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ABSTRACT This paper presents an asynchronous event-based scheme for automatic intrusion monitoring
using Unmanned Aerial Systems (UAS). Event cameras are neuromorphic sensors that capture the illu-
mination changes in the camera pixels with high temporal resolution and dynamic range. In contrast to
conventional frame-based cameras, they are naturally robust against motion blur and lighting conditions,
which make them ideal for outdoor aerial robot applications. The presented scheme includes two main
perception components. First, an asynchronous event-based processing system efficiently detects intrusions
by combining several asynchronous event-based algorithms that exploit the advantages of the sequential
nature of the event stream. The second is an off-line training mechanism that adjusts the parameters of the
event-based algorithms to a particular surveillance scenario and mission. The proposed perception system
was implemented in ROS for on-line execution on board UAS, integrated in an autonomous aerial robot
architecture, and extensively validated in challenging scenarios with a wide variety of lighting conditions,
including day and night experiments in pitch dark conditions.

INDEX TERMS Event-based vision, intrusion detection, surveillance, UAV.

I. INTRODUCTION
Unmanned Aerial Systems (UAS) have attracted high inter-
est in large-area surveillance and monitoring applications.
Although visual cameras are the most commonly adopted
sensors for automatic vision-based surveillance and intrusion
detection using UAS, they face relevant problems in large,
complex, and unstructured scenarios. Robustness to lighting
conditions is a critical issue in automatic vision systems. It is
often addressed by combining images from different onboard
cameras (e.g., visual and infrared cameras), which affects
the UAS payload, electrical consumption, and computational
needs, reducing the UAS flight time. Motion blur is also
a severe problem in highly dynamic or poorly-illuminated
scenarios.

This paper uses event cameras for UAS-based surveillance.
Event cameras capture visual information in the form of
events representing changes of intensity in the camera pixels,
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which are triggered asynchronously with a high temporal res-
olution (order ofµs). Event cameras have very wide dynamic
range, suitable for robust operation under a wide variety
of lighting conditions. They are insensitive to motion blur,
and have low power consumption. Several commercial event
cameramodels can also provide visual images, enabling com-
bined event-visual processing, see e.g., [1]–[3], or [4], among
others. A good number of successful event-based techniques
have been proposed in the last years, [5]. Most of them group
the received events in frames called event images. Event
images enable designing elaborated frame-based processing
schemes, but they cannot always fully exploit the sequential
and asynchronous capabilities of the event cameras. Besides,
event images could lead to an overestimation of the scene
representation, a similar phenomenon to motion blur in tra-
ditional images [6].

Similarly to visual-based processing, event-based tech-
niques require adapting its parameters to the conditions of
the addressed problem. Most existing event-based techniques
adopt empirical or manual parameter selection, which often
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FIGURE 1. Results of the proposed event-based intrusion monitoring
system in UAS-based experiments: visual images (left) and events (right).

leads to inefficient long trial-and-error iterative processes.
To the best of the author’s knowledge no technique to autom-
atize the selection/tuning of the parameters of event-based
vision system has still been reported.

This paper presents an asynchronous event-based process-
ing scheme for intrusion monitoring with UAS. It includes
two main perception components. First, an asynchronous
event-based processing system detects intrusions on-line
using only the events. It performs event-by-event process-
ing in all the algorithms involved resulting in a fully asyn-
chronous processing system that exploits the advantages of
event cameras. It was carefully designed and endowed with
mechanisms to reduce the computational cost in order to
enable on-line onboard execution. The second block is an
off-line training mechanism that adjusts the event-processing
parameters to a particular surveillance scenario and mis-
sion exploiting the combined processing of the event stream
and visual images, both provided by a DAVIS346 event
camera. The proposed scheme and techniques have been
implemented in ROS, integrated within an autonomous UAS
waypoint-based navigation system, and validated in UAS
surveillance missions in challenging scenarios, see Figure 1.

This paper is inspired by some ideas sketched in [7]. The
main improvements over [7] are: (i) a new auto-tuning sys-
tem for adapting the parameters of the intrusion monitoring
scheme to a particular surveillance scenario; (ii) robustness
improvement in the event-based corner detection, tracking,
and clustering algorithms of the intrusionmonitoring scheme;
(iii) development, integration, and validation of the pro-
posed scheme in an aerial robot architecture for autonomous
surveillance; and (iv) new experimental validation in chal-
lenging scenarios and robustness evaluation against lighting
conditions.

