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A B S T R A C T   

We consider a hybrid manufacturing/remanufacturing system where the returned products (cores) are classified 
into different quality grades. Each grade requires different remanufacturing operations and thus lead times. We 
examine the implications of the quality-grading scheme on the dynamic behavior of closed-loop supply chains, 
benchmarking this against a typical system where all the returns undergo the same remanufacturing process. 
Through control engineering techniques, we evaluate the Bullwhip and inventory performance of the supply 
chain by observing the step response of the orders and net stocks (the shock lens), analyzing the frequency 
behavior of these signals (the filter lens), and measuring their dynamics due to stochastic demand (the variance 
lens). Subsequently, we discuss the operational savings and additional costs derived from quality grading. We 
find that the pre-sorting mechanism allows for smoothing the supply chain operations; however, its impact on 
customer satisfaction is ambivalent. Indeed, we observe that the documented ‘lead-time paradox’ of the rema
nufacturing process in hybrid systems results here in a ‘quality paradox’: lower quality returns may increase the 
performance of inventories. This affects particularly low-frequency demands. Importantly, we analytically derive 
the optimal setting of the closed-loop pipeline estimation in order-up-to policies for avoiding long-term inventory 
drifts. This analysis reveals key potential benefits of information transparency for improving the operational 
performance, and thus the environmental and economic sustainability, of closed-loop supply chains.   

1. Introduction 

Accelerating the transition from linear to circular economic models 
has become a strategic priority for modern societies (Geng et al., 2019). 
This aims to reduce the environmental footprints of current consump
tion levels and lifestyle patterns by managing resources more sustain
ably. Such concerns have resulted in policymakers implementing 
ambitious directives that focus on closing the loop of product lifecycles; 
see e.g. European Commission (2015, 2017) and United Nations (2018). 
Addressing these concerns, and thus increasing circularity levels, ne
cessitates the development of new production paradigms that incorpo
rate the collection and recovery of used products, such as those based on 
remanufacturing (Guide and van Wassenhove, 2009; Abbey and Guide, 
2018; Pazoki and Samarghandi, 2020). 

Indeed, remanufacturing, which can be understood as “the 

transformation of used products (referred to as cores), consisting of 
components and parts, into products that satisfy exactly the same quality 
and other standards as new products” (Guide and Jayaraman, 2000, p. 
3780), needs to be a fundamental pillar of circular economies. As 
traditional manufacturing can be very resource-demanding and waste
ful, remanufacturing has great environmental value. For example, Giu
tini and Gaudette (2003) claim that remanufacturing generally requires 
only about 15% of the energy used to manufacture the same product. 
And given the weight of the manufacturing sector in developed and 
developing countries, it is reasonable to assert that disseminating 
remanufacturing practices would lead to huge environmental benefits; 
see Parker et al. (2015). 

However, the implementation and operation of remanufacturing 
systems in practice is often arduous and costly, thus slowing down the 
much-desired shift towards a circular economy. A major reason behind 
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this is that the knowledge of the operational dynamics of remanu
facturing systems, and therefore the understanding of their manage
ment, is still relatively limited, as repeatedly noted in the literature (e.g. 
Wang and Disney, 2016; Braz et al., 2018; Cannella et al., 2021). For 
instance, van Wassenhove (2019, p. 2930) highlights that “we stepped 
into this field relatively late so the impact of that work is still modest”. 
Also, given the additional complexity involved in closed-loop settings, 
an important portion of the results and findings for remanufacturing 
systems included in the literature are built on simplistic assumptions 
that often do not hold in practice —which, in the words of Guide and van 
Wassenhove (2009, p. 17), may lead to “elegant solutions addressing 
non-existent problems”. All in all, it may be concluded that the set of 
tools available for managers to effectively and efficiently integrate cir
cular economic practices into their production and distribution systems 
is often insufficient. 

One of the key aspects that make remanufacturing systems particu
larly difficult to manage is the wide range of uncertainties that affect 
their processes (Goltsos et al., 2019a). While production planning 
mechanisms for traditional manufacturing need to primarily accom
modate demand uncertainty, those for remanufacturing also need to 
account for uncertainty in returns. What is more, this source of uncer
tainty commonly becomes the dominant force in remanufacturing sys
tems, with the channels for collecting cores being in general much more 
unpredictable than those of raw materials (Zeballos et al., 2012; Jei
hoonian et al., 2017; Goltsos et al., 2019b). Overall, Seitz (2007) high
lights that the uncertainties in the collection of used products are one of 
the main barriers to achieving profitability in this industry, which un
derscores the strategic importance of this issue. 

Importantly, the uncertainty characterizing the returned items is 
twofold, affecting both their number and their condition (Atasu et al., 
2008; Souza, 2013; Agrawal et al., 2015). While the former has a similar, 
quantitative, nature to demand uncertainty —as evidenced in their 
grouping together through the concept of net demand, i.e. demand minus 
returns (e.g. Kelle and Silver, 1989)—, the qualitative essence of the 
latter requires new considerations. Such quality uncertainty has often 
been ignored in the relevant literature, mainly due to the complexity of 
its analysis (Goltsos et al., 2019a). Nevertheless, it critically influences 
the performance of remanufacturing systems (van Wassenhove, 2019). 
Also, Abbey and Guide (2018, p. 375) underscore that discrepancies in 
the condition of cores have “significant implications for the nature of 
product design and type of strategy a firm should employ to meet 
customer demands”. 

In practice, quality uncertainty generally manifests itself through an 
increased variability in the time and cost required to process the cores. 
By way of example, Denizel and Ferguson (2010) note that the time 
required for restoring a used laptop could be up to three times higher 
when the item is in a bad condition than when it is in a good one. In light 
of this, quality grading, which refers to the categorization of returns into 
a finite number of quality grades, emerges as a reasonable, industrially 
prevalent solution for managing cores with different qualities (Ferguson 
et al., 2009; Zikopoulos, 2017; Sun et al., 2018). Interestingly, quality 
grading allows for processing the cores according to their condition, 
which prevents the quality uncertainty translating into high process 
uncertainty, which would be detrimental for the efficiency of the 
remanufacturing system (Goltsos et al., 2019a). Note that cores with 
different quality grades may be processed in different lines or cells with 
the aim of better managing the time and cost of remanufacturing (van 
Wassenhove and Zikopoulos, 2010). 

Several studies demonstrate that quality-grading policies enable 
production and operations managers to reduce remanufacturing costs, 
including Aras et al. (2004), Behret and Korugan (2009), Ferguson et al. 
(2009), and Yanıkoğlu and Denizel (2020). In addition, other publica
tions have provided a greater understanding of the quality-grading ef
fects in remanufacturing systems from other perspectives, such as 
network design and configuration (e.g. Radhi and Zhang, 2016; Jei
hoonian et al., 2017; Masoudipour et al., 2017) or optimal lot sizing and 

scheduling (e.g. Panagiotidou et al., 2017; Zikopoulos, 2017; Sun et al., 
2018). However, many important questions remain still unexplored in 
the literature that addresses the value of quality grading in remanu
facturing. A fundamental one concerns the understanding of the dy
namics induced by quality-grading policies in remanufacturing systems 
and their closed-loop supply chains. This entails considering the effi
ciency of the system in the satisfaction of customers as well as the 
magnitude of Bullwhip Effect in the wider supply chain, which is 
symptomatic of production and transportation inefficiencies, with the 
goal of recognizing the different implications of quality-grading policies. 

Motivated by the different considerations so far, our aim is to explore 
the impact of quality-grading policies on the overall performance of 
remanufacturing systems. We do this by simultaneously looking at the 
smoothness of operation in the system and its capacity to satisfy 
customer demand in a cost-effective manner. Specifically, we investigate 
a hybrid manufacturing/remanufacturing system (HMRS) that receives 
cores with heterogeneous quality levels. We consider that the system 
installs a quality-grading mechanism that categorizes the returns in 
three quality grades (i.e. high quality, low quality, and beyond 
economical repair) as soon as they arrive to the production facilities. 
Later, high- and low-quality returns are restored in separated lines, each 
requiring a different processing lead time. We use as a benchmark a 
HMRS without quality grading, where all the products collected from 
the market pass through the same remanufacturing line. 

It is important to highlight that our study focuses on a HMRS, in 
which both new and remanufactured products are used to satisfy the 
same customer demand. Both products are assumed to meet the same 
quality standards and have the same price (e.g. van der Laan et al., 
1999b; Tang and Naim, 2004; Sarkar et al., 2019). HMRSs are a popular 
option in practice when the manufactured and remanufactured products 
are perfect substitutes, like in the spare parts industry (Souza, 2013) or 
the printing industry (van der Laan et al., 1999b). The study of other 
characteristics and/or topologies of remanufacturing systems, for 
instance those in which the new and remanufactured products are sold 
to different markets with different prices (see Debo et al., 2005; Goltsos 
et al., 2019a; Ullah and Sarkar, 2020), would also be of interest but is 
beyond the scope of this paper. 

The understanding of the dynamic consequences of quality grading 
in HMRSs would allow for a better design of such systems to jointly 
reduce operating costs (by smoothing the supply chain operation) and 
increase the system throughput (by enhancing product availability). 
Such a comprehensive approach requires a systems methodology. In this 
sense, the closed-loop supply chain under consideration is modelled 
through control engineering techniques, a viable approach for analyzing 
the global behavior of supply chains that is well aligned with our 
research goals (see Dejonckheere et al., 2003; Spiegler et al., 2016; 
Ponte et al., 2019). In light of this, we analyze the response of the system 
in the time and frequency domains in a bid to obtain a deep under
standing of its performance in a large spectrum of real-world contexts. 
Moreover, the control-theoretic analysis allows us to derive the optimal 
control of the HMRS. 

