided
to follow this principle and to implement a feedback system
for line following for a biped robot. In broad terms, the tasks
required were:

1. Understanding and reading properly the events
coming from the AER sensor for processing.

2 Int J Adv Robot Syst, 2016, 13:39 | doi: 10.5772/62321

2. Events-based processing using a spiking neural
network for the approximation and tracking of the
line’s position.

3. Giving the appropriate orders to the biped robot in
order for it to remain in the line’s path.

2.1 The Biped Robot

A considerable variety of biped robots with different
configurations and that are mainly driven by servomotors
are available, making their control very practical and
straightforward. For this work, we used the Biped BRAT
robot shown in Figure 1, manufactured by the company
Lynxmotion. It has a configuration of six motors, three in
each leg, meant to represent the ankle, knee and hip joints.
A servomotor controller, provided by the same manufac‐
turer, is also used; the SSC-32, with 32 channels and a
resolution of 1 mS, acts as an intermediate step in the
communication between the designed system and the
servomotors. Because of this, the developed system needs
only to provide as an output a serial command coded in
ASCII to the SSC-32 Controller, which then transforms it
into a Pulse-Width Modulation (PWM) signal for each
servomotor.

The Biped BRAT is assembled in such a way that a PWM
pulse of 1.5 mS in each of its servomotors corresponds to
the Home Position, with the biped standing up. When using
the SSC-32 Controller for a given servomotor, one unit
change in the position value corresponds to a 1 mS change
in the PWM pulse. An example of a command that sends
the robot to its Home Position is #0P1500 #1P1500 #2P1500
#16P1500 #17P1500 #18P1500 T1000. This is read by the
SSC-32 Controller as the order in which to set the motors
connected to the ports numbered 0, 1, 2, 16, 17 and 18, to a
pulse width of 1.5 mS.

Figure 1. Biped robot with AER sensor and USBAERmini2 board

2.2 The USBAERmini2 Communication Board

The USBAERmini2 is a low-cost, high-speed USB2.0 AER
interface implemented in [17]. This interface allows real-
time capturing of AER communication, as well as AER
event sequencing with event rates of up to four mega-
events per second. It also introduces the capability to
capture events synchronously from several devices. It
features three parallel AER ports: one for sequencing, one
for monitoring and one for passing through the monitored
events. In [18], the author describes the USBAERmini2 as a
bridge between a USB port and AER buses. It is able to
monitor AER traffic trough the USB port, and also to
sequence AER information.

2.3 The jAER Software

jAER is a Java software project that allows soft real-time,
event-driven processing AER systems on PCs. It is centred
around an application named jAERViewer, that allows the
user to plug in an AER device with a USB interface, view
the events coming from the device, log them to disk, play
them back and process them, as explained in [16]. In the
website [19], an open-source repository of Java and Matlab
functions can be found, along with some sample data files
containing recordings of AER sensors – for example, the
recording of the movement of a hand or an outdoors
environment. Some of the provided Matlab functions were
used in the development of this work.

3. Methodology

As mentioned previously, the general goal of this project is
to gain an understanding and to apply some of the concepts
of Neuromorphic Engineering, such as how Spiking Neural
Networks behave and the use of Dynamic Vision Sensors.
This task could also be solved by purely geometrical or
mathematical methods, but it is proposed as a demonstra‐
tion of the capabilities and flexibility of this research area,
in an attempt to apply it to a structure similar to one that
can be found in nature, such as legged locomotion.

3.1 Biped Robot Walking

By observing the movement of different robot models and
by testing a sequence of commands, we have enabled the
robot to make basic movements: taking a step forwards or
backwards, or making a left or right turn. In broad terms,
the idea behind the movements is rather symmetrical.
When it is desired to take a step either forwards or back‐
wards, the robot needs to place its center of mass in only
one of the legs, allowing the second one to move freely; this
takes a couple of commands. The robot is then free to make
the second leg move forwards and to switch the center of
mass to the other leg; this is mostly done by movements in
the ankle joints. When this step is completed, the robot can
then continue with a second step, turning in a circle or
returning to the home position. Preserving the symmetry
of the movements is very convenient.

