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Summary
A data-based predictive controller is proposed, offering both robust stability
guarantees and online learning capabilities. To merge these two properties in
a single controller, a double-prediction approach is taken. On the one hand,
a safe prediction is computed using Lipschitz interpolation on the basis of an
offline identification dataset, which guarantees safety of the controlled system.
On the other hand, the controller also benefits from the use of a second online
learning-based prediction as measurements incrementally become available
over time. Sufficient conditions for robust stability and constraint satisfaction
are given. Illustrations of the approach are provided in a simulated case study.
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1 INTRODUCTION

When designing controllers, identifying the closed-loop behavior of the system w.r.t. the control action is crucial. There
are systems whose identification via standard methods is not feasible, for instance because its complexity forbids the
derivation of first-principle models, due to the large number of variables, or due to the presence of significant nonlin-
earities that might be unknown a priori.1 Typically, nonlinear regression methods are employed to identify wide classes
of systems based on input-output measurements of the plant. If little about the underlying (nonlinear) system is known
with certainty a priori, then it is imperative to use regression methods that are flexible to learn rich classes of dynamics.
Some of the most flexible regression methods for such purposes are machine learning methods, a number of which have
been employed in data-based control. To name a few examples from a rich body of literature, some works have considered
direct weight optimization methods,2-4 Gaussian processes,1,5 or random forests,6 among many others.

As a possible paradigm to tackle the control of such systems, data-based predictive control has recently gained increas-
ing attention. The identified models are used by a model predictive controller (MPC) to calculate the control action that
minimizes a performance index, according to the predicted evolution of the system. Inevitably, the performance of the
resulting closed-loop dynamics rests on the accuracy of the predictions.

Besides, MPCs that combine robustness and stability guarantees with the data-based approach mentioned before are
an open problem within the control community. An excellent survey paper that reviews learning and safety approaches for
MPC can be found in Hewing et al.7 According to the classification therein, this article aims to learn the system dynamics
in order to design a robust controller via a nonparametric model. Apart from MPC, other data-based approaches that are
worth mentioning are reinforcement learning,8 dual control,9 and adaptive control.10

[Correction added on 22 September 2020, after first online publication: ‘model predictive controller’ has been changed to ‘model predictive control’ in
the article title.]
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As well as the machine learning methods mentioned above, Lipschitz interpolation (LI) techniques11,12 and their
generalizations13-15 have been widely studied and applied to control, under the names nonlinear set membership
(NSM)14,16 and kinky inference (KI),17 due to their favourable properties in data-based control. In this line, the authors
have recently proposed learning predictive controllers whose predictions are inferred from this class of methods.18,19

In general, the approaches reviewed2-19 are based on using a fixed dataset to design the model, usually collected
offline from ad hoc identification experiments, and do not consider the possibility of improving the predictions online.
The terms online and learning are particularly suitable when considering data-based control, since during the opera-
tion of the closed-loop plant, access to new observations of the system becomes available. It seems intuitive to add these
data points to the database, in order to improve future predictions. According to T. Mitchell’s definition,20 an algorithm
is learning if it improves its performance relative to some metric with increasing exposure to data. These new data
points could be used to improve the estimations in real time. The improvement of the performance has been validated
in multiple works within the last decade.21,22 For certain generalized LI techniques, the conditions under which it can
be guaranteed that the prediction error vanishes (up to a factor of the level of observational error) have been studied in
Reference 13.

However, when considering online learning-based predictive control settings, especially with unknown Lipschitz
constants, there are few results that explicitly consider robustness issues, particularly when hard constraints are taken
into account. Indeed, the design of data-based predictive controllers that include flexible online learning capabilities and
guarantees of robust stability and constraint satisfaction is still an open problem.7

As a step toward addressing this challenge, this article extends the results presented in Manzano et al,18,19 which were
based on offline model identification, to an online learning framework. In particular, an online learning MPC based on a
double prediction model (similar in spirit to Aswani et al23) is presented. The proposed MPC guarantees robust constraint
satisfaction and stability by means of a set of tightened constraints, an appropriate terminal cost and an ad hoc designed
data update policy. The controller proposed is not based on a terminal region, following a design procedure similar to
the controller presented in Reference 19. This avoids the calculation of invariant sets in the controller design, which is
in general a hard task. A preliminary version of this work, based on a terminal constraint and a suboptimal data update
policy (in which the proofs of the stability analysis were omitted), was presented in Limon et al.24

The rest of the article is structured as follows. Section 2 introduces the control problem. Section 3 presents the KI
learning methodology. Section 4 presents the MPC, which includes the double prediction model and the stability guaran-
tees. Finally, Section 5 introduces a simulated case study of a quadruple-tank process, in which the controller’s properties
are illustrated.

Notation

If v,w are two column vectors, (v,w) stands for [vT ,wT]T , |v| denotes the vector whose components are the absolute value of
the components of v, and v<w implies that each component of v is smaller than its corresponding element of w. The set of
integers from a to b is denoted I

b
a. Given two sets A, B, the Minkowski sum A⊕B is defined as the set {a+ b:a∈A,b∈B},

while the Pontryagin difference A⊖B is the set {c : c+ b∈A,∀b∈B}. Given a vector v ∈ Rn, the ball (v) ∈ Rn is defined
as (v) = {y ∶ |ys| ≤ vs, s ∈ I

n
1}. If a continuous function 𝛼 ∶ R≥0 → R≥0 is strictly increasing and 𝛼(0) = 0, 𝛼 is called

a -function. The notation ŷ(j|k) denotes the prediction of y, j time steps ahead, given the measured y at time k. The
identity matrix of size n is denoted In. The projection of a vector x onto a set B is defined as ProjB(x) = arg min

b∈B
||b − x||.

The maximum over a set of m vectors maxi vi for all i ∈ I
m
1 denotes the maximum elementwise.

2 PROBLEM SETTING

The objective of this article is to develop stabilizing controllers that guarantee robust constraint satisfaction, while at the
same time being able to improve their closed-loop performance using the data collected online. The plant to be controlled
is a discrete-time system in which at sampling time k ∈ N, the control actions are denoted u(k) ∈ Rnu and the measured
outputs y(k) ∈ R

ny . This plant is subject to hard constraints in the inputs and outputs, that is,

u(k) ∈  , y(k) ∈ hard ∀k,



MANZANO et al. 8815

where the sets  ⊂ Rnu and hard ⊂ R
ny are compact.