Analyzing the value of quality grading from a supply chain dynamics 
viewpoint allows the deduction of relevant managerial implications. We 
observe that quality-grading policies enable an improvement in the 
operational performance of the HMRS, which strongly depends on: (i) 
the ratio between high- and low-quality returns and, (ii) the difference 
between the remanufacturing lead times. We reveal that information 
transparency also plays a key role in this problem. Hence, incurring 
additional inspection-related and layout costs induced by the quality- 
grading mechanism may, or may not, be worthwhile depending on the 
interplays between the relevant factors. Interestingly, we also show that 
the documented lead-time paradox of HMRSs, which we describe in the 
next section, results in a quality paradox that deteriorates the inventory 
performance of the system for high-quality returns in specific circum
stances. In this sense, we find that increasing the quality of returns may 
have a detrimental impact on the supply chain capacity for efficiently 
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satisfying customer needs, a counterintuitive effect that managers need 
to be aware of. 

The remainder of the paper is organized as follows. Section 2 reviews 
the relevant literature for the purposes of our study. Section 3 details the 
model of the HMRS by presenting the main assumptions, the sequence of 
events, the adopted order policy, the block diagrams, and the transfer 
functions. Section 4 reports the stability and static gain analysis, and 
derives the optimal regulation for the order policy through the estimate 
of the work-in-progress (WIP) pipeline lead time. Section 5 discusses in 
detail the dynamics and performance of the HMRS with quality grading 
by adopting a three-lens analysis. Section 6 provides an overview of the 
key findings and the most relevant managerial implications of our work. 
Finally, Section 7 concludes and reflects on next steps derived from our 
study. 

2. Review of the literature 

This paper contributes to advancing the understanding of two main 
bodies of knowledge in the sustainable operations management litera
ture. First, we add to the discipline that examines the dynamic behavior 
of closed-loop supply chains by investigating the effects of quality 
grading on the overall performance of such systems, which has not been 
considered by prior works. Nonetheless, some of these works do have 
considered heterogeneity in the quality of cores, leading to relevant 
insights. From this perspective, in this section we first introduce this 
discipline and discuss the main findings of relevant papers, and then we 
particularly refer to those papers that analyze returns with different 
conditions. Second, our paper brings a new perspective to the studies 
that address the value of quality grading in remanufacturing by 
exploring how presorting the cores allows for the enhancement of the 
dynamics of the wider supply chain. In this sense, the last part of this 
section discusses the key findings and identifies the current gaps in this 
field, and presents our contribution. 

2.1. The dynamics of circular economy supply chains 

Transitioning our economy towards environmental sustainability 
prompts a change in the operation of supply chains. This goes from 
linear processes, strictly associated with forward materials flows 
(extract, make, use, dispose), to closed-loop variants that reflect the 
principles of circular economy by emphasizing the reverse materials 
flows (Guide and van Wassenhove, 2006; Ferguson and Souza, 2010; 
Genovese et al., 2017). Understanding the behavior of closed-loop 
supply chains and designing business structures that effectively inte
grate both flows of materials are fundamental catalysts for such transi
tion. Otherwise, companies may probably never be willing to 
incorporate reverse logistics operations into their supply chains in 
markets where competition is intense, unless forced to do so by 
legislation. 

Accordingly, closed-loop supply chains have increasingly attracted 
the interest of many researchers, who explore their environmental and 
economic opportunities and challenges from different perspectives; see, 
for example, the review by Govindan et al. (2015). However, a consol
idated area of research in traditional production and distribution sys
tems, often labelled as supply chain dynamics (Naim et al., 2004), has still 
received relatively little attention in closed-loop settings, as discussed by 
Wang and Disney (2016), Braz et al. (2018), and Goltsos et al. (2019a). 
This discipline analyzes the time-varying behaviors that emerge from 
the interactions between the nodes of the supply chain, and their impact 
on internal (i.e. production efficiency) and external (i.e. customer ser
vice level) performance. This area of research is commonly investigated 
via analysis of the Bullwhip Effect (Lee et al., 1997), the phenomenon of 
amplification of the variability of orders and inventories in supply 
chains. The Bullwhip Effect is known to have strong economic impli
cations on production, transportation, and inventory costs, and may 
strongly affect the satisfaction of customers (Metters, 1997; Disney and 

Lambrecht, 2008; Isaksson and Seifert, 2016). 
A paper by Tang and Naim (2004) is usually regarded as the first to 

explore the Bullwhip Effect in closed-loop supply chains. The re
searchers consider a HMRS and, interestingly, they observe that it can 
benefit from improved dynamics as compared to traditional, open-loop 
supply chains, especially if the information on the reverse materials flow 
is used to manage the forward flow. Specifically, they find that as the 
return rate increases, order variability generally decreases, which has 
also been noticed by later works, including Zhou and Disney (2006), 
Turrisi et al. (2013), Cannella et al. (2016), Dev et al. (2017), and Zhou 
et al. (2017). However, Hosoda et al. (2015) reveal that under certain 
scenarios HMRSs experience a higher order variability than traditional 
systems. Later, Hosoda and Disney (2018) and Ponte et al. (2019) show 
that the negative impact of the reverse flow on the Bullwhip Effect often 
occurs when the correlation between demand and returns is low, and 
hence the uncertainty on the quantity of cores is high. Recently, Ponte 
et al. (2020) show that order variability can be an increasing or 
decreasing function of the return rate, depending on the level of trans
parency in closed-loop supply chains. 

The impact of closing the loop on inventory performance has also 
been investigated in the past, leading to what may be interpreted as 
contradicting findings. Zhou and Disney (2006) and Cannella et al. 
(2016) observe that increasing the return rate reduces inventory vari
ability, thus helping to better manage the trade-off between service level 
and stock required; while Turrisi et al. (2013) and Ponte et al. (2020) 
find the opposite effect. The impact of the return volume on product 
availability thus seems to be very sensitive to the modelling assump
tions. Interestingly, some works discover a lead-time paradox, according 
to which reducing remanufacturing times may have a negative effect on 
HMRSs. It was first reported by van der Laan et al. (1999a, p. 195), who 
observe that “a larger remanufacturing lead-time may sometimes result 
in a cost decrease”, hence suggesting the existence of an optimal, 
non-zero, lead time. Similarly, Tang and Naim (2004) notice that long 
remanufacturing processes may help to improve inventory control. 
Hosoda and Disney (2018) show that the paradox tends to emerge when 
remanufacturing takes less time than manufacturing, given that in this 
case the orders issued to the manufacturing line cannot make the best 
use of the reverse flow information. 

2.2. The dynamic effects of the variable quality of cores 

As previously discussed, a relevant feature of most real-world closed- 
loop supply chains, as compared to traditional ones, is the “high degree 
of variability in the quality of the used products that serve as raw ma
terials for the production process” (Guide and van Wassenhove, 2001, p. 
144). That is, a shipment of used products received at the re
manufacturer’s facilities will typically include cores with significantly 
different conditions, with some requiring noticeably more efforts 
(measured in terms of capacity, time, and/or cost) to bring them to the 
needed standards than others (Denizel and Ferguson, 2010). However, 
this important feature is clearly underexposed in the closed-loop supply 
chain dynamics literature. 

Most prior studies assume a single remanufacturing lead time; e.g. 
Tang and Naim (2004), Zhou and Disney (2006), Turrisi et al. (2013), 
Cannella et al. (2016), and Ponte et al. (2019). This can be interpreted in 
two different ways. Firstly, these studies may implicitly assume that all 
returns are of the same condition, i.e. homogeneous quality, and thus 
require the same processing time. Alternatively, maybe more realisti
cally in most practical contexts, they may consider that all cores are 
processed through the same remanufacturing process, even if they are 
collected in different conditions, i.e. heterogeneous quality. If this was 
the case in a practical scenario, the resultant remanufacturing lead time 
would be that for the “worst” quality cores. That is, the remanufacturing 
system needs to be able to deal with the cores with the lowest quality. 
This may be understood as a contextual interpretation of the biological 
Liebig’s Law of the minimum, stating that performance is (often) not 
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controlled by the total of resources, but by the most limiting one. One 
way or the other, these works do not actually consider the impact of 
accommodating and restoring cores with differing conditions in 
closed-loop supply chains. 

In this sense, although prior literature offers some understanding of 
the dynamics of closed-loop supply chains, the relevant papers have 
barely taken into account the variable nature of the quality of returns. 
Only very few works have attempted to model heterogeneous quality 
conditions, which we consider next. 

Hosoda et al. (2015) and Hosoda and Disney (2018) consider this 
issue by modelling a random yield loss, which decreases the number of 
products in the remanufacturing line. In practical terms, this represents 
a binary classification of cores: some are assumed to be beyond 
economical repair (they exit the closed-loop system), and the rest are 
remanufactured. While this approach provides relevant insights (e.g. 
they observe that increasing the yield loss may have positive effects on 
system dynamics), all the remanufacturable cores are assumed to 
require the same, quality-independent, processing time. Thus, consid
ering different quality levels and remanufacturing lead times emerges as 
a logical next step. 