The rest of the paper is organized as follows. Section II
briefly summarizes the main works directly related to the
addressed topics. The proposed scheme is presented in
Section III. The asynchronous event-based processing system
is described in Section IV. The functionality for adapting
the event-based processing to the particular surveillance sce-
nario and mission is summarized in Section V. Section VI
presents the experimental validation and robustness analy-
ses. Section VII concludes the paper and highlights future
research steps.

II. STATE OF THE ART
Automatic UAS-based surveillance and intrusion monitoring
using visual sensors are intensely-researched topics where
many methods and systems have been developed focusing
on perception, planning, or multi-robot coordination, among
others. Many of them adopt visual cameras as main sensors
and suffer from the limitations of traditional cameras, such as
lighting conditions and motion blur, which significantly con-
strain their applicability. To address the sensitivity to lighting
conditions, other methods use combinations of several cam-
eras, such as visual and infrared cameras. Besides increasing
the payload, energy consumption, and computational power,
some of these additional cameras (e.g., infrared cameras)
are particularly sensitive to motion blur, which hamper their
effectiveness in dynamic environments.

Event cameras have attracted increasing interest in the
robotics and computer vision communities [5]. Recently,
event cameras have been proposed for intrusion monitoring
and detection of humans. The work in [8] detected pedes-
trians with a static DAVIS camera by fusing the confidence
maps of two YOLO V3 classifiers, one for image frames
and, the other, for event images. Their method improved
processing rate and detection precision over using only visual
images. Two methods for face detection using event cameras
were presented in [9]. The authors compared the performance
when using the image frames from a visual camera, image
frames reconstructed from events, and event images captured
every 20 ms. Although the best precision was obtained with
the visual camera, the results show the viability of using only
events for face detection.

Using event cameras on board robots requires the develop-
ment of methods to deal with the additional event generation
due to the camera motion. In [10], camera rotation was esti-
mated through a contrast maximization process using as ref-
erence event images with polarity. A clustering-basedmethod
was proposed in [11] to produce event-compensated images
by estimating the motion parameters of each cluster using
an alignment maximization approach. Work [12] used neural
networks for independent motion detection by estimating
camera ego-motion. Recently, the work in [13] aligned curves
described by event trajectories with time-varying motion
parameters to perform motion compensation. However, none
of the above methods were evaluated on board mobile robots
and, therefore, they did not deal with the issues caused by the
vibrations and movement of the robot. Event cameras have
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been recently employed on board UAS for different percep-
tion problems. A model of the affine transformation between
two consecutive event images was used in [14] to compensate
for the global motion of a Micro Aerial Vehicle (MAV),
and thus, the resulting events were assumed to represent the
moving objects. The method described in [6] included both
downward-facing and front-facing event cameras to perform
obstacle avoidance on board UAS. The events were accumu-
lated in event images for obstacle detection using shallow
deep neural networks for event noise removal, homogra-
phy computation, and segmentation through flow estimation.
Then, a controller guided the UAS towards a safe direction
opposite to the motion of the incoming obstacle. Recently,
the work in [15] employed batches of events collected each
10 ms to perform ego-motion compensation for obstacle
detection using a stereo event camera set-up mounted in a
quadrotor. The UAS performed a reactive avoidance strategy
based on potential fields describing obstacles as geometric
primitives. Additional progress has been done towards the
use of event cameras for UAS control. In [16] an autonomous
MAV landing approach based on the optical flow of event
images obtained from a downwards-pointing DVS sensor was
presented exhibiting high accuracy at high landing speeds.
Further, the work in [17] exploited the µs resolution of event
cameras to control the attitude of a dual-copter platform.