3Uziel Jaramillo-Avila, Horacio Rostro-Gonzalez, Luis A. Camuñas-Mesa, Rene de Jesus Romero-Troncoso and Bernabe Linares-Barranco:
An Address Event Representation-based Processing System for a Biped Robot

In Figure 2, a diagram with all the possible combinations
of positions that can take place is presented; each one of the
movements (forwards, backwards, turn left and right)
takes a total of nine commands in different combinations.
The one labelled "Home" is the start and end of each step
taken. Positions "Balance1" and "Balance2" normally occur
in sequence and they are designed to place the robot’s
center of mass on the right leg, leaving the left leg off the
ground and free to move forwards or backwards. Positions
"Balance3" and "Balance4" are equivalent, but invert the
function of each leg. Positions "Walk1" to "Walk4" are
mainly focused on putting one leg forwards, then switch‐
ing the center of mass to said leg, followed by making the
second leg catch up with the previous one. The two
remaining positions have a function similar to the one
previously described, with the difference that they are
made while both legs are supporting the weight of the
robot. The friction with the ground while the movement
takes place enables the robot to switch its facing direction
towards one of the sides. These position areas are called in
different sequences, depending on the desired movement
of the robot.

Figure 2. Diagram of all the possible sequences of positions required for the
movements

3.2 Processing AER Data by Layers

During the walking of the robot, even waking in a straight
line, its movements change the vision range of the sensor
drastically. In Figure 3, we show a series of screenshots
recorded by the AER sensor mounted on the robot when
approaching a curve to the left while following a straight
line and when approaching a curve to the right, respective‐
ly. Since some of the movements are made more quickly
than others, sometimes the line is very easy to identify. On
some occasions, however, the line is almost completely
faded, so the processing has to be broad enough to com‐
pensate for it.

Figure 3. Three sample screenshots from an AER sensor mounted on the
biped

This work was developed mostly under Matlab, since a lot
of the tools that this platform required for the control of the
Dynamic Vision Sensor were available in open-source
forms. Nevertheless, it was also considered to be an
interesting goal in order to understand how a simple
Spiking Neural model could be implemented in VHDL and
to understand its implications. This was tested using pre-
recorded data from the vision sensor and processed under
simulation. The information obtained can then be program‐
med into a FPGA in order to command a sequence of
movements to the robot and enable it to move without an
attached computer. The AER camera used has a resolution
of 128x128 pixels; each time an event occurs, it is registered
in 8 bytes, i.e., an int32 address word and an int32 time
stamp.

A couple of pictures of the complete biped robot and the
sensor configuration are presented in Figure 1. The main
electronic components are:

• A: 128x128 AER retina sensor.

• B: USBAERmini2 board.

• C: SSC-32 Controller servomotor.

With the goal of following the principles of biomorphic
robotics – trying to emulate the mechanics, sensor systems
and computing methodologies found in biological organ‐
isms – our approach consists of a series of layers, shown in
Figures 4 and 5. The AER retina sensor itself is represented
as the first layer, with a resolution of 128x128 pixels. The
second one is a 16x16 layer of neurons, using a simple
Integrate-and-Fire model. Each one of the 256 neurons
receives as an input the accumulated number of events
detected in the corresponding 8x8 region of the sensor data.
This fulfils the function of downsizing the input data, as
well as eliminating a lot of the noise generated by events
that are not highly correlated to others in their proximities.

In addition, the third layer consists of downsizing, in this
case to an 8x8 matrix, where each element simply adds the
activations detected in the neurons of the second layer, in
a region of 2x2 neurons. Once the 8x8 layer is processed,
the next step is to detect which one of the 64 possible
segments received the most activations, under the assump‐
tion that it represents part of the tracked line. Following
these steps, by this point we would know the coordinates
of a point that is part of the line with a resolution of 8x8.
Therefore, in order to obtain a complete approximation of
the line, according to its equation, we only need to know a
second point or its slope (m).