On a different approach, Zhou et al. (2017) study the quality issue by 
modelling three different types of restoring processes in the reverse flow 
of materials: refilling, remanufacturing, and refining. Cores undergo one 
of them depending on their condition, which results in three different 
levels of entrance in the forward flow of materials. They examine the 
dynamics of the supply chain by exploring various scenarios in which 
the three lead times (refilling, remanufacturing, and refining) are equal. 
They discover interesting multi-echelon effects in the supply chain, 
resulting in the fact that what applies in one echelon sometimes do not 
hold in the entire system. In contrast, we here consider the practical case 
of different processing time requirements within the same physical 
restoring process, remanufacturing, in a HMRS. 

Recently, Dominguez et al. (2020) investigate the effects of vari
ability in the remanufacturing lead time, which often occurs due to 
receiving returns in highly different conditions, on the Bullwhip Effect 
and inventory performance of closed-loop supply chains. They model a 
complex supply chain formed by a manufacturer, a remanufacturer, a 
distributor, and a retailer, where they find that remanufacturing 
lead-time variability dramatically contributes to aggravating the Bull
whip problem in such supply chains. Also, they demonstrate the benefits 
derived from information transparency to compensate for the negative 
dynamics induced by lead-time variability; however, exploring other, 
structural solutions for enhancing the behavior of the system when the 
quality of returns varies, such as those based on the quality grading of 
cores, is beyond the scope of their work. 

2.3. The value of quality-grading policies for enhancing the dynamics of 
remanufacturing 

As we have just discussed, previous works in the closed-loop supply 
chain dynamics literature have considered only to a certain extent the 
variable nature of the quality of the returned products. These works 
show that this variability has a significant impact on the performance of 
remanufacturing systems. However, they have not explored in detail 
how to appropriately accommodate and cope with this variability, and 
investigating these solutions becomes essential to facilitate the transi
tion towards more sustainable production systems. In this regard, 
Goltsos et al. (2019a) claim that there are three main solutions to control 
uncertainty in the condition of cores: forecasting, incentivizing, and 
presorting. The first one is based on developing methods to estimate the 
quality of returns (see Goltsos et al., 2019b). Second, organizations may 
try to influence the quality of returns, for instance, by using buyback 
schemes or leasing (see Wei et al., 2015). This work is concerned with 
the third solution, which is based on categorizing the returned products 
in a finite number of quality grades. 

While previous research efforts in the supply chain dynamics 

literature have not focused on the value of quality grading, studies in 
adjacent areas have provided insights that constitute relevant back
ground for our work. The most closely related research works are those 
by Aras et al. (2004), Ferguson et al. (2009), and Yanıkoğlu and Denizel 
(2020) whose main contributions are discussed below. 

Aras et al. (2004) formulate a model to investigate the conditions 
under which categorizing returns according to their quality results in 
cost savings in HMRSs (where manufactured and remanufactured 
products are perfect substitutes), assuming variability in the remanu
facturing lead times. They attribute the cost savings to the prioritization 
of remanufacturing high-quality returns (as long as they are available). 
Importantly, they conclude that quality grading of returns is particularly 
effective when: (i) the difference in quality between cores is high; (ii) the 
ratio of the remanufacturing to the manufacturing cost is high; (iii) the 
ratio of the mean returns to the mean demand is high; and (iv) the de
mand rate is low (i.e. slow-moving products). 

Ferguson et al. (2009) study the remanufacturing operations of Pit
ney Bowes, a provider of hardware that facilitates mail management. 
Different from Aras et al.’s (2004) work, they explore the value of 
quality grading when both products are imperfect substitutes; therefore, 
remanufacturing necessitates a separate production plan. They suggest 
an optimal remanufacturing policy under deterministic demand and 
returns as well as capacity constraints by considering information about 
the quality of cores. Although the scenario they analyze is different, their 
results buttress the findings of Aras et al. (2004). Specifically, they 
report a net profit increase of 4% due to the use of quality grading (when 
compared to the no-grading system). Also, they identify two additional 
drivers of quality-grading policies in remanufacturing systems: (i) when 
the number of grades is, at most, five; and (ii) when the quality of cores 
is uniformly distributed across grades. 

The previous studies assume that the categorization of cores in 
quality grades is perfect. In contrast, Yanıkoğlu and Denizel (2020) 
examine the impact of presorting when inspection is not able to accu
rately categorize all the cores in the most appropriate grade. Using a 
robust optimization approach to tackle uncertainty, the authors observe 
that, while in general terms there is still economic value in the quality 
grading of cores, misclassifications provoke a clear reduction of this 
value. In a setting that is comparable to the one used by Ferguson et al. 
(2009), Yanıkoğlu and Denizel (2020) report a mean increase in net 
profit of about 1% (compared to the no-grading system), which is 
significantly lower than the increase reported when the categorization is 
infallible. 

These articles —as well as others that explore the issue of quality 
grading from different perspectives, such as Behret and Korugan (2009), 
Radhi and Zhang (2016) and Zikopoulos (2017)— undoubtedly provide 
a managerially relevant understanding of the benefits of quality grading 
in remanufacturing systems. However, they have not evaluated so far 
the implications of quality grading from a supply chain dynamics 
perspective. In this sense, assessing the impact of quality grading in the 
stability of the supply chain operations from the lens of the Bullwhip 
Effect, which plays a pivotal role in many industries, enriches this body 
of knowledge. 

At the same time, in line with previous considerations, we may argue 
that the dynamics of closed-loop supply chains are not yet well under
stood. Some important characteristics of such systems still need to be 
incorporated into the analysis, leading to valuable insights for the design 
of efficient remanufacturing systems in practice. One of these charac
teristics is the heterogeneity in the condition of the cores, resulting in 
variable processing times, which is commonly dealt with through 
quality-grading mechanisms. Given the critical importance of this 
problem in practice, this emerges as a meaningful gap in the literature, 
as noted by Braz et al. (2018) and Goltsos et al. (2019a). This gap will be 
addressed in this research work. 
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3. Supply chain model 

The Automatic Pipeline Inventory and Order-Based Production Control 
System (APIOBPCS) archetype, developed by John et al. (1994), is a 
well-recognized framework for modelling the interrelationships be
tween the flows of information and materials in traditional supply 
chains. This model, which employs control-theoretic techniques, has 
been widely used in the last two decades for investigating the dynamic 
behavior of supply chains, as it covers a wide variety of realistic supply 
chain implementations (Disney and Towill, 2003). A review of the ap
plications of this archetype can be found in Lin et al. (2017). 

Tang and Naim (2004) extend this archetype to model a closed-loop 
supply chain based on a HMRS. To this end, they add a collection pro
cess, through which a portion of the sold products comes back to the 
supply chain after the consumption (or usage) time, and a remanu
facturing process, which restores cores to an as-good-as-new state. This 
model is built on solid assumptions and has been well-accepted in the 
academic field of closed-loop supply chain dynamics. Indeed, it has been 
used in many recent papers, such as Cannella et al. (2016), Zhou et al. 
(2017), and Ponte et al. (2019). For the sake of brevity, we do not discuss 
all the underlying assumptions of this supply chain model here. How
ever, those interested in them can refer to Tang and Naim (2004) and 
John et al. (1994). The most important one, for the purposes of this 
research, is that all cores undergo the same remanufacturing process 
(with a predefined lead time), thus ignoring the fact that quality does 
vary in many real-world remanufacturing systems, as we discussed 
before. 

In this paper, we extend this archetype to explore the opportunities 
afforded from inspecting the cores as they arrive and implementing a 
parallel remanufacturing structure for processing them according to 
their quality. This section details the HMRS under consideration. First, 
we describe the discrete-time sequence of events. Second, we explain 
how we have modelled the reverse flow of materials, including the 
quality-grading system. Third, we detail the inventory control mecha
nisms implemented for both the serviceable and the recoverable stocks. 
Finally, we represent the overall block diagram and derive the relevant 
transfer functions. 

Table 1 introduces the notation that we employ throughout this 

paper for the main variables and parameters of the HMRS. Following the 
common convention, we use lowercase letters for the variables in the 
time domain (e.g. xt), and uppercase letters for the variables in the 
complex, Laplace domain (e.g. X(s)). 

3.1. Sequence of events 

The functioning of our closed-loop supply chain follows the sequence 
of events depicted in Fig. 1. It is important to note that this models the 
operation over time of a HMRS that manages the inventories according 
to periodic-review policies. These policies are common in practice 
(Dejonckheere et al., 2003), as they are generally less expensive to 
operate and easier to implement than continuous-review policies 
(Axsäter, 2003). 

During each time period t, purchase orders are received from the 
customer and returns are collected. At the end of t, customer demand is 
met and, if necessary, a new backorder is created, which will be satisfied 
as soon as stock is available. In addition, the current state of the in
ventory is reviewed and future demand is forecasted. The inventory 
position includes both on-hand inventory (net stock) and on-order in
ventory (WIP), which in turn considers both the manufacturing and the 
remanufacturing processes. All this information is used at the beginning 
of the next period, t+1, to issue an order for manufacturing new prod
ucts, and this process starts. 