It is assumed that the evolution of the output can be characterized by the following nonlinear autonomous regression
exogenous (NARX) model:

y(k + 1) = f (x(k),u(k)) + e(k), (1)

where e(k) ∈ R
ny models the process noise, which is assumed to be upper-bounded by ē ∈ R

ny ≥ sup k(|e(k)|) ≥ 0. The
state is defined by the following regression of previous outputs and inputs, for some memory horizons na and nb:

x(k) = (y(k), y(k − 1), … , y(k − na),u(k − 1), … ,u(k − nb)). (2)

In Levin and Narendra,25 it is proven that under mild assumptions on the observability of a system, any system can
be described by an NARX model. Besides, it is also shown that it can be posed as a state-space model as follows:

x(k + 1) = F(x(k),u(k)) + 𝜉(k), (3a)

y(k) = Mx(k), (3b)

where

F(x(k),u(k)) = (f (x(k),u(k)), y(k), … , y(k − na + 1),u(k), … ,u(k − nb + 1)),
M = [Iny , 0, … , 0],

𝜉(k) = (e(k), 0, … , 0).

It is assumed that the origin is the equilibrium point of the system (ie, f (0,0)= 0) where the plant must be stabilized,
and that it is contained in (hard, ).

We assume that the true target function f -and by extension, F- are unknown. Additionally, we assume that we have
access to an initial dataset of measurements of the output y and that, in subsequent time steps, we might obtain additional
measurements of this output (online). The objective is to design a predictive controller based on a dataset of input and
output measurements, which is input-to-state stable26 and that satisfies the constraints, as well as enhancing the perfor-
mance of the closed-loop system by adding the online data during the operation of the system. To generate predictions
we utilize the dataset to learn f (and thus, F) with a nonparametric regression approach that will be discussed in the
following section.

3 KI AS A LEARNING METHOD

This section briefly introduces the learning and prediction method used in this article, presented in Reference 13. In order
to simplify notation, we note that the arguments of the function f (1) can be aggregated into the so-called regressors w =
(x,u) ∈  ⊂ Rnw which, with a slight abuse of notation, allows us to conceive the state transition function f ∶  →  as
a mapping w(k) → y(k+ 1), which will be referred to as ground truth function.

Assumption 1. The ground truth function f is Lipschitz continuous, that is,

|f (w1) − f (w2)| ≤ L∗||w1 − w2||,∀w1,w2 ∈  . (4)

The bound on the mapping is given by the smallest constant L∗ ∈ R
ny that satisfies (4), called the Lipschitz

constant.
Then, the learning method13 consists of the following: Assume access to a noisy set of N sampled inputs and outputs,

gathered in a dataset = {(wi, f̃ i)| i ∈ I
N

1 }, where f̃ i denotes the ith noise-corrupted sample of f at input wi. The objective
is to learn the unknown function f , in order to estimate its value for unseen points w̃ ∉  (where  is the set of inputs
contained in the dataset ). In this learning method, the Lipschitz constant L* is unknown. Instead, an estimation L ∈
R

ny is computed as the minimum constant that is consistent with the data (with a regularization term to compensate for
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the observational noise):13

L = max
(w⋅,f̃ ⋅)∈

{|f̃ i − f̃ j| − 2ē||wi − wj|| | i, j = 1, … ,ND ∧ ||wi − wj|| > 0

}
. (5)

Using this estimation yields the so-called lazily adapted constant kinky inference (LACKI) predictor. After this estimate
is computed from the data, the prediction 𝔣̂(w̃;L,) of f (w̃) for a new query input w̃ is computed as:

𝔣̂(w̃;L,) = 1
2

min
i=1,… ,ND

(f̃ i + L||w̃ − wi||) + 1
2

max
i=1,… ,ND

(f̃ i − L||w̃ − wi||). (6)

This predictor 𝔣̂(⋅;L,) is Lipschitz continuous, with Lipschitz constant L.17 It will be used to forecast the evolution
of the plant, yielding the prediction model

ŷ(k + 1) = 𝔣̂(x(k),u(k);L,). (7)

4 ONLINE LEARNING-BASED MPC

This section presents the proposed learning-based predictive controller. As we have already stated, it will be able to ensure
robust stability and constraints satisfaction of the closed-loop system, while including new data points acquired during
the plant operation in order to enhance its performance.

4.1 Double prediction framework

This article considers an online learning set-up. In a first offline design stage, an initial dataset (0) is available, obtained
via specific experiments or given historical data. Once the controller is designed and applied to the plant, access to new
measurements y(k) = f̃ (w(k − 1)) = f̃ (x(k − 1),u(k − 1)) becomes available during its operation, allowing one to update
the dataset up to the current time step k, yielding(k). An update method(k − 1) → (k)will be presented, heuristically
tailored to the proposed control law and learning method. Similar to Aswani et al,23 the proposed controller will use two
different prediction models, one for safety and one for performance.

The safe model

ŷs(k + 1) = 𝔣̂s(x(k),u(k)) = 𝔣̂(x(k),u(k);L,(0)), (8)

is obtained applying 𝔣̂ in Equation (7) with (0), and where L is obtained as in (5). It is derived offline from the initial
data available before closing the loop. A state-space version can be obtained using Equation (3a), denoted x̂s(k + 1) =
F̂s(x(k),u(k)).

Given the Lipschitz continuity of the function of the real system, it can be proven that the estimation error of the
proposed method is bounded.13 Under the assumption that this bound is known, the model provides a safe prediction
that allows us to design deterministic robust controllers able to guarantee stability and constraint satisfaction. The error
bound can be calculated from the following expression:13

𝜇 = (L∗ + L)R + 2ē, ∈ R
ny , (9)

where R = sup w∈
infw̃∉

||w − w̃||, for (0). In this article, we assume that the only a priori knowledge from the
plant is the input-output data collected from the experiments, with which the Lipschitz constant L can be estimated.
However, the prediction error bound (9) still requires knowledge of the true Lipschitz constant of the plant, L*, and the
noise bound ē. Therefore, instead of using (9), the prediction error bound will be obtained in practice via validation tests, as
it is customary in identification. In order to prove robust stability, it is assumed that a guaranteed bound of the estimation
error is determined, as stated in the following assumption.
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Assumption 2. The prediction error of the safe model es(⋅) ∈ R
ny , which depends on the dataset (0) and the estimated

Lipschitz constant L, is bounded by some known 𝜇 ∈ R
ny . That is, for all admissible (x,u),

es(k) = |y(k + 1) − 𝔣̂s(w(k);L,(0))| ≤ 𝜇. (10)

The safe model and its bound es are necessary to prove robust constraint satisfaction, and therefore, safety of the
controlled system. Note that es(⋅) accounts not only for the error induced by the underestimation of the Lipschitz
constant, but also for the lack of information on the dataset, as well as for the effect of the noise in the sampled
data.