The fourth layer has the goal of detecting the most probable
slope that corresponds to the line. It consists of a set of
neurons, each one representing a specific slope, where the
one that gives the most activations is considered to be the
winner and, for our purposes, completing the determina‐
tion of the line’s position. Given that the biped robot can
only make a series of basic movements (making a step
forwards or backwards, and turning to each side), it was

4 Int J Adv Robot Syst, 2016, 13:39 | doi: 10.5772/62321

decided to use four possible slopes, thus using only four
neurons: one for a horizontal line (m =0), one for a vertical
line (slope undefined due to its division by zero), and a
couple of neurons for slopes m =1 and m = −1. This means
that we have a total of 64 possible points that are part of the
line, and four possible slopes for each of them – meaning
256 results, bearing in mind that a lot of these results
correspond to the same line and were simply detected as
starting from a different point. This resolution could be
modified for a better approximation of the line’s position,
following the same principle.

The distribution of how the 8x8 layer data is transmitted to
the fourth layer is in a function in which the point that
detected most activations in the previous layer is found. A
point of the line detected in a corner of the layer cannot
provide the same distribution of input to the next layer as
a point that is found in the opposite corner. For this reason,
a larger 15x15 layer is used; if the center of the said layer is
matched with the most active point in the 8x8 layer, then
all possible distributions are covered. Figure 6 gives a
representation of the 15x15 layer, where each colour
represents one of the four neurons. Figure 7 gives three
examples of how the output of the 8x8 layer can be placed
as an input in the subsequent one, according to the most
active point, represented in this case by the black square. It
is easy to make the deduction that the slope corresponding
to the neuron that receives more inputs and ends up
winning is also a function of the said position.

Figure 4. First three processing layers of the AER events for line detection

Figure 5. Transition between the third and fourth layers of processing

Figure 6. Fourth layer: slope approximation

Figure 7. Examples of fitting in the last layer

3.3 The Neuron Model

The Leaky Integrate-and-Fire (LIF) neuron is probably the
best-known example of a formal spiking neuron model,
[20]. For this work, a simplified version is implemented, as
described in equations 1 to 3.

(1)() = (1) m
m m

m

V V tV t V t
t

- -
- + (1)

() if ()
=

0 if () <
m spike m th

o
m th

V t V V t V
V

V t V
ì + ³ï
í
ïî

(2)

if ()
=

0 if () <
r m th

res
m th

V t V
t

V t V
tì ³ï
í
ïî

(3)

In Table 1, a summary of the representation and initial
values of the variables can be consulted.

Variable Description Initial value (and units)

τm =Rm*Cm ; time constant 8 (msec)

τr Refractory period 4 (msec)

V th Spike threshold 1 (volts)

V spike Voltage spike 0.5 (volts)

Vm(t) Membrane voltage (volts)

Vm(t −1)
Previous membrane
voltage

(volts)

V o Output voltage (volts)

tres Resting time (msec)

V Input voltage (volts)

Table 1. Parameters of the LIF neuron model

5Uziel Jaramillo-Avila, Horacio Rostro-Gonzalez, Luis A. Camuñas-Mesa, Rene de Jesus Romero-Troncoso and Bernabe Linares-Barranco:
An Address Event Representation-based Processing System for a Biped Robot

3.4 Switching between Recording, Processing and Decision
Taking

Since the recording of data events is done using jAER, and
the data processing is done using Matlab, autonomous
communication between them is required. jAER is config‐
ured by default to be able to receive instructions using the
User Datagram Protocol (UDP), under which one comput‐
er application can send messages to another. With a few lines
of code, Matlab can instruct jAER to start recording a file of
the events and then instruct the file to be closed. This has the
inconvenience that the processing is not done in real time; a
file that is recording events needs to be closed in order to
start reading them from the beginning. However, for this
specific application, this methodology can still be used.
Since it takes the robot a few seconds to complete the
sequence of commands corresponding to a step or a turn, it
only needs to make a decision at the end of said move‐
ment. The main idea of the implementation is that events
are recorded during the first half of each steep, a file
containing them is saved and, during the second half, the
events are read from the file and processed. At the end, the
best approximation of the line is chosen, the decision is taken
and the loop is then ready to start the process again for the
next step. This also has the advantage that the events can be
posteriorly consulted and reproduced, even when the
camera and the USBAERmini2 board are not attached to the
robot. Since each step is saved as a separate file, the sequence
of events that led up to a decision being made by the robot
is also clear. The robot can then re-enact a trajectory, and
posterior experimentation with it is possible.