Moreover, at the beginning of t+1, the returns that have been 
collected along the preceding period are received by the remanufacturer 
and classified according to their condition into three grades: high- 
quality returns (HR), representing remanufacturable cores in a ‘better’ 
condition; low-quality returns (LR), those in a ‘worse’ condition; and 
beyond-economical-repair returns (BER), which cannot be remanufac
tured as this would entail excessive costs. Then, the remanufacturable 
returns, i.e. HR and LR cores, are pushed into the remanufacturing 
process, specifically into the line associated with their condition; while 
BER cores exit the HMRS for cannibalizing or recycling purposes, or are 
lost to landfill. Later in period t+1, the manufactured, new products and 
the remanufactured, as-good-as-new products are received, which in
crease the position of the on-hand inventory that is available to serve the 
new demand of customers. 

3.2. Modelling the quality-grading policy 

As mentioned before, we assume that a fraction β′ of the sold prod
ucts are collected after a consumption time Tc and then are classified 
into three quality grades. In line with previous studies (e.g. Behret and 
Korugan, 2009; van Wassenhove and Zikopoulos, 2010; Zeballos et al., 
2012), using three quality grades may be a reasonable choice in practice. 
For example, ReCellular, a remanufacturer of cell phones studied by 
Souza et al. (2002), sort the used phones at their grading station into 
three levels (superior, average, inferior), and the Pitney Bowes scenario 
explored by Ferguson et al. (2009) also suggests the differentiation of 
three grades after testing the returns (good, better, best). Note that, on 
one hand, using only two grades (e.g. remanufacturable and 
non-remanufacturable) may be insufficient to significantly benefit from 
the quality-grading policy in terms of supply chain dynamics. On the 
other hand, employing many quality levels becomes rather expensive 
without generally yielding clear benefits; in particular, Ferguson et al. 
(2009) recommends not using more than five grades. 

Fig. 2(a) provides a conceptual representation of the quality-grading 
system that we have modelled in the HMRS under consideration. First, a 
fraction of the cores, defined by the average percentage γ′

b, are classified 
as BER, which are not remanufactured due to insufficient quality. The 
remaining ones are classified as HQ or LQ cores, whose average per
centages are defined respectively by γ′

h, and γ′

l. Hence, γ′

h + γ′

l + γ′

b = 1. 
Then, each of these two types of returns is processed in a different 
remanufacturing line, resulting in a parallel remanufacturing structure. 

Table 1 
Notation of the main variables and parameters of the HMRS.  

Variables of the HMRS 

c  manufacturing completion rate o  manufacturing order rate 
d  demand of the product r  returns, collected after 

consumption 
d̂  forecasted demand rr  remanufactured returns 

hr  high-quality (HQ) returns tns  target net stock 
lr  low-quality (LQ) returns tw  target WIP 
ns  net stock, or serviceable inventory w  actual WIP 

Parameters of the HMRS 

Ta  exponential smoothing parametera Tm  manufacturing lead time 
Tc  consumption lead time Tw  time constant of the WIP 

controller 
Ti  time constant of the net stock 

controller 
SS  safety stock 

Tp  estimated WIP pipeline lead time β  average remanufacturable return 
yield 

Trh  remanufacturing lead time of HQ 
returns 

γh  average HQ yield 

Trl  remanufacturing lead time of LQ 
returns 

γl  average LQ yield 

Note. 
a The relationship between this parameter and the constant α of a simple 

exponential smoothing (e.g. Hsieh et al., 2020) expressed as a difference equa
tion can be displayed as α = 1/(1+Ta) for a sample interval Δt = 1; see John 
et al. (1994). 
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By way of example, ReCellular has implemented a similar production 
system, as discussed by van Wassenhove and Zikopoulos (2010). The 
different condition of HQ and LQ cores results in different remanu
facturing lead times; Trh for the line of HQ and Trl for the line of LQ. In 
our study, we assume that Trh < Trl. This is aligned with arguments put 
forward in the literature (e.g. Denizel and Ferguson, 2010; Masoudipour 
et al., 2017; Yanıkoğlu and Denizel, 2020), and industrial observations 
of remanufacturers in different sectors. 

For the sake of convenience, in the mathematical analysis, we 
employ the average remanufacturable return yield βε[0,1], which can be 
obtained as β = β

′

(γ′

h + γ′

l). In this sense, the yields γh = γ′

h/ (γ
′

h +γ′

l) and 
γl = γ′

l/(γ
′

h + γ′

l), with γh, γlε[0,1] and γh + γl = 1, define the percentage 
of remanufacturable returns that can be classified as HQ and LQ, 
respectively. The mathematical representation, via a block diagram, of 
the reverse materials flow in the HMRS with the quality-grading system 
and the parallel remanufacturing lines can be seen in Fig. 2(b). Note that 
the first-order function 1

1+Ts represents an exponentially distributed lead 
time with average T; see e.g. Zhou et al. (2017). 

3.3. Inventory control policies 

We consider that the HMRS utilizes a push system in the operation of 
the parallel remanufacturing lines. In this sense, the production process 
starts as soon as the cores are available and, once they have been 

remanufactured, the as-good-as-new products arrive to the serviceable 
inventory. The push policy is a common assumption in many other 
studies of inventory control for remanufacturing (see e.g. Inderfurth and 
van der Laan, 2001), as it is an easy way to implement the prioritization 
of remanufactured over new products to satisfy customer demand, 
which has both environmental and economic value. Hosoda and Disney 
(2018, p. 315) argue that “it is reasonable to assume that a remanu
facturer is motivated to use the push policy in order to quickly recover 
any costs associated with collecting and processing returns and avoid the 
costs of holding returns as inventory”. 

Further, the manufacturing process operates according to a propor
tional order-up-to model (POUT) model in the serviceable inventory. We 
select this policy as it is able to significantly outperform the widely-used, 
conventional order-up-to model and it is easy to implement in practice 
(Disney and Lambrecht, 2008; Zhou et al., 2017; Cannella et al., 2021). 
Tang and Naim (2004) consider three different types of closed-loop 
supply chain models, differing on their level of information sharing. 
We consider the most advanced one, which assumes the manufacturer 
has information on the remanufacturing WIP and uses it to order. In this 
sense, the manufacturing order is issued at the start of each period as the 
sum of three comparators, according to 

ot+1 =

(

d̂ t − rrt

)

+
1
Ti
(tnst − nst) +

1
Tw

(twt − wt). (1) 

The first comparator considers the difference between the forecasted 

Fig. 1. Operation of the closed-loop supply chain. Note. Bold highlights the impact of returns quality uncertainty and the quality-grading mechanism.  

Fig. 2. Modelling the reverse materials flow in the presence of three different grades of quality in the returns.  
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demand and the remanufactured cores (both HQ and LQ), representing a 
net demand. The second one considers the difference between the target 
and the actual net stock, and is regulated through a proportional 
controller with a time constant Ti. Ti represents the time to adjust the net 
stock. In line with previous works (see Lin et al., 2017), we consider a 
constant target net stock that symbolizes the safety stock, tnst = SS. The 
third comparator applies the same rationale to the WIP; Tw is the time 
constant of the controller that regulates the gap between the target and 
the actual WIP. The target WIP is obtained as the demand forecast 
multiplied by the estimated pipeline lead time, such that 

twt =Tp d̂t. (2) 

Note that Tp, defining the WIP policy, should consider both the 
manufacturing and remanufacturing processes, as the WIP uses the in
formation of both the forward and the reverse pipelines (under the 
defined information sharing policy). Indeed, Tp is a key decision 
parameter in the closed-loop system and will be explored later in this 
paper. 

3.4. Block diagram representation and transfer functions 

The block diagram representing the relationship between the 
different variables in the HMRS with quality grading and parallel 
remanufacturing processes is shown in Fig. 3. We use solid lines for the 
materials and information flows in the traditional forward operations, 
while the dashed lines refer to the additional reverse logistics ones. 
Importantly, the block diagram incorporates all available sources of 
information that define the dynamics of this closed-loop supply chain. 

The modelling process via control-theoretic techniques informs the 
formulation of transfer functions, which express analytically the rela
tionship between the relevant outputs and inputs in the Laplace domain. 
The key input triggering the dynamics of the HMRS is customer demand 
(dt ,D(s)). To analyze the response of the supply chain, consistently with 
previous works, we measure the order rate (ot , O(s)) and the on-hand 
inventory (nst , NS(s)) as the key outputs. First, the relationship be
tween the orders and demand is defined by 

O(s)
D(s)

=
(Tms + 1)

(
TiTws + TaTws + TiTps + Tw

)

(Tas + 1)(TiTmTws2 + TiTws + TiTms + Tw)

− β
(Tms + 1)(aODs2 + bODs + cOD)

(Tcs + 1)(Trhs + 1)(Trls + 1)(TiTmTws2 + TiTws + TiTms + Tw)
;

(3)  

where aOD = γhTiTrl(Tw + Trh)+ γlTiTrh(Tw + Trl), bOD = γh(TwTrl +

TwTi + TiTrh)+ γl(TwTrh + TwTi + TiTrl), and cOD = (γh + γl)Tw. Second, 
the relationship between the net stock and demand is 

NS(s)
D(s)

= −
Ti
(
TaTmTws2 + TmTws + TaTws + TaTms − Tp + Tm

)

(Tas + 1)(TiTmTws2 + TiTws + TiTms + Tw)

+β
Ti(aNSDs2 + bNSDs + cNSD)

(Tcs + 1)(Trhs + 1)(Trls + 1)(TiTmTws2 + TiTws + TiTms + Tw)
;

(4)  

where aNSD = (γhTrl + γlTrh)TwTm, bNSD = γh( − TrhTrl + TwTm + TmTrl)+

γl( − TrhTrl + TwTm + TmTrh), and cNSD = (γh + γl)Tm − (γhTrh + γlTrl). 
In the following sections, we explore the behavior of the HMRS with 

quality grading via the analysis of the transfer functions given by 
Equations (3) and (4). 