Property 1. According to Assumption 2, the real output f (w) lies in a ball centered in 𝔣̂s(w) and width 𝜇, which is defined
as the set

s(x,u) = {𝔣̂s(x,u)⊕ (𝜇)}. (11)

The online model

ŷp(k + 1) = 𝔣̂p(x(k),u(k)) = Projs(x(k),u(k))

(
𝔣̂(x(k),u(k);L,(k))

)
, (12)

provides the prediction with the updated dataset (k), as long as it is in contained in s. If not, a guaranteed prediction
is obtained by projection, according to Property 1. The state-space online model is denoted x̂p(k + 1) = F̂p(x(k),u(k)).

Since new information is added to the dataset, it is sensible to think that it will provide better predictions. As proven in
Reference 13, the estimation error of the online model, which will be denoted ep(k), decreases as the density of the dataset
increases. Thus, this model will be used to enhance the closed-loop performance of the plant. However, the guarantee on
the bound of the prediction error 𝜇 might not be valid for 𝔣̂p, and then it would not be suitable for safety. For this reason,
a double model framework is used.

4.2 Proposed controller

In this section, the proposed MPC, the required design ingredients, and the stability analysis are presented. Additionally,
we prove that the closed-loop system is input to state stable w.r.t. the estimation error of the updated prediction model.

In order to ensure the satisfaction of hard constraints in the outputs (ie, y(k) ∈ hard ∀k), the proposed controller is
based on a set of tightened constraints,27 to counteract the effect of the prediction error. This set of constraints varies for
each prediction step j, and it is defined as

j = hard ⊖ (dj(𝜇)), (13)

where dj(c1) (known as back-off in MPC literature) is obtained by the recursion

dj(c1) =
j∑

i=1
ci(c1), (14a)

cj+1(c1) = Lrj(c1), (14b)

rj(c1) =
j∑

i=𝜎j

||ci(c1)||, (14c)

with 𝜎j = max(1, j − na), for all j ∈ I
N
1 .

The proposed predictive controller is defined in the following optimization problem, denoted as
PN(x(k);L,(0),(k)).* † Its solution yields the control law u∗(k) = 𝜅MPC(x(k);L,(0),(k)).

*The abbreviation for PN (x(k);L,(0),(k)) will be denoted PN (k).
†For the sakeof conciseness, we omit the dependence of the functions V N ,𝓁 and V f with L and (0),(k).
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where x(k) is the current state, u= (u(0),… ,u(N − 1)) is the future input trajectory, and x̂p(j|k), ŷp(j|k), x̂s(j|k), and ŷs(j|k)
are the state and input trajectories predicted from the current state using the online and safe models, respectively.

Note how the optimization problem reflects the purpose of each model: the performance index is calculated using
the online model, while the constraints must be satisfied by the predicted trajectory using the safe model. Notice that
there is no terminal constraint in the optimization problem. Instead, stability is achieved by means of a weighting factor
𝜆 ≥ 1 for the terminal cost, following the method presented in Manzano et al.19 To ensure robust stability and constraint
satisfaction, the following assumptions must hold:

Assumption 3.

1. The stage cost function 𝓁(y,u) is a continuous positive definite function for all y ∈ hard and u ∈  such that
𝓁(y,u) ≥ 𝛼y(||y||) + 𝛼u(||u||) and |𝓁(y1,u) − 𝓁(y2,u)| ≤ 𝜃𝓁(||(y1,u) − (y2,u)||), for certain -functions 𝜃𝓁 , 𝛼y, 𝛼u.

2. There exists a local control law u = 𝜅f (x), a terminal cost function V f and a set Ω𝛾 = {x ∶ Vf (x) ≤ 𝛾} ⊆ Rnx , for 𝛾 > 0
such that for all x ∈ Ω𝛾 , the following conditions holds:

(a)

𝜅f (x) ∈  , (16a)

Mx ⊕ (aN) ⊆ N , (16b)

where aj is given by the recursion aj+1 = L||aj|| + 𝜇, with a1 = 𝜇.
(b) V f is a continuous positive definite function such that |Vf (x1) − Vf (x2)| ≤ 𝜃f (||x1 − x2||) and

𝛼f (||x||) ≤ Vf (x) ≤ 𝛽f (||x||), (17a)

Vf (F̂p(x, 𝜅f (x))) − Vf (x) ≤ −𝓁(Mx, 𝜅f (x)), (17b)

for certain -functions 𝛼f , 𝛽f , 𝜃f .

Remark 1. Note that (16b) implicitly states a condition on the estimation error bound 𝜇. It can be proven that if 𝜇 is small
enough to ensure that (aN)⊕ (dN(𝜇)) ⊆ 𝜖 , for 0 < 𝜖 < 1, then (16b) is solvable.

Remark 2. Equation (17b) in Assumption 3 requires that the Lyapunov condition holds for the online prediction model.
Since the terminal ingredients must be computed offline, the online model is not available for this design. Taking into
account that the safe model can be regarded as a sampled subset of the updated model, since (0) ⊆ (k), the online
model is contained in a difference inclusion centered in the safe model and given by the estimation error of the LACKI
method, which is explicitly known. Therefore, robust design methods can be used to calculate the terminal ingredients
satisfying Assumption 3.
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Definition 1. Making use of the definition of cj(c1) and rj(c1) in Equation (14a) and Assumption 3, the following function,
which is a -function for every input, is defined:

𝜃a(c1) =
N−1∑
j=0
𝜃𝓁(||cj+1(c1)||) + 𝜃f (rN+1(c1)). (18)

Assumption 4. The set

Υ = {x ∶ 𝓁(Mx, 0) ≤ 𝜃a(2𝜇)} (19)

is contained in Ω𝛾 .