For the first step, the robot needs to be taken out of its
motionless position so that events can be detected by the
sensor. For this reason, an extra sequence of movements
was added: that of balancing the robot in its place. This is
specified as the starting sequence, and the first step is only
made after enough events have been registered by the
algorithm to make an estimation of the line. This sequence
is also entered in the case when the line is not inside the
vision field of the sensor. In summary, at the end of each
step, the robot can decide between five sequences of
movements: taking a step forwards, turning left or right,
taking a step backwards or balancing in its place. Not all
the movements take the same time to complete, and not all
of them are equally likely to happen, since the weights for
the neurons that choose to take a turn are set to be bigger.
The step backwards is very unlikely to happen, as it has far
fewer events that are set as inputs and their weights are
smaller, but in certain cases, it does help the robot to get
return to the path after getting lost. Finally, the balancing
sequence is entered by default when no neurons of the last
layer are activated.

4. Results

A few links to sample videos of the robot’s behaviour are
included in section 6 of this document. The question of how

to choose a fair quantitative analysis of the robot’s decision-
making process is not trivial; a lot of factors need to be taken
into account. For instance, a proper adjustment of the robot
needs to be made before its operation; since only a low-cost
tripod was used to mount the AER sensor onto the robot,
it was easy to accidentally derange its orientation. It was
found that when the camera faced the floor too directly,
sometimes the proper decisions were not taken in time.
When a curve was detected, the robot would take a step too
late, and by the time that the movement was completed, the
line might already be outside of the vision field of the robot.
In addition, the feet of the robot would sometimes get into
the said vision field, and the events generated would
interfere with the line estimation. Conversely, if the
sensor’s orientation is too upright, segments of the line path
that are not being tracked currently get in the way; this is
caused because the curvature of the path causes parts of the
line to be close to each other.

Figure 8. Line path used to test the biped robot

Another aspect that needs to be taken into account is the
complexity of the said path. In this case, it was already
available and had been used previously in other applica‐
tions. It consists of a continuous line with a few intersec‐
tions and turns to both sides, see Figure 8. For the nature of
the implementation, we believe that interruptions or dotted
parts of the line would not only not prejudice but also help
in line detection, since more events would be generated by
the sensor, caused by lighting changes. Figures 9 and 10
show two illustrations of how the position of the line is
detected in Matlab: the first one when it is a straight line,
and the second one when a turn to the left is required. In
each of these two figures, the top three panels display the
activated neurons for the layers of 128x128, 16x16 and 8x8
neurons, respectively. The lower four panels show the
activations for the horizontal lane: the one curved to the
right, the vertical line (meaning a forwards path) and the
line curved to the right, respectively.

It is not possible to completely predict what line the robot
will follow in the case of intersections. In most cases,
however, it is not the one in front but one of the turns, since
a new line entering the vision field will always cause new
events other than the one that was already being followed.
Due to the dynamics of the robot, a single wrong decision
would cause the line to be outside of the sensor’s vision
field, and, in consequence, preventing it from being able to

6 Int J Adv Robot Syst, 2016, 13:39 | doi: 10.5772/62321

take any more decisions. For this reason, in a lot of the tests,
the robot ends up losing track of the line after about three
to five minutes. Counter-intuitively, more difficulties were
faced in the parts of the path with a long straight line, since
the system detects that a step forwards is required but, not
being an ideal system, with the centre of mass not com‐
pletely centred and not entirely symmetrical, the robot’s
direction deviates a little with each step while detecting the
line as straight. Eventually, after a long sequence of only
forwards steps, around seven to 10, the line ends up being
outside of the vision field. From a total of 30 trials recorded
for analysis, the robot takes an average of 20.6 decisions
before taking a wrong turn that prevents it from keeping
track of the line. This takes an average of 3:41 minutes,
regardless of the starting point. Figure 11 shows the
number of decisions before making a wrong turn for a

sample of 30 tests, as well as the time required for some of
them.