4. Stability and steady-state analysis 

Verifying the stability condition is a prerequisite to the analysis of 
the time and frequency behavior of a control system. In this regard, the 
HMRS is stable as long as all the poles (i.e. the roots of the denominator 
polynomial of the relevant transfer functions) are placed in the negative 
area of the complex plane. The functions shown in Equations (3) and (4) 
reveal that the stability of the closed-loop supply chain depends on the 
parameters Ta, Tc, Ti, Tm, Trl, Trh, and Tw. Note that the only time 
parameter that does not determine the stability of the HMRS is Tp. Nor 
does it depend on the yields β, γh, γl or the safety stock SS. 

Considering that Tc, Tm, Trl, and Trh are physical, and hence non- 
negative, lead times, it can be easily shown that the following condi
tions emerge to ensure the stability of the control system: (i) Ta, Ti,

Tw > 0; and (ii) Ta, Ti > 0, Tw < − Tm. Pathway (ii) holds mathemati
cally but, given that negative values of Tw do not have a reasonable 
practical meaning, pathway (i) may be interpreted as the general sta
bility criteria. Indeed, we can state that the HMRS model is stable for all 
the possible logical combinations of these parameters. 

We now focus on the static (or DC) gain, which determines the 
output/input ratio of the system under steady-state conditions. For a 
given transfer function G(s), the static gain can be obtained by lim

s→0
G(s). 

Table 2 shows the static gains of the transfer functions relating the two 
outputs to the demand input. 

As can be expected, a long-term increase in the product demand of, 
say, 100 units results into a long-term increase of 100(1 − β) units in the 

Fig. 3. Block diagram of the closed-loop supply chain model.  
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orders for manufacturing new products, see Equation (5). That is, the 
HMRS does not need to increase the production order in the same 
magnitude as the demand, which happens in traditional supply chains. 
This occurs given that a percentage (defined by β) of this demand in
crease will return to the HMRS after consumption and be remanufac
turable, eventually turning into remanufactured, as-good-as-new 
products. 

On the other hand, the impact of a change in demand on the long- 
term response of the serviceable inventory is of particular interest, as 
it allows us to appropriately adjust the WIP policy through the decision 
parameter Tp. Indeed, Equation (6) provides evidence that there is a 
potential offset of the steady-state value of the serviceable inventory 
when the HMRS faces demand variations. This potential offset deviates 
the actual inventory level from the target net stock, which results into a 
significant decrease in the inventory performance of supply chains; see 
Disney and Towill (2005). This offset can be avoided by setting the 
parameter Tp through 

T*
p =(1 − β)Tm + β(γhTrh + γlTrl). (7) 

Therefore, Equation (7) provides the value of the pipeline lead time 
T*

p in order to set the total target WIP while avoiding inventory offset. 
We underline that for the benchmark case of Trh = Trl( = Tr), Equation 
(7) simplifies to T*

p = (1 − β)Tm + βTr, i.e. the one proposed by Tang and 
Naim (2004) for their HMRS without quality grading. In turn, this 

reduces to the well-known equation T*
p = Tm for open-loop supply 

chains, characterized by β = 0 (Lin et al., 2017). Looking at the rela
tionship between Tang and Naim’s (2004) solution and our Equation 
(7), it can be defined the equivalent remanufacturing lead time in 
HMRSs without a quality-grading policy as T̂r = γhTrh + γlTrl. 

Overall, Equation (7) represents an important result of this work. As 
highlighted by Zhou et al. (2017, p. 500), appropriately regulating the 
parameter Tp provides the system with “the ability to ensure customer 
service levels through maintaining inventory at an appropriate level”. 
From this perspective, Equation (7) highlights the importance of accu
rately estimating the relevant yield and lead times, which can be facil
itated by information transparency mechanisms in the HMRS. Fig. 4 
represents T*

p as a function of these relevant parameters in the HMRS, 
specifically, the average remanufacturable return yield (β) and the 
average HQ yield (γh), for two given scenarios of manufacturing and 
remanufacturing lead times (Tm, Trh, Trl). Notice in these graphs that, as 
per to Equation (7), T*

p always vary between Tm (for β = 0) and T̂r (for 
β = 1). 

Understandably, due to βε[0, 1], T*
p increases proportionately to the 

manufacturing (Tm) and remanufacturing lead times (Trh, Trl). Because, 
as previously discussed, Trh < Trl, T*

p is also increased by the ratio γl/γh. 
That is, the larger the percentage of HQ cores (γh) is, the lower the 
estimated pipeline lead time T*

p becomes. It is also interesting to note 

that if the equivalent remanufacturing lead time ̂Tr is higher than Tm, T*
p 

increases proportionally to β, see Fig. 4(a); while if T̂r < Tm, T*
p de

creases proportionally to β, see Fig. 4(b). Finally, if T̂r = Tm, T*
p is 

insensitive to β, as Equation (7) results in T*
p = T̂r = Tm. 

5. The impact of quality grading on the production and 
inventory dynamics 

We now focus on the performance of the HMRS by evaluating the 
dynamics of production orders and on-hand inventories. To this end, we 
employ the framework developed by Towill et al. (2007), which defines 
three complementary ‘lenses’ for looking at the Bullwhip behavior of 
supply chains. The shock lens considers the supply chain response to a 
unit step in demand, being the most appropriate for analyzing the 
behavior of the system against quick and large, abrupt demand 

Table 2 
Static gains of the relevant transfer functions in the closed-loop supply chain.   

Input 

D(s)

Outputs O(s)
[

O(s)
D(s)

]

s→0
= 1 − β(γh + γl)= 1 − β (5)     

NS(s)
[

NS(s)
D(s)

]

s→0
=

Ti

Tw

[(
Tp − Tm

)
+ β(γh + γl)Tm − β(γhTrh + γlTrl)

]

=
Ti

Tw

[
Tp − (1 − β)Tm − β(γhTrh + γlTrl)

]
(6)     

Note: As previously discussed, γh + γl = 1 (see Section 3.2). 

Fig. 4. T*
p depending on the parameters Tm, Trh, Trl, β, and γh = 1 − γl.
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variations. The filter lens investigates the frequency response of the 
supply chain, which makes it especially suitable for understanding the 
effects of demands of different seasonal nature. It is also especially useful 
as every input (demand) signal can always be expressed as the sum of a 
series of waves with different frequencies and amplitudes. Finally, the 
variance lens explores the supply chain behavior when it faces stochastic 
demand by comparing the variability of the input and output signals. 
This approach thus fits well different types of stochastic, real-world 
demand patterns. 

To analyze the consequences of pre-sorting and processing cores 
according to their quality in HMRSs, we compare our supply chain 
model with the baseline scenario, where all the returns regardless of 
their condition are pushed into the same remanufacturing process. As 
per prior discussions —the longer remanufacturing line would be able to 
process HQ cores, but the shorter one would not be able to process LQ 
ones—, it seems reasonable to assume that all the cores need to be 
processed in the longer (LQ) remanufacturing line. 

In the dynamic analysis, we use the following combination of control 
parameters: Ta = 16, Ti = 8, Tw = 8. This can be interpreted as an 
effective ‘trade-off setting’ that considers the perspectives of order and 
inventory variability in traditional systems, see John et al. (1994). The 
regulation of control parameters in closed-loop settings is an interesting 
topic that requires detailed investigation in future works. We also as
sume that the system always uses the optimal value of the estimated lead 
time Tp for avoiding the inventory offset, as per Equation (7). The effects 
of over- and underestimating Tp are explored in Appendix A. 

Also, we use here the following manufacturing and consumption lead 
times: Tm = 8, Tc = 32. As in practice remanufacturing may take less or 
more time than manufacturing (e.g. Zhou et al., 2017; Hosoda et al., 
2018; Ponte et al., 2020), we examine three lead-time scenarios that 
represent different types of realistic settings. These scenarios, summa
rized in Table 3, allow us to investigate the impact of lead times in 
particular detail. 

In scenario LT-I, the remanufacturing of cores takes less time than the 
manufacturing of new products. To illustrate it, we consider Trh = 1, 
Trl = 7. Based on industrial evidence, this may be interpreted as the 
most common case in the real world (e.g. Teunter et al., 2004). Scenario 
LT-II reflects the contrasting case, where we assume Trh = 9, Trl = 15. 
In practice, remanufacturing may take longer than manufacturing when 
disassembly is a particularly hard task —for example, when products are 
not designed to be remanufactured (see Hatcher et al., 2011)— or when 
remanufacturing is much less automated than manufacturing (see Kur
ilova-Palisaitiene et al., 2018). Last, scenario LT-III replicates an indus
trial context where the remanufacturing of HQ cores takes less time than 
the manufacturing of new products, while the remanufacturing of LQ 
cores takes more time. In this case, we use Trh = 5, Trl = 11. Note that in 
the three scenarios Trl − Trh = 6 to nullify the effects of remanufacturing 
lead-time variations on the results. Also, note that in all cases the con
sumption lead time is the longest one, which typically happens in the 
real world. 