Definition 2. 𝜙 is a positive constant such that

𝓁(Mx, 0) > 𝜙, ∀x ∉ Ω𝛾 . (20)

Similarly to Manzano et al,19 it can be proven that 𝜙 is such that 𝜙 ≥ 𝜃a(2𝜇).
The region of feasibility of the problem (15) is denoted XN , and a level set of its optimal cost is defined as:

Γ = {x ∈ XN ∶ V∗
N(x) ≤ N𝜙 + 𝜆𝛾}. (21)

The control law is given by Algorithm 1, where the updating policy of the online dataset guarantees closed-loop
robust stability. At each time step k, the online dataset is updated with the current data point, that is (k) = (k − 1) ∪
(y(k),w(k − 1)), subject to the following triple updating criteria:

1. The current data point must not be close to any point already contained in (k − 1), for a given threshold 𝜏 ≥ 0. This
rule prevents the cardinality of  from becoming large, yielding the method computationally expensive. A reasonable
estimate for 𝜏 is the noise level ē.

2. Adding the new data point must not increase the cost calculated with the shifted input sequence which, together with
the control policy and update rule, is defined in Algorithm 1.

3. The new candidate (y(k),w(k− 1)) must be consistent with the Lipschitz constant obtained in Equation (5). This rule
is optional, included so that the online model maintains the properties of the LACKI method.13

In the following theorem, it is proven that the proposed control algorithm guarantees that the closed-loop system is
input-to-state stable (ISS).

Theorem 1. Consider that Assumptions 2-4 hold, and let 𝜅MPC(x) be the control law derived from the solution of PN (k)
applied using Algorithm 1. Then, for any feasible state x(0) ∈ Γ, the system controlled by the control law u(k) = 𝜅MPC(x(k))
is input-to-state stable w.r.t. the estimation error ep(k), and the constraints are fulfilled along the operation, that is, y(k) ∈
hard,∀k.

Proof. In this proof, different predicted trajectories will be considered, as shown in Figure 1. These trajectories are
obtained predicting from x(k) with u*(k) or from x(k+ 1) with u(k + 1), and using the safe or the online models. ▪

It is first proven that Γ is an invariant set of the closed-loop system, that is, if x(k) ∈ Γ, then x(k + 1) ∈ Γ. To this
end, as it is standard in MPC proofs, it is proven that the shifted trajectory presented in Algorithm 1 is feasible for
x(k+ 1).

Provided that x(k) ∈ Γ, due to its definition in Equation (21), it follows that

V∗
N(x(k)) ≤ N𝜙 + 𝜆𝛾, (22)

and therefore it can be proven28 that

x̂p(N|k) ∈ Ω𝛾 . (23)
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Algorithm 1. Online update and control law

while automatic control is on do
Read y(k)
x(k) ← (y(k),… , y(k − na),u(k − 1),… ,u(k − nb)) ⊳ State
function Shifted Sequence(ū) ⊳ Shifted Sequence

ū(j|k) ← u∗(j + 1|k − 1), j ∈ I
N−2
0

ū(N|k) ← 𝜅f (x̂p(N|k − 1))
return ū

end function
̄(k) ← (k − 1) ∪ (y(k),w(k − 1)) ⊳ Updated dataset

if
(

min
wi∈(k)

‖w(k) − wi‖<𝜏) and
(

V̄N(x(k), ū; ̄(k)) ≤ V̄N(x(k), ū;(k − 1))
)

and

(
max

i∈I
N(k)
1

|y(k)−yi|−2ē‖w(k)−wi‖ ≤ L

)
then

(k) ← ̄(k) ⊳ Update
else

(k) ← (k − 1) ⊳ Do not update
end if
u∗(k) ← 𝜅MPC(x(k);L,(0),(k)) ⊳ Solution of PN(k)
u(k) ← u∗(0) ⊳ Receding horizon
Apply u(k) to the system

end while

F I G U R E 1 Propagation of the predictions

Feasibility of the shifted sequence u(k + 1) is proven for any x(k) ∈ Γ demonstrating that

1. ū(j|k + 1) ∈  , ∀j ∈ I
N−1
0

2. ŷs(j|k + 1) ∈ j, ∀j ∈ I
N−1
0 .

Constraint (i) holds because u∗(k) ∈  , and since x̂p(N|k) ∈ Ω𝛾 , because of Equation (16a), the shifted sequence
defined in Algorithm 1 is feasible, that is, ū(j|k + 1) ∈  , ∀j ∈ I

N−1
0 .

To address (ii), the following Lemmas, proven in Appendix A1, are used:

Lemma 1. The following inequalities hold:|ŷp(j − 1|k + 1) − ŷp(j|k)| ≤ cj(ep(k)), (24a)

||x̂p(j − 1|k + 1) − x̂p(j|k)|| ≤ rj(ep(k)), (24b)

where cj(c1) and rj(c1) are obtained from the recursion (14a).
The bounds (24) hold for the safe model, taking c1 = 𝜇 instead of ep(k).
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Lemma 2. For all y ∈ j and all Δy ∈ (cj(𝜇)), the sets j are such that y + Δy ∈ j−1.

It is known that ŷs(j|k) ∈ j up to N − 1, and that

|ŷs(j|k) − ŷs(j − 1|k + 1)| ≤ cj(𝜇). (25)

Hence, because of Lemma 2, ŷs(j|k + 1) ∈ ŷs(j + 1|k)⊕ (cj+1(𝜇)) ⊆ j+1 ⊕ (cj+1(𝜇)) ⊆ j. For the last prediction, the
fact that x̂p(N|k) ∈ Ω𝛾 implies that ŷp(N|k) ∈ N (Equation (16b)).

Another lemma is introduced (proven in Appendix A1):

Lemma 3. The following inequalities hold:

|ŷp(j|k) − ŷs(j|k)| ≤ aj, (26)

where aj is given by the recursion

aj+1 = L||aj|| + 𝜇, (27)

with a1 = 𝜇.

Given the definition of cj(𝜇) in Lemma 1 and aj in Lemma 3, the following bound is obtained:

|ŷp(j|k) − ŷs(j − 1|k + 1)| ≤ |ŷp(j|k) − ŷs(j|k)| + |ŷs(j|k) − ŷs(j − 1|k + 1)|
≤ aj + cj(𝜇). (28)

Using Lemma 3 and Equation (28), it follows that the error between the predictions of the safe and the online models
is bounded, so

|ŷp(N|k) − ŷs(N − 1|k + 1)| ≤ aN + cN(𝜇).