Figure 11. Table showing the number of decisions before making a wrong
turn for a sample of 30 tests, as well as the time required for some of them

Figure 9. Matlab program detecting a straight line

Figure 10. Matlab program detecting a line curved to the left

7Uziel Jaramillo-Avila, Horacio Rostro-Gonzalez, Luis A. Camuñas-Mesa, Rene de Jesus Romero-Troncoso and Bernabe Linares-Barranco:
An Address Event Representation-based Processing System for a Biped Robot

5. Discussion

This work consisted in the synergy of several techniques
and technologies, whose implications need to be taken into
account. Some of these features contrasted very highly with
each other. Probably the main one was the very high speed
at which Dynamic Vision Sensors are designed to work; this
is one of their main features. In this case, however, the goal
was to use one as a sensorial system for a biped robot that,
as might be assumed, moves much more slowly, requiring
it to take decisions about its direction every few seconds.
Therefore, the problem faced was not focused on taking
advantage of the speed, but rather in how to manage the
huge amount of data registered between the periods of the
robot’s movements. This could lead to new applications;
for example, a combination between this type of sensor and
normal video recording could be used for video surveil‐
lance, instructing a High Definition (HD) camera to record
only if movement is detected by the AER sensor. Since
having an HD camera constantly recording requires a huge
data-storage capacity, video quality is usually sacrificed in
current equipment, making the video less useful when it
needs to be consulted.

Usefully, a good way was found to mount the USBAERmi‐
ni2 board and the AER sensor, with a simple low-range
tripod, into the Lynxmotion biped robot. Since these
elements were not designed to be mounted together, it was
very easy to unbalance the robot’s center of mass and make
it fall, even with sequences of movements that had been
previously proven successful. The best strategy was to try
to keep the center of mass as close to the ground as possible.
Regarding the mounting of the robot, another important
challenge faced was the angle at which the camera needed
to be set. Using a very simple tripod, it was not possible to
use the exact same position in all of the trials. In the initial
tests, if the camera’s orientation was set too low, then the
robot did not make the necessary movement in time. By the
time it was done, the line was already outside of its vision
field, so no further decisions could be made properly.
Conversely, if the camera was set too high, then other parts
of the path became visible, and it was not possible for the
robot to choose the current area of interest of the line being
followed.

The implementation presented here did not include the
robot’s learning and the different weights for the layers of
neurons were found experimentally. However, this would
be a viable method to improve performance, by adjusting
said weights in accordance with how close the turns are in
the trajectory. In previously available examples of applica‐
tions using AER sensors, most of the time, the sensor is
fixed in one position, which helps to reduce the number of
events caused by background noise. In this case, it was
shown how the sensor can still work properly while being
mounted on a moving object, if the background is clean
enough.

6. Supplementary Material

Three sample videos of the line-following robot can be
found at:

• https://db.tt/hwXE1uG9

• https://db.tt/mU3A6qeu

• https://db.tt/GdTutajX

7. References

[1] L.P. Maguire, T. M. McGinnity, B. Glackin, A.
Ghani, A. Belatreche, and J. Harkin. Challenges for
large-scale implementations of spiking neural
networks on FPGAs. Neurocomputing, 71(1-3):13–29,
December 2007.

[2] M.D. McDonnell, K. Boahen, A. Ijspeert, and T.J.
Sejnowski. Engineering intelligent electronic
systems based on computational neuroscience.
Proceedings of the IEEE, 102(5):646–651, 2014.

[3] D.H. Hubel and T.N. Wiesel. Receptive fields,
binocular interaction and functional architecture in
cat’s visual cortex. Journal of Physiology (London),
160:106–164, 1962.

[4] D.H. Hubel and T.N. Wiesel. Receptive fields and
functional architecturein two nonstriate visual area
(18 and 19) of the cat. Journal of Neurophysiology,
28:229–289, 1965.

[5] K. Fukushima. Cognitron: A self-organizing
multilayered neural network. Biological Cybernetics,
20(3-4):121–136, 1975.