Finally, in the following study, we will study different combinations 
of the average HQ and LQ yields, γh and γl. To this end, we consider that 
80% of the sold products return to the HMRS after consumption, i.e. β =

0.8. Imposing a high volume of returns will allow us to observe in more 
detail the impact of quality grading. 

5.1. Step response analysis, or the shock lens 

First, we investigate the response of the order rate (of new products) 
and the net stock to a unit step in demand. This response, which offers 
rich information on the system dynamics, has extensively shown to give 
key insights on the long-term behavior of supply chains, both in tradi
tional open-loop settings (e.g. Dejonckheere et al., 2003) and in the 
emerging closed-loop ones (e.g. Zhou et al., 2017). 

We consider five levels of the average HQ yield, γh = {0, 0.25, 0.5,
0.75,1}; the average LQ yield is alwaysγl = 1 − γh. Notice the first and 
the last values of γh reduce into systems where all the returns have the 
same quality —only LQ when γh = 0; only HQ when γh = 1. According 
to what we discussed before, γh = 0 defines the Liebig’s Law-based, 
baseline system. Fig. 5(a) and (c), and 5(e) show the step response of 
the manufacturing order rate in the three scenarios. Fig. 5(b), (d), and 5 
(f) display the same information for the net stock. 

Fig. 5(a), (c), and 5(e) provide evidence of how increasing the per
centage of HQ returns improves the dynamics of the system. It becomes 
visible in the three scenarios through a significant reduction in the initial 
overshoot of the order rate (peak of the response), which is expected to 
smooth significantly the production requirements in the HMRS. This 
finding uncovers relevant considerations. 

First, it clearly shows that processing all the returns in the same way 
(i.e. through the lead time required for LQ cores) misses the opportunity 
of enhancing the dynamics of the HMRS. This underscores the potential 
improvement derived from quality-grading policies from the perspective 
of Bullwhip-induced costs in closed-loop supply chains. This insight 
clearly applies to responses of the HMRS against abrupt demand 
changes, as shown in Fig. 5(a), (c), and 5(e); but we can also expect that 
quality grading will reduce the Bullwhip Effect of closed-loop supply 
chains for other types of demands, which will be explored in the 
following subsections. Logically, the potential improvement increases as 
the difference between both remanufacturing lead times grows. None
theless, it is important to underline that in order to realize this potential 
the HMRS needs to develop measures aimed at increasing the quality of 
the returns collected. 

Interestingly, the analysis of the behavior of the net stock responses, 
in Fig. 5(b), (d), and 5(f), yields some counterintuitive results. Overall, 
we observe two contrasting dynamic effects of increasing the percentage 
of HQ cores. On the one hand (a negative effect), it seems to increase the 
size of the trough in the response. On the other hand (a positive effect), 
improving the average quality of cores smooths the net stock dynamics 
—in some cases, it even avoids the generation of a peak in the response. 
Note that this tends to reduce the settling time. From inspection of the 
graphs, we observe that the negative effect dominates when remanu
facturing lead times are shorter than manufacturing lead times, see 
Fig. 5(b); while the positive effect becomes more relevant in the opposite 
case, as shown by Fig. 5(d). 

This implies that improving the quality of returns may have unde
sirable consequences, in particular, a negative impact on the inventory 
performance of HMRSs. In line with the previous discussion, this tends 
to occur when remanufacturing returned products takes less time than 
manufacturing new ones. This interesting phenomenon, which may be 
termed as a ‘quality paradox’, stems from the previously described 
paradox of remanufacturing lead times in HMRSs (e.g. Inderfurth and 
van der Laan, 2001). 

Hosoda and Disney (2018, p. 322–323) state that “when the rema
nufacturing lead time is less than the manufacturing lead time […], the 
lead-time paradox can emerge”. This explains why improving the 
quality of cores does not have a positive impact on the dynamics of the 
inventory in scenario LT-I. At the same time, Hosoda and Disney (2018, 
p. 322) underline that “once the relationship of Tr ≥ Tm is established, 
such negative effects [derived from the paradox] simply vanish”. This 
perspective fits with our analysis for scenario LT-II. The quality paradox 
will be explored in the frequency and variance domains in the following 
subsections. 

Table 3 
The three lead-time scenarios for our three-lens analysis.  

Definition Scenario LT-I Scenario LT-II Scenario LT-III 

Trh < Trl < Tm < Tc  Tm < Trh < Trl < Tc  Trh < Tm < Trl < Tc  

Tm  8 periods 8 periods 8 periods 
Trh  1 period 9 periods 5 periods 
Trl  7 periods 15 periods 11 periods 
Tc  32 periods 32 periods 32 periods  

B. Ponte et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 236 (2021) 108129

10

Fig. 5. Step response of the order rate and the serviceable inventory for different returns qualities.  
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5.2. Frequency response analysis, or the filter lens 

We now look at the frequency behavior of the closed-loop supply 
chain in the three lead-time scenarios. The frequency response is shown 
via Bode plots in Fig. 6(a), (c), and 6(f), for the order rate, and Fig. 6(b), 
(d), and 6(f), for the net stock. These plots represent the system’s 
amplification of the input demand signal for a wide range of frequencies. 
For this reason, Bode plots have been previously used to investigate the 
performance of supply chains facing seasonal demands; see e.g. Naim 
et al. (2017). 

Fig. 6(a), (c), and 6(e) provide a new perspective to the benefits 
derived from quality grading in terms of order smoothing in HMRSs. The 
three scenarios illustrate that increasing the quality of the returns de
creases the size of the peak in the Bode plot, as well as the amplification 
for frequencies around it. Even though the improvement may seem 
relatively small in the Bode plot, this translates into a significant 
smoothing of supply chain dynamics. For example, the peak in the 
baseline system (γl = 1) in scenario LT-I is 2.15 dB; see Fig. 6(a). This 
corresponds to an amplification of the demand signal of approx. 28%. 
This amplification (i.e. Bullwhip Effect) can be significantly reduced, 
through the quality-grading system, down to approx. 5% (0.39 dB). This 
peak occurs for a frequency of approx. 0.085 rad/s, being s the reference 
time unit; hence, the highest amplification occurs for a seasonality of 74 
periods in our HMRS. 

Interestingly, one can notice that quality grading can engineer 
elimination of the Bullwhip Effect in the closed-loop supply chain. For 
instance, consider a seasonality of 30 periods (monthly, if time windows 
are interpreted as days; see frequency = 0.209 rad/s in Fig. 6(e)), the 
HMRS suffers from an amplified variability of orders in scenario LT-III, i. 
e. amplification >0 dB (i.e. Bullwhip > 1). However, we can see that the 
amplification can be lowered until it becomes lower than 0 dB —and 
thus the demand variability is attenuated by the HMRS (i.e. Bullwhip <
1)— by implementing a quality-grading mechanism. Finally, we note 
that for very low or very high frequencies quality grading does not affect 
appreciably the dynamics of the HMRS. 

Fig. 6(b), (d), and 6(f) offer a new way to observe the quality paradox 
in the inventory performance of HMRSs. For low frequencies (whose 
range depends on the relationship between the manufacturing and 
remanufacturing lead times), it can be seen that the no-grading baseline 
system outperforms the quality-grading HMRS in which all returns are 
HQ cores. Indeed, in view of these graphs, we cannot easily observe any 
significant positive impact of increasing the quality of returns in terms of 
inventory variability. 

Interestingly, the paradox can be seen from a frequency viewpoint in 
the three scenarios. Nonetheless, it becomes especially meaningful in 
scenario LT-II, where the baseline HMRS may achieve a significantly 
better trade-off between service level and holding requirements. Having 
noted that, we underline that the paradox is only noticeable when the 
demand seasonality is characterized by long cycles. For example, it 
would emerge in daily demands with a strong seasonal component with 
a period of one year (365 days; freq. = 0.017 rad/day); but it would not 
emerge if the weekly pattern of the seasonality dominates (7 days; freq. 
= 0.898 rad/day). 

5.3. Stochastic analysis, or the variance lens 

Last, we assume that the demand is an independent and identically 
distributed (i.i.d.) random variable that follows a normal distribution 
N(μ, σ2). This allows us to observe in detail how the HMRS with quality 
grading reacts to purely stochastic, uncorrelated demands. For instance, 
we use a mean of μ = 100 and a standard deviation of σ = 30, which 
generates a reasonable coefficient of variation of customer demand 
equal to 30% (see Dejonckheere et al., 2003). We simulate the response 
of the HMRS over a time horizon of 20,000,000 periods. We select such a 
large number in order to achieve a robust result, and also due to the low 

experimental effort of running these simulations in MATLAB. 
The main results of this simulation study are presented in Table 4. 

This shows the variance of the production rate and net stock in the same 
three lead-time scenarios and for the five different combinations of the 
average HQ and LQ yields, γh and γl. 

Overall, Table 4 reveals that, for i.i.d. demands, the quality-grading 
policy for the returns has a significant effect on the variability of the 
manufacturing orders. Specifically, the variance of the orders can be 
reduced by 37.01% in scenario LT-I, 25.40% in scenario LT-II, and 
29.57% in scenario LT-III. This decrease in the volatility of production 
requirements can be expected to have a positive economic impact on the 
HMRS through a reduction in different sources of costs, such as those 
related to extra capacity or idle time and overtime working; see e.g. 
Disney and Lambrecht (2008) and Ponte et al. (2017). It can be high
lighted that the highest Bullwhip reduction occurs when the remanu
facturing lead times are lower than the manufacturing one (scenario 
LT-I). Overall, these results are consistent to those obtained in the step 
response and Bode plot analyses. 