Then, because of Equation (16b),

ŷs(N − 1|k + 1) ∈ Mx̂p(N|k)⊕ (aN)⊕ (cN(𝜇)) ⊆ N ⊕ (cN(𝜇)) ⊆ N−1, (29)

which completes the proof of (ii).
Given the definition of the cost in Equation (15a), the measurements of y(k) and y(k+ 1), and the optimal and shifted

sequences u*(k) and u(k + 1) (see Algorithm 1), the following equality holds:

VN(x̂p(1|k),u(k + 1);(k)) − V∗
N(x(k),u

∗(k);(k)) = 𝓁(ŷp(N|k), 𝜅f (x̂p(N|k))) + Vf (F̂p(x̂p(N|k), 𝜅f (x̂p(N|k))))
− 𝓁(y(k),u∗(k)) − Vf (x̂p(N|k)). (30)

Since x̂p(N|k) ∈ Ω𝛾 and taking into account Equation (17b), the following inequality is obtained:

Vf (F̂p(x̂p(N|k), 𝜅f (x̂p(N|k)))) − Vf (x̂p(N|k)) + 𝓁(ŷp(N|k), 𝜅f (x̂p(N|k))) ≤ 0, (31)

which implies that

VN(x̂p(1|k),u(k + 1);(k)) − V∗
N(x(k),u

∗(k);(k)) ≤ −𝓁(y(k),u∗(k)). (32)

In addition,

VN(x(k + 1),u(k + 1);(k)) − VN(x̂p(1|k),u(k + 1);(k)) =
N−1∑
j=0

𝓁(ŷp(j|k + 1), ū(j|k + 1)) −
N−1∑
j=0

𝓁(ŷp(j + 1|k), ū(j|k + 1))

+ Vf (x̂p(N|k)) − Vf (F̂p(x̂p(N|k), 𝜅f (x̂p(N|k)))). (33)
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Using Lemma 1 and taking into account continuity of 𝓁 and V f , there exists certain -functions 𝜃𝓁 and 𝜃f and a
function 𝜃a such that

VN(x(k + 1),u(k + 1);(k)) − VN(x̂p(1|k),u(k + 1);(k)) ≤
N−1∑
j=0
𝜃𝓁(||cj+1(ep(k))||) + 𝜃f (rN+1(ep(k))) = 𝜃a(ep(k)). (34)

Now, merging Equations (32) and (34) yields

VN(x(k + 1),u(k + 1);(k)) − V∗
N(x(k),u

∗(k);(k)) ≤ −𝓁(y(k),u∗(k)) + 𝜃a(ep(k)). (35)

Moreover, because of the updating policy of Algorithm 1,

VN(x(k + 1),u(k + 1);D(k + 1)) ≤ VN(x(k + 1),u(k + 1);D(k)), (36)

and by optimality,

V∗
N(x(k + 1);D(k + 1)) ≤ V N(x(k + 1),u(k + 1);D(k + 1)). (37)

Summing up,

V∗
N(x(k + 1),u∗(k + 1);D(k + 1)) − V∗

N(x(k),u
∗(k);(k)) ≤ −𝓁(y(k),u∗(k)) + 𝜃a(ep(k)). (38)

Next, recursive feasibility is proven ensuring that x(k + 1) ∈ Γ, for which it is necessary that V∗
N(x(k + 1);D(k + 1)) ≤

N𝜙 + 𝜆𝛾 . Consider that x(k) ∉ Υ. Then 𝓁(y(k),u∗(k)) > 𝜃a(2𝜇), provided that the maximum online prediction error sat-
isfies ep ≤ 2𝜇, given the definition of 𝔣̂p in Equation (12). Therefore, using Equations (22) and (38), it is derived that
x(k + 1) ∈ Γ.

If x(k) ∈ Υ, then x(k) ∈ Ω𝛾 (Assumption 4). From standard arguments of MPC, it follows that

V∗
N(x(k)) ≤ 𝜆Vf (x(k)) ≤ 𝜆𝛾, (39)

which taking into account 𝜃a(ep(k)) ≤ 𝜙 implies that

V∗
N(x(k + 1),u∗(k + 1);D(k + 1)) ≤ 𝜙 + 𝜆𝛾 − 𝓁(y(k),u(k)) ≤ N𝜙 + 𝜆𝛾, (40)

and hence x(k + 1) ∈ Γ.
To prove input-to-state stability, Equation (38) and the continuity of the stage cost is used to derive that

V∗
N(x(k + 1);D(k + 1)) − V∗

N(x(k);(k)) ≤ −𝛼y(||y(k)||) − 𝛼u(||u(k)||) + 𝜃a(ep(k)). (41)

Defining

W(x(k);(k)) =
n∑

j=0
V∗

N(x(k − j);(k − j)), (42)

with n = max(na,nb + 1), it follows that 𝛼x(||x(k)||) ≤ n∑
j=0
𝛼y(||y(k − j)||) + 𝛼u(||u(k − j − 1)||),18 and hence

W(x(k + 1);(k + 1)) − W(x(k);(k)) ≤ −𝛼x(||x(k)||) + (n + 1)𝜃a( max
j=0,… ,n

ep(k − j)), (43a)

𝛼1(||x||) ≤ W(x(k)) ≤ 𝛼2(||x||). (43b)

Hence, W(x(k)) is an ISS Lyapunov function.
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The proposed MPC is proven to be stable and to robustly satisfy the output constraints under certain assumptions.
Note that it lacks a terminal constraint, avoiding the calculation of a robust invariant set, unlike what is common in the
design of robust MPCs. The performance of the controller is enhanced by the inclusion of fresh data from the operation
of the plant, as it will be illustrated in the case study of the next section. Not only does the behavior improve, but also the
convergence rates are decreased as the updated estimation error decreases, because the closed-loop system is proven to
be input-to-state stable with respect to the estimation error of the updated model. This error decreases in average with
time, for increasing datasets.13

If the terminal cost is designed offline with the safe model, the following corollary proves that input-to-state practical
stability can still be derived:

Corollary 1. Consider that Assumptions 2 and 4 hold, and that Assumption 3 holds replacing Equation (17b) by

Vf (F̂s(x, 𝜅f (x))) − Vf (x) ≤ −𝓁(Mx, 𝜅f (x)), (44)

that is, satisfying the Lyapunov condition for the safe model. Let 𝜅MPC(x) be the control law derived from the solution of PN (k)
applied using Algorithm 1. Then, for any feasible state x(0) ∈ Γ, the system controlled by the control law u(k) = 𝜅MPC(x(k)) is
input-to-state stable w.r.t. ep(k) and 𝜇. Besides the constraints are fulfilled along the operation, that is, y(k) ∈ hard.