[6] K. Fukushima. Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological
Cybernetics, 36(4):193–202, 1980.

[7] B. Linares-Barranco. Spike-based vision processing.
seeing without frames. IEEE International Symposi‐
um on Circuits and Systems, 2006.

[8] N. Kasabov, editor. Handbook of Bio-/Neuro-Informat‐
ics. Springer-Verlag Berlin Heidelberg, 2014.

[9] R. Paz, F. Gomez-Rodriguez, M.A. Rodriguez, A.
Linares-Barranco, G. Jimenez, and A. Civit. Test
infrastructure for address-event-representation
communications. In Joan Cabestany, Alberto Prieto,
and Francisco Sandoval, editors, Computational
Intelligence and Bioinspired Systems, volume 3512 of
Lecture Notes in Computer Science, pages 518–526.
Springer Berlin Heidelberg, 2005.

[10] B. Linares-Barranco, T. Serrano-Gotarredona, L. A.
Camuñas-Mesa, J.A. Perez-Carrasco, C. Zamarre‐
ño-Ramos, and T. Masquelier. On spike-timing-
dependent-plasticity, memristive devices, and
building a self-learning visual cortex. Frontiers in
Neuroscience, 5(26), 2011.

[11] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x
128 120db 30mw asynchronous vision sensor that

8 Int J Adv Robot Syst, 2016, 13:39 | doi: 10.5772/62321

https://db.tt/hwXE1uG9
https://db.tt/mU3A6qeu
https://db.tt/GdTutajX

responds to relative intensity change. In Solid-State
Circuits Conference, 2006. ISSCC 2006. Digest of
Technical Papers. IEEE International, pages 2060–
2069, Feb 2006.

[12] M. Litzenberger, C. Posch, D. Bauer, A.N. Belbachir,
P. Schon, B. Kohn, and H. Garn. Embedded vision
system for real-time object tracking using an
asynchronous transient vision sensor. In Digital
Signal Processing Workshop, 12th - Signal Processing
Education Workshop, 4th, pages 173–178, Sept 2006.

[13] T. Delbruck and P. Lichtsteiner. Fast sensory motor
control based on event-based hybrid neuromor‐
phic-procedural system. In Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on,
pages 845–848, May 2007.

[14] F. Gomez-Rodriguez, A. Linares-Barranco, L. Miro,
Shih-Chii Liu, A. van Schaik, R. Etienne-Cummings,
and M.A. Lewis. AER auditory filtering and CPG
for robot control. In Circuits and Systems, 2007.
ISCAS 2007. IEEE International Symposium on, pages
1201–1204, May 2007.

[15] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R.J.
Douglas, and T. Delbruck. A pencil balancing robot
using a pair of aer dynamic vision sensors. In

Circuits and Systems, 2009. ISCAS 2009. IEEE
International Symposium on, pages 781–784, May
2009.

[16] T. Delbruck. Frame-free dynamic digital vision.
Proceedings of Intl. Symp. on Secure-Life Electronics,
Advanced Electronics for Quality Life and Society,
pages 21–26, 2008.

[17] R. Berner. High-speed USB2. 0 AER interfaces. PhD
thesis, Diploma thesis, Dept. Elect. Eng., University
of Züurich, ETH Züurich, and Universidad de
Sevilla, Zurich, Switzerland, 2006.

[18] A. Jiménez-Fernandez, J.L. Fuentes-del Bosh, R.
Paz-Vicente, A. Linares-Barranco, and G. Jimenez.
Neuro-inspired system for real-time vision sensor
tilt correction. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on,
pages 1394–1397. IEEE, 2010.

[19] UZH, ETH, and Inilabs. The jAER Open Source
Project. http://sourceforge.net/p/jaer/wiki/Home/,
2014. [Accessed on 7/10/2014].

[20] W. Gerstner and W.M. Kistler. Spiking Neuron
Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, 2002.

9Uziel Jaramillo-Avila, Horacio Rostro-Gonzalez, Luis A. Camuñas-Mesa, Rene de Jesus Romero-Troncoso and Bernabe Linares-Barranco:
An Address Event Representation-based Processing System for a Biped Robot