In contrast, for the parameter setting under consideration and this 
type of demand pattern, the quality-grading system slightly impacts on 
the variability of the net stock. This metric, and hence inventory costs, 
thus are quite robust to variations in the quality of cores. It is interesting 
to note that we cannot observe the quality paradox in the first two 
scenarios, given that improving the quality of cores generates a small 
reduction in the net stock variance; up to 3.42% and 2.61% respectively. 
In contrast, in scenario LT-III, we can notice a flat U-shaped relationship, 
with the minimum achieved for γh = 0.5. This study is thus also aligned 
to the analysis of the previous lenses. Note that i.i.d. demands have high- 
frequency components, for which the impact of the quality of cores is 
marginal in the Bode plots, as discussed around Fig. 6. However, for 
stochastic low-frequency demands, we can confidently expect that 
improving the quality of course will result in a worsened inventory 
dynamics, in line with the discussion in the previous subsection. 

In short, this section has provided a general understanding of the 
dynamics and economic performance of the HMRS with quality grading 
of returns by looking at the parameters related to the reverse materials 
flow, in particular, lead times and quality yields. To complement this 
analysis, an assessment of the impact of the WIP pipeline lead-time es
timate, Tp can be seen in Appendix A. This offers interesting insights on 
the impact of information transparencies on the HMRS; showing that 
while overestimating the pipeline lead time triggers an avoidable in
crease of the order and inventory variabilities, underestimating it may 
contribute to the reduction of the Bullwhip Effect but would occur at the 
expense of an enormous investment in safety stock. 

6. Discussion of findings and managerial implications 

The analysis has produced valuable findings that contribute to the 
literature on closed-loop supply chains and have implications for 
managerial practice. As a general rule, our results indicate that a quality- 
grading policy enables practitioners to smooth the operation of HMRSs 
by processing the returned products in specific lines or cells according to 
their quality. This smoothing has a clear economic value. However, the 
impact of such policy on the inventory performance of the system is 
ambivalent, with counterintuitive effects evident that need to be 
considered by supply chain managers. We have also observed that the 
benefits of categorizing the cores according to their quality and their 
restoration in parallel remanufacturing lines rely heavily on accurately 
estimating the relevant yields and lead times and using this information 
for production planning purposes. 

In this section, we elaborate on the findings of our research study and 
reflect on their managerial implications. First, we discuss the main 
findings.  

1. Implementing a quality-grading policy smooths the manufacturing order 
rate. In other words, categorizing cores according to their quality and 
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Fig. 6. Bode diagram of the order rate and the serviceable inventory for different returns qualities. Note. As is a common practice in Bode representations, the vertical 
axis represents the supply chain’s amplification of the demand signal in decibels, AdB. Its relationship with the amplification in absolute value, |A|, is given by AdB =

20log 10|A|. 
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processing them in separate remanufacturing lines allows for a 
reduction of the Bullwhip Effect in closed-loop supply chains based 
on HMRSs. This behavior has been observed in the three lead-time 
scenarios and the various demand patterns considered. The dy
namic improvement is more significant the better the average con
dition of returns is, as well as when the difference between the 
processing lead times required by the various qualities is high, which 
is aligned with the drivers posed by Aras et al. (2004).  

2. Consequences of quality-grading practices on inventory performance 
highly depend on the frequency of the demand signal. We have revealed 
that for low-frequency demands, e.g. long seasonality or high inter
mittency (see Babai et al., 2020), the inventory response of HMRSs 
benefits from lower quality returns (with longer remanufacturing 
lead times, which is a consequence of the lead-time paradox). In this 
sense, a target customer service level may be achieved with a lower 
investment in inventories when returns have lower qualities. In 
contrast, for medium- or high-frequency demands, the impact of 
quality grading on inventory performance is small. The step response 
analysis helps us interpret these results: quality grading increases the 
trough in the response (a negative effect) but also smooths the dy
namics of the net stock, which often reduces the settling time (a 
positive effect). The strength of these effects depends on the rela
tionship between the different manufacturing and remanufacturing 
lead times.  

3. Leveraging benefits of quality-grading mechanisms requires an adequate 
establishment of a WIP policy based on information transparency. We 
have formulated a solution for estimating the pipeline lead time in 
HMRSs considering both the manufacturing and remanufacturing 
WIP. This is given by Equation (7), which adapts Tang and Naim’s 
(2004) rule to scenarios with quality grading. Setting Tp accurately 
ensures customer service level by avoiding long-term inventory off
sets. To this end, it is fundamental to know the portion of used 
products that come back to the HMRSs in a remanufacturable con
dition, the average percentage of HQ and LQ cores, and the 
manufacturing and remanufacturing lead times. Otherwise, an 
overestimation of Tp generates positive inventory offsets (high 
holding costs), while underestimating Tp, despite it may reduce the 
Bullwhip Effect, leads to negative inventory offsets (high stock-out 
probability). 

These findings uncover relevant considerations for supply chain 
professionals that operate in circular economy systems or aim to close 
the loop and bring circularity into their traditional systems, which we 
now address.  

I. Quality grading for improving the dynamics of closed-loop supply 
chains. Categorizing the incoming returns into several quality 
grades enables the development of more efficient circular econ
omy systems. Specifically, the design of a parallel remanu
facturing structure, with lines for cores in similar conditions, 
proves to be a useful instrument for mitigating the Bullwhip Ef
fect in closed-loop supply chains. This structure would better 
inform forward scheduling, reducing the inefficiencies derived 
from operational variability. This perspective complements prior 
findings that have underlined the value of quality grading from 
other viewpoints (e.g. Aras et al., 2004; Ferguson et al., 2009; Sun 
et al., 2018), by showing that quality grading can also guide 
remanufacturing systems towards the advocated production 
smoothing. 

The dynamic benefits however are naturally constrained by 
different aspects. In this regard, if (1) there is a significant vari
ability in the quality of the cores, (2) the associated lead times are 
substantially different, and (3) the volume of high-quality returns 
is considerable; the supply chain can benefit from a higher 
reduction in Bullwhip-induced costs. However, if the condition of 
the cores is largely homogeneous, or the times required by the 
different grades are relatively similar, the (additional) investment 
in quality-grading mechanisms may not be justified. All in all, to 
leverage and accentuate the immediate benefits in terms of sup
ply chain dynamics, managers need to design an appropriate 
quality-grading policy by: (1) differentiating the cores into grades 
with substantially different processing times; and (2) developing 
incentive policies for encouraging the customer’s return of 
products in the best possible condition.  

II. Quality-grading implementation requires a firm understanding of the 
nature of customer demand. At the same time that quality grading 
generally allows for taming the Bullwhip Effect, depending on the 
characteristics of market demand, it may also undermine the net 
stock variability of remanufacturing systems, thus increasing 
inventory-related costs. Therefore, prior to implementing any 
quality-grading policy, it is necessary to understand the behavior 
of market demand and take a decision based on the following 
guidelines: (1) in the presence of a high-frequency demand (e.g. 
weekly seasonality) or if there is no clear seasonality (e.g. stable, 
i.i.d. demand), the said policy can be adopted without lowering 
the inventory performance; while (2) in the presence of a low- 
frequency demand (e.g. strong yearly pattern), the Bullwhip 
reduction may come at the expense of worsening the serviceable 
inventory response. 

Thus, when the closed-loop supply chain faces demands with 
regular fluctuations over long time horizons, such as in seasonal 
industries, a trade-off analysis between the expected Bullwhip 
smoothing and decreased inventory performance becomes 
necessary. In addition, our study suggests that it is also important 
to consider whether or not demand suffers from sudden and 
dramatic changes. Relevantly, for closed-loop supply chains 
operating in anomalous market environments, quality-grading 
policies may accentuate the stock-out risk. However, they may 
also reduce the subsequent holding costs by avoiding excessive 
stock variance (i.e. long cycles of big stock-outs followed by large 
inventories).  

III. The value of information transparency and accurate forecasting for 
effective quality grading. In general terms, HMRSs with quality- 
grading policy and parallel remanufacturing have the potential 
to outperform HMRSs with no grading. To realize this potential, 
managers need to be fully aware of the value of information 
visibility and the accuracy of shared data in closed-loop supply 
chains. 

Usually, studies dealing with information sharing in supply 
chains investigate the role of transmitting reliable real-time data 
on customer demands upstream. It has been shown how different 

Table 4 
Variance of the order rate and the net stock for different returns qualities.   