Proof. The proof is similar to the one of Theorem 1, but replacing Equation (31) as follows. First, see that from the
uniform continuity of V f and Lemma 3 (Equation (A7)), we have that

Vf (F̂p(x̂p(N|k), 𝜅f (x̂p(N|k)))) − Vf (F̂s(x̂p(N|k), 𝜅f (x̂p(N|k)))),
is upper bounded by

𝜃f (||F̂p(x̂p(N|k), 𝜅f (x̂p(N|k))) − F̂s(x̂p(N|k), 𝜅f (x̂p(N|k))||),
which is equal to

𝜃f (||f̂ p(x̂p(N|k), 𝜅f (x̂p(N|k))) − f̂ s(x̂p(N|k), 𝜅f (x̂p(N|k))||) ≤ 𝜃f (||𝜇||).
Taking this into account, Equation (31) can be rewritten in this case as

Vf (F̂p(x̂p(N|k), 𝜅f (x̂p(N|k)))) − Vf (x̂p(N|k)) + 𝓁(ŷp(N|k), 𝜅f (x̂p(N|k))) ≤ 𝜃f (||𝜇||). (45)

Following the subsequent steps, Equation (43a) would be rewritten as follows, given n = max(na,nb + 1):

W(x(k + 1);D(k + 1)) − W(x(k);(k)) ≤ −𝛼x(||x(k)||) + (n + 1)𝜃a( max
j=0,… ,n

ep(k − j)) + 𝜃f (||𝜇||). (46)

Consequently, the controlled system would be ISS w.r.t. ep and 𝜇. ▪

Remark 3. The domain of attraction of the controller is defined by the feasibility region Γ in Equation (21). This set
increases as the weighting factor 𝜆 increases.18 Hence, 𝜆 can be chosen arbitrarily big in order to enlarge the domain of
attraction of the MPC.

Remark 4. Soft constraints in the outputs, y(k) ∈ soft, may also be considered, so that the performance will be penalized
if the outputs go beyondsoft. To account for the soft constraint, we will make use of barrier functions, adding a penalizing
term to the stage cost. Hence, we can describe the stage cost 𝓁(y,u) as the standard cost to track the reference plus the
barrier function:18

𝓁(y,u) = 𝓁t(y,u) + 𝓁b(y), (47)

where 𝓁b(y) = 𝜓𝜌(y,soft). 𝜓 is a large constant, and 𝜌(y,soft) is a measurement of the distance of y to the set soft.
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F I G U R E 2 Scheme of the quadruple-tank process

5 CASE STUDY

The proposed controller will be applied to the quadruple-tank process presented in Johansson,29 reproduced in Figure 2.
Here, two upper tanks discharge on two lower tanks (tank number 3 into tank number 1, and tank 4 into 2). Two pumps
send water trough two 3-ways-valves, such that pump a feeds a fraction 𝛾a to tank 1 and the rest to tank 4, while a flow
qb𝛾b goes to tank 2 and qb(1 − 𝛾b) to tank 3.

The control inputs are the flows, qa, qb (m3/h); the states are the heights of the liquid in the tanks, denoted hi (m),
i ∈ I4

1; and the measurable outputs are the heights of the lower tanks, h1, h2. The dynamics of the plant are modeled by
the following set of differential equations:

A1
dh1(t)

dt
= −a1

√
2gh1(t) + a3

√
2gh3(t) + 𝛾a

qa(t)
3600

(48a)

A2
dh2(t)

dt
= −a2

√
2gh2(t) + a4

√
2gh4(t) + 𝛾b

qb(t)
3600

(48b)

A3
dh3(t)

dt
= −a3

√
2gh3(t) + (1 − 𝛾b)

qb(t)
3600

(48c)

A4
dh4(t)

dt
= −a4

√
2gh4(t) + (1 − 𝛾a)

qa(t)
3600

, (48d)

where Ai (m2) denotes the area of tank i and ai (m2) is the equivalent area of the hole of tank i. The parameters of
the model are given in Table 1. The constraints are given by 1.5≤ qa ≤ 1.9, 1.4 ≤ qb ≤ 1.8 m3∕h and 0.38≤ h1 ≤ 0.62,
0.45≤ h2 ≤ 0.73 m.

The sampling time is set to 𝜏s∕30 = 5 s, where 𝜏s stands for the mean settling time of a sequence of steps applied
to the system. A set of experiments is carried out to obtain a training dataset. The experiments are designed using the
methodologies presented in Rivera and Jun30 to identify the dynamics of a system: a sequence of chirp signals covering the
workspace are applied to generate the original dataset containing trajectories of inputs and outputs, with N0 = 5030 data
points. This dataset (0) is used for predicting. This simulation is represented in Figure 3. The output sensors introduce
noise that follows an uniform distribution with ē equal to 1% of the measurement.

In addition, several tests with random input signals (square signals with random mean, amplitude and frequency) are
carried out in order to obtain datasets for cross-validation, as represented partially in Figure 4.

The signals are scaled between 0 and 1 w.r.t. the span of the constraints. The regressor w(k) is constructed for differ-
ent values of na and nb. Cross validation tests are used to estimate the prediction error, which as shown in Figure 5, is
minimized for na = 2 and nb = 3. This results in 𝜇 = [0.98 1.24](cm), for which L = [1.231 0.836].
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T A B L E 1 Parameters of the system Param. Definition Value

A Area of the four tanks 0.03 m2

a1 Eq. area of the hole of tank 1 1.31× 10−4 m2

a2 Eq. area of the hole of tank 2 1.51× 10−4 m2

a3 Eq. area of the hole of tank 3 9.27× 10−5 m2

a4 Eq. area of the hole of tank 4 8.82× 10−5 m2

𝛾a Fraction of three-ways valve a 0.3

𝛾b Fraction of three-ways valve b 0.4

g Gravity acceleration 9.8 m/s2

F I G U R E 3 Chirp signals applied

F I G U R E 4 PRB signals applied
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Then, the MPC presented in Equation (15) is applied with N = 4, 𝜆 = 10, and 𝜏 = 0.01. The resulting back-off for the
safe model is d4 = [9.956.43](cm), and a4 = [5.533.86](cm). The stage and terminal cost are defined as follows:

𝓁(y,u) = ||y − yref||Q + ||u − uref||R + 𝜓
(

1 − exp
(
−max(y − ys, 0)

𝜖

))
(49)

Vf (x) = ||x − xref||P, (50)

where the height of the second tank is penalized with 𝜓 = 999 if it goes beyond ys = 0.61 m, with 𝜖 = 3 × 10−3. Q is set to
100I2, R= I2, and P is obtained by a LQR linearizing the NARX model around the reference. The back-off of the tightened
constraints results in N = {y ∶ [0.48 0.514] ≤ y ≤ [0.52 0.666](m)}.
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1.25 F I G U R E 5 Maximum prediction error of h1 (cm) for different values of na,nb

F I G U R E 6 Online learning MPC applied to a quadruple tank process

In the first set of simulations, the reference alternates every 5 seconds between yref
1 = [0.481 0.589] and yref

2 =
[0.515 0.562]. The parameters 𝛾 and 𝜙 are obtained as in Rawlings & Mayne,27 resulting in 𝛾 = 11698 and 𝜙 = 5.8359 ×
107, satisfying the assumptions of the controller.

The results are shown in Figure 6 for 100 simulations subject to the sensors’ random noise. The red dotted line repre-
sents the soft constraint, the green dashed line represents the reference, the gray band represents the set of signals, and
the blue line represents its mean.

Figure 6 illustrates the triple contribution of the article. The set of tightened constraints, applied to the safe model,
prevents the closed-loop system from violating the hard constraints (out of scope in the figure). The system is ISS and
converges to the reference. Besides, the performance is enhanced by adding the online data to the prediction model used
to minimize the cost. For instance, note that after 15 minutes, the model is able to learn the dynamics well enough to
avoid the penalty of the soft constraint (red dotted line).

In the simulation presented, the reference alternated between two values. However, the proposed controller can be
applied to any admissible reference. In a second set of simulations, represented in Figure 7, the reference changes ran-
domly between different reachable values. In addition, in order to compare the proposed controller with other strategies,
we apply the same setting to: (i) an MPC based on the ideal state-feedback model (identical to the plant), given by the
set of ODEs of Equation (48a), and (ii) the LACKI model without updating the dataset, that is, the offline version. We
compare the three controllers in Figure 7, representing the overall cost for 100 simulations, by means of the closed-loop
performance index, which is defined as

Φ =
tsim∑
i=1

𝓁(y(i),u(i)). (51)

In the results, it can be seen that the performance improves as more data is obtained for the online prediction model,
and that the constraints are satisfied along the operation.

6 CONCLUSIONS

An output-feedback online learning predictive controller based on KI was proposed. It exploits the data collected online
to enhance the performance. Under the assumption of known bounded errors, the controller guarantees robust stability
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(A) Height of the second tank
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(B) Boxplot comparison of the performance index

F I G U R E 7 Same setting applied to 100 simulations of three controllers, subject to random noise, in which the models are the set of
ODEs, the offline version of the LACKI, and the online one

and constraint satisfaction while being able to improve its performance online using the data obtained from new mea-
surements. The proposed controller does not require a terminal constraint. The main contributions of the article were
illustrated using a simulated quadruple tank process.

ACKNOWLEDGMENTS
The authors would like to thank Pablo Krupa for his helpful comments during the elaboration of this paper. This work
was supported by the MINECO-Spain and FEDER funds under project DPI2016-76493-C3-1-R and the VI-PPIT of the
University of Seville.

ORCID
J. M. Manzano https://orcid.org/0000-0003-2932-5581
D. Limon https://orcid.org/0000-0001-9334-7289

REFERENCES
1. Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ. A general safety framework for learning-based control in

uncertain robotic systems. IEEE Trans Automat Control. 2018;64(7):2737-2752.
2. Piga D, Formentin S, Bemporad A. Direct data-driven control of constrained systems. IEEE Trans Control Syst Technol.

2017;26(4):1422-1429.
3. Salvador JR, Ramirez DR, Alamo T, Muñoz de la Peña D. Offset free data driven control: application to a process control trainer. IET

Control Theory Appl. 2019;13(18):3096-3106.
4. Salvador JR, Muñoz de la Peña D, Ramirez DR, Alamo T. Predictive control of a water distribution system based on process historian data.

Opt Control Appl Methods. 2019;41(2):571-586.
5. Maiworm M, Limon D, Manzano JM, Findeisen R. Stability of Gaussian process learning based output feedback model predictive control.

IFAC-PapersOnLine. 2018;51(20):455-461.
6. Smarra F, Jain A, Ambrosini D, D’Innocenzo A, Mangharam R. Data-driven model predictive control using random forests for building

energy optimization and climate control. Appl Energy. 2018;226:1252-1272.
7. Hewing L, Wabersich KP, Menner M, Zeilinger MN. Learning-based model predictive control: toward safe learning in control. Ann Rev

Control Robotics Autonom Syst. 2020;3:269-296.
8. Sutton RS, Barto AG. Introduction to Reinforcement Learning. Cambridge, MA: MIT Press; 1998.
9. Wittenmark B. Adaptive Dual Control Methods: An Overview. Amsterdam, Netherlands: Elsevier; 1995:67-72.

10. Benosman M. Model-based vs data-driven adaptive control: an overview. Int J Adapt Control Signal Process. 2018;32(5):753-776.
11. Beliakov G. Interpolation of Lipschitz functions. J Comput Appl Math. 2006;196(1):20-44.
12. Sukharev AG. Optimal method of constructing best uniform approximations for functions of a certain class. USSR Comput Math Math

Phys. 1978;18(2):21-31.
13. Calliess JP. Lazily adapted constant kinky inference for nonparametric regression and model-reference adaptive control; 2016. arXiv

preprint arXiv:1701.00178.

https://orcid.org/0000-0003-2932-5581
https://orcid.org/0000-0003-2932-5581
https://orcid.org/0000-0001-9334-7289
https://orcid.org/0000-0001-9334-7289


8828 MANZANO et al.

14. Milanese M, Novara C. Set membership identification of nonlinear systems. Automatica. 2004;40(6):957-975.
15. Calliess JP. Lipschitz optimisation for Lipschitz interpolation. Paper presented at: Proceedings of the American Control Conference (ACC);

vol 2017, 2017:3141-3146; IEEE.
16. Canale M, Fagiano L, Signorile MC. Nonlinear model predictive control from data: a set membership approach. Int J Robust Nonlinear

Control. 2014;24(1):123-139.
17. Calliess JP. Conservative Decision-Making and Inference in Uncertain Dynamical Systems [PhD thesis]. University of Oxford; 2014.
18. Manzano JM, Limon D, Muñoz de la Peña D, Calliess J-P. Output feedback MPC based on smoothed projected kinky inference. IET Control

Theory Appl. 2019;13(6):795-805.
19. Manzano JM, Limon D, Muñoz de la Peña D, Calliess J-P. Robust learning-based MPC for nonlinear constrained systems. Automatica.