γh = 0 
(baseline)  

γh = 0.25  γh = 0.5  γh = 0.75  γh = 1  

Variance of the manufacturing order rate 

Scenario 
LT-I 

129.0700 116.0187 103.7077 92.1331 81.2954 

Scenario 
LT-II 

212.3752 198.1365 184.3973 171.1596 158.4224 

Scenario 
LT-III 

160.9751 148.2720 136.1025 124.4697 113.3735 

Variance of the net stock 

Scenario 
LT-I 

6126.6938 6063.6123 6007.6295 5958.7438 5916.9633 

Scenario 
LT-II 

6274.3983 6204.2087 6153.5082 6122.3269 6110.6583 

Scenario 
LT-III 

6098.2667 6079.9602 6073.9265 6080.1630 6098.6884  
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collaboration frameworks based on sharing market demand in
formation notably improve the performance of traditional supply 
chains, including Trapero et al. (2012) and Dominguez et al. 
(2018). The role of information in closed-loop settings has been 
less explored so far. The few studies in this area have focused on 
sharing real-time information on the amount of collected items, 
such as Dadhich et al. (2015) and Cannella et al. (2016), which is 
exploited for ordering purposes. However, in HMRSs with quality 
grading, information sharing should not be limited to the quan
tity of cores, but should also consider (1) the quality of the cores, 
and (2) the associated remanufacturing lead times. In fact, if such 
yields or lead times are not known or erroneously estimated, the 
level of customer satisfaction can decrease significantly and/or 
the investment in inventories can increase substantially. Thus, to 
benefit from effective quality grading, managers need to design 
robust inspection or forecasting processes for accurately esti
mating the condition of cores and their remanufacturing lead 
times, as well as properly using this information into the ordering 
policy. 

7. Conclusions and next steps 

Research on new business structures for efficient closed-loop supply 
chain operation is gaining momentum in a bid to encourage organiza
tions to adopt circular economy practices in their processes. Under
standing the dynamic behavior of these supply chains is essential for 
facilitating and accelerating such transition towards a circular economy. 
One of the defining characteristics of said supply chains is the variable 
nature of the quality of the products collected from the market, which is 
particularly hard to manage for organizations. However, this charac
teristic has been underexposed in the literature. From this perspective, 
this research investigates the impact of quality-grading policies (i.e. 
categorizing the returns into a finite number of quality grades) on the 
performance of a HMRS. We approach this issue from the prism of 
supply chain dynamics, which allows us to simultaneously consider the 
production and inventory implications of the relevant business 
structures. 

Our research shows the potential benefits for the closed-loop supply 
chain derived from remanufacturers adopting a quality-grading policy 
and processing the cores in separate lines or cells according to their 
quality. We observe that the order variance can be reduced up to around 
37%. In this sense, quality grading can lead to relevant production cost 
savings. Thus, we offer a different perspective to the operational benefits 
of quality grading, which complement the findings of previous studies. 
We also find that the operational value of quality grading, related to the 
well-known Bullwhip Effect, grows as the percentage of high-quality 
items increases. That is, the actual benefits captured by the closed- 
loop supply chain depend on the collection system’s ability to gather 
returns in the best possible condition. In light of this, adopting policies 
for increasing the quality of returns from the market allows one to 
accentuate the benefits of quality grading in closed-loop supply chains. 

Our analysis leads to different insights in terms of inventory 
behavior. Interestingly, we notice two effects of the quality-grading 
system. On the one hand, it tends to smooth the inventory response of 
the system (by avoiding the generation of positive peaks when facing 
step responses). On the other hand, it tends to increase the size of the 
potential stock-out in the supply chain (i.e. the negative peak of the 
response). The strength of both effects depends on the relationship be
tween the remanufacturing and the manufacturing lead times. As a 
result, while it may be intuitively appealing to expect that improving the 

quality of cores has also a positive impact on inventory performance, we 
reveal that the opposite is sometimes the case. We refer to this as the 
quality paradox, which complements the well-known lead-time paradox 
of the remanufacturing process in HMRSs. That is, improving the quality 
of returns may obstruct the cost-effective satisfaction of customers. 

A noteworthy contribution of our research is that we provide a so
lution for appropriately calibrating the WIP policy in HMRSs with 
quality grading by accurately determining the overall pipeline lead time 
(considering both the manufacturing and remanufacturing processes). 
This solution is optimal from the perspective of the balance between 
service level and stock holding costs as it avoids a detrimental inventory 
offset. The target WIP should decrease as the percentage of high-quality 
cores grows. Meanwhile, it may increase or decrease as the return yield 
grows, depending on the relationship between the lead times. This 
perspective highlights the need for information transparency in the 
closed-loop supply chain; otherwise, the relevant actors will not be able 
to accurately estimate the yields and lead times, and the potential 
benefits of quality grading may be not achieved. 

Finally, we underline that some interesting avenues for future 
research emerge from this work, as the same methods and similar 
models can be employed to explore other topologies and assumptions, 
including specific real-world environments. One of these avenues may 
be related to our assumption of linearity in the supply chain, which 
follows previous research efforts in this field. Adopting nonlinear models 
could allow scholars to better reflect some real-world scenarios, such as 
capacitated and lost-sales systems; see Disney et al. (2020). Also, 
breaking the common assumption in HMRS of perfect substitution (be
tween new and remanufactured products), could also lead to industrially 
relevant insights; see Goltsos et al. (2019a). On a related note, consid
ering different markets for new and remanufactured products would 
better model many practical settings and may affect the value of quality 
grading; see Guide and van Wassenhove (2009). Finally, we have 
assumed in this work that the categorization of products between the 
various grades is perfect. It may also be worth considering how the 
dynamics of the supply chain vary when the grading system is not 100% 
accurate, as well as exploring the dynamic consequences of using 
different numbers of quality grades. 
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Appendix A. On the need for appropriately controlling the WIP pipeline 

We here investigate the impact of the WIP pipeline control policy on the behavior of the closed-loop supply chain. In this sense, we consider the 
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need for appropriately regulating the decision parameter Tp in HMRSs with quality grading, which significantly differs from HMRSs with no grading, 
as discussed in Section 4. 

This analysis captures the value of information sharing for controlling the flow of materials in HMRSs with quality-grading policies. Note that 
Equation (7) reveals that accurately estimating the three different yields (i.e. β, γh, γl) and the relevant lead times (i.e. Tm, Trh, Trl), is essential for 
establishing an appropriate WIP policy. To concentrate our efforts on the impact of Tp, we only explore scenario LT-III, see Section 5, and we assume 
γh = γl = 0.5. In addition, we will also explore the issue through the three Bullwhip lenses. 

Fig. A.1 displays the unit step response of the order rate (a) and the serviceable inventory (b) for different estimations of the pipeline lead time. We 
use the optimal value of Tp from Equation (7), T*

p , which eliminates the long-term offset in the net stock, as well as two values higher than this one 
(representing overestimations of the pipeline lead time) and two values lower than this one (representing underestimations of this lead time).

Fig. A.1. Step response of the order rate and the serviceable inventory for different pipeline estimations.  

Fig. A.1(b) confirms that T*
p removes the long-term offset in the net stock. Higher values of Tp result in positive inventory offsets, while lower values 

lead to negative offsets; in both cases deviating the actual inventory position from the target level. In such cases the HMRS is not able to find the 
desired balance between service level and holding requirements. In light of this, when T*

p is not used, the integral of time-weighted absolute error 
(ITAE) —a useful metric in evaluating the inventory performance of supply chains (Disney and Towill, 2003)— is infinite. 

This allows us to perceive the benefits of using T*
p in the POUT policy for managing the HMRS. At the same time, Fig. A.1(a) reveals that low values 

of Tp may help to reduce the variability in the orders issued to the manufacturing line. Note that the peak of the response reduces as Tp decreases. 
Having noted that, this benefit would be small in comparison with the damaging consequences of the inventory drift (either excess stock build-up or 
deterioration of customer service level) in most practical scenarios. 

We now explore the frequency domain. Fig. A.2(a) displays the Bode plots of the closed-loop supply chain as functions of Tp. Fig. A.2(a) focuses on 
the orders, while Fig. A.2(a) considers the net stock.

Fig. A.2. Bode diagram of the order rate and the serviceable inventory for different pipeline estimations.  
The former confirms that underestimating Tp may help the HMRS to 
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cope with the Bullwhip Effect. However, the latter provides evidence that this strategy would have a negative impact in terms of inventory stability, 
especially for low frequencies. Fig. A.2(b) shows that it is only when T*

p is used that the amplification converges to 0 (i.e. –∞ dB) as frequency de
creases. For high-frequency demands, the inventory variability amplification of the HMRS is not sensitive to Tp; however, the mean inventory is not 
necessarily well adjusted. 

Finally, we look through the variance lens. We measure the order and net stock variances when the HMRS faces an i.i.d. normally distributed 
demand, N(100,302). We conduct the simulations in the same conditions as those described in Section 5.3. Given that Tp strongly impacts on the trade- 
off between service level and inventory required, we also measure the mean of these signals. The results can be seen in Table A.1.  

Table A.1 
Mean of the order rate and the net stock for different pipeline estimations.   

0.5Tpopt  0.75 Tpopt  Tpopt  1.5 Tpopt  2 Tpopt  

Mean and variance of the manufacturing order rate 

Mean 20.0024 20.0025 20.0025 20.0025 20.0025 
Variance 104.6651 120.0251 136.4551 172.5203 212.8593 

Mean and variance of the net stock 

Mean − 399.9252 − 199.9632 − 0.0013 399.9226 799.8465 
Variance 5836.8224 5901.2048 6090.8191 6845.7421 8101.5840  

In accordance with our previous analysis, Table A.1 shows how underestimating Tp has positive effects on the HMRS in terms of order smoothing. 
Interestingly, this may also contribute to (slightly) reducing the net stock variability. However, inspection of the table reveals that this improvement 
occurs at the expense of unbalancing the trade-off between service and inventory level. ‘Mean’ rows reveal that low Tp tends to enormously decrease 
the customer service level —that is, a much higher safety stock would be necessary. On the other hand, overestimating Tp overprotects the serviceable 
inventory at the same time as the variability increases. 
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