2020;117:108948.
20. Mitchell TM. Machine learning and data mining. Commun ACM. 1999;42(11):30-36.
21. Di Cairano S, Bernardini D, Bemporad A, Kolmanovsky IV. Stochastic MPC with learning for driver-predictive vehicle control and its

application to HEV energy management. IEEE Trans Control Systems Technol. 2013;22(3):1018-1031.
22. Ostafew CJ, Schoellig AP, Barfoot TD, Collier J. Learning-based nonlinear model predictive control to improve vision-based mobile robot

path tracking. J Field Robot. 2016;33(1):133-152.
23. Aswani A, Gonzalez H, Sastry SS, Tomlin C. Provably safe and robust learning-based model predictive control. Automatica.

2013;49(5):1216-1226.
24. Limon D, Calliess J, Maciejowski JM. Learning-based nonlinear model predictive control. IFAC-PapersOnLine. 2017;50(1):7769-7776.
25. Levin AU, Narendra KS. Identification of Nonlinear Dynamical Systems Using Neural Networks. Amsterdam, Netherlands: Elsevier;

1997:129-160.
26. Limon D, Alamo T, Raimondo DM, et al. Input-to-state stability: an unifying framework for robust model predictive control. Nonlinear

Model Predictive Control. Berlin, Heidelberg: Springer; 2008.
27. Rawlings JB, Mayne DQ. Model Predictive Control: Theory and Design. 1st ed. Madison, Wisconsin: Nob-Hill Publishing; 2009.
28. Limon D, Alamo T, Salas F, Camacho EF. On the stability of MPC without terminal constraint. IEEE Trans Automat Control.

2006;42:832-836.
29. Johansson KH. The quadruple-tank process. IEEE Trans Control Syst Technol. 2000;8:456-465.
30. Rivera DE, Jun KS. An integrated identification and control design methodology for multivariable process system applications. IEEE

Control Syst. 2000;20(3):25-37.

How to cite this article: Manzano JM, Muñoz de la Peña D, Calliess J, Limon D. Online learning constrained
model predictive control based on double prediction. Int J Robust Nonlinear Control. 2021;31:8813–8829. https://
doi.org/10.1002/rnc.5124

APPENDIX A. PROOFS OF THE LEMMAS

Proof of Lemma 1. Given the triangular inequality that applies to the definition of the state vector x in Equation (2),

||x(k + 1) − x̂p(1|k)|| ≤ ||y(k + 1) − ŷp(1|k)|| = ||ep(k)|| = ||c1|| = r1. (A1)

Assuming that rj− 1(c1) and cj− 1(c1) are known, we can derive, from the Lipschitz continuity of 𝔣̂p, that

|ŷp(j − 1|k + 1) − ŷp(j|k)| = |𝔣̂p(x̂p(j − 2|k + 1),u(k + j − 1)) − 𝔣̂p(x̂p(j − 1|k),u(k + j − 1))|
≤ L||x̂p(j − 2|k + 1) − x̂p(j − 1|k)||
≤ Lrj−1 = cj. (A2)

The error of the estimated state can be bounded as follows, provided that x̂p(j|k) contains min(na + 1, j) estimated outputs
(and real measurements otherwise)

||x̂p(j − 1|k + 1) − x̂p(j|k)|| ≤ ||ŷp(j − 1|k + 1) − ŷp(j|k)|| + … + ||y(k + 1) − ŷp(j|k)|| ≤ j∑
i=𝜎j

||ci|| = rj. (A3)

▪
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Note that the same holds if the safe model is used, with x̂s and ŷs, being c1 = 𝜇.

Proof of Lemma 2. First, it is proven that (𝛿1)⊕ (𝛿2) ⊆ (𝛿1 + 𝛿2). Indeed, for all y= y1 + y2, with y1 ∈ (𝛿1) and y2 ∈
(𝛿2), we have that

||y|| ≤ ||y1|| + ||y2|| ≤ 𝛿1 + 𝛿2, (A4)

and thus y ∈ (𝛿1 + 𝛿2).
Since (for any c1) dj = cj + dj− 1, it is inferred that (dj−1)⊕ (cj) ⊆ (dj), and then,

j = hard ⊖ (dj(𝜇)) ⊆ hard ⊖ (dj−1(𝜇))⊖ (cj(𝜇)) = j−1 ⊖ (cj(𝜇)). (A5)

Given that Δy ∈ (cj(𝜇)) and y ∈ j, it is derived that

y + Δy ∈ j ⊕ (cj(𝜇)) ⊆ j−1 ⊖ (cj(𝜇))⊕ (cj(𝜇)) ⊆ j−1. (A6)
▪

Proof of Lemma 3. This lemma is proven by recursion. For j= 1, the condition holds, given the definition of 𝔣̂p in
Equation (12):

|ŷp(1|k) − ŷs(1|k)| ≤ a1 = 𝜇. (A7)

Then, assuming that aj− 1 is known, we can obtain.

|ŷs(j|k) − ŷp(j|k)| = |𝔣̂s(x̂s(j − 1|k),u(j − 1)) − 𝔣̂p(x̂p(j − 1|k),u(j − 1))| (A8a)

≤ |𝔣̂s(x̂s(j − 1|k),u(j − 1)) − 𝔣̂s(x̂p(j − 1|k),u(j − 1))|
+ |𝔣̂s(x̂p(j − 1|k),u(j − 1)) − 𝔣̂p(x̂p(j − 1|k),u(j − 1))| (A8b)

≤ L||ŷs(j − 1|k) − ŷp(j − 1|k)|| + 𝜇 (A8c)

= L||aj−1|| + 𝜇 = aj. (A8d)
▪