All the aforementioned works process event images gener-
ated by accumulating events. In general, event images enable
designing elaborated processing schemes similar to those
from traditional computer vision, although on the other hand,
sacrifice some of the advantages of event camera µs resolu-
tion. In fact, some works, e.g., [6], include extra mechanisms
for reducing motion blur originated in event images. Due to
its higher computational demands, asynchronous event-by-
event processing has been mainly used for low-level process-
ing techniques. The work in [18] proposed a Harris-inspired
asynchronous corner detection based on events. The authors
in [19] presented an asynchronous method to detect cor-
ners by checking the values of a Surface of Active Events
(SAE) [20] for the coordinates corresponding to two cir-
cles around the last event coordinate. A variation of this
method was proposed [21] to consider arcs greater than
180◦, enhance detection speed, and track the corners using
graph trees. Their tracking method was extended in [22]
to deal with jittery effects from multiple corner detection.
A mean shift method adaptation for event clustering was
presented in [23]. Additionally, the authors proposed a clus-
ter tracker using Bayesian filtering. Despite their proposed
approach being robust to different cluster shapes and veloc-
ities, it was only suitable for static backgrounds (i.e., fixed
camera). An asynchronous visual inertial odometry solution
was presented in [24]. Although asynchronous event process-
ing methods provide reliable solutions to localization, fea-
ture detection, tracking, and clustering, their employment in
robots navigating in realistic, complex, and unstructured sce-
narios is still an under-researched area. In a recent work [25],
a hybrid approach (i.e., event-by-event and event images) was

developed for asynchronous line tracking that was used in
a visual servoing scheme to perform time-to-contact maneu-
vers using a multirotor aerial platform.

The performance of some of the previous event-based
methods, such as [18], [21], and [15], depend on fine-tuning
their algorithm parameters. Meta-heuristic optimization
strategies such as Simulated Annealing (SA) have been
used for parameter tuning in computer vision and robotic
applications, such as image segmentation [26], motion blur
removal [27], feature selection [28], and robot path plan-
ning [29]. However, the parameter tuning of event-based
vision algorithms is typically performed empirically. In this
work, SA is used in a semi-supervised training system
for off-line tuning the parameters of the event-based pro-
cessing algorithms. To the best of the author’s knowledge,
it is the first fine-tuning system for an event-based vision
method.

This paper presents an asynchronous event-based process-
ing scheme for UAS-based intrusion monitoring. Its main
contributions are:

• a fully asynchronous event-based intrusion detection
system for on-line execution on board a UAS;

• an off-line training system for fine-tuning the
event-processing parameters to a particular surveillance
scenario and mission;

• the proposed scheme has been integrated within an
autonomous UAS navigation architecture and validated
in realistic challenging scenarios.

III. INTRUSION MONITORING SYSTEM FOR UAS
The objective of this work is to develop a full scheme for
autonomous surveillance and intruder monitoring in realis-
tic, complex, and unstructured outdoor scenarios using UAS
equipped with event cameras. The UAS performs periodic or
on-demand surveillance tours. The scenario can change from
one tour to another, but in the same tour it is assumed mostly
static. This is the case in many security and inspection appli-
cations, e.g., industry, building perimeter, or frontier surveil-
lance, among others. The intrusionmonitoring scheme should
be robust to lighting conditions and be operative during day
and night. Besides, it should be robust to motion blur effects,
which can be particularly severe in dark lighting conditions.
Also, it should be easily particularized and adapted to the
conditions of the specific scenario.

The proposed scheme relies on event cameras, which pro-
vide high dynamic range and temporal resolution –hence,
high robustness against lighting conditions and motion blur.
They have low power consumption and are small. Hence,
they are suitable for integration on board small UAS. Besides,
their high dynamic range make them suitable for day/night
operation, enabling the use of only one camera instead of
configurations with one camera for day vision and another
for night vision. Also, their insensitivity to motion blur make
event cameras robust to the potential mechanical vibrations
occurring during UAS flight.
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FIGURE 2. Main functional modules of the proposed asynchronous event-based scheme.

The main functional modules of the proposed scheme are
summarized in Figure 2. The Navigation system includes
modules for trajectory planning, waypoint following, and
6-DoF localization. The trajectory planning was performed
using the Lazy Theta* planner described in [30]. 6-DOF
localization was performed fusing RTK GPS and IMU mea-
surements. This navigation system is not a main contribution
of the paper, and for brevity, its detailed description is omit-
ted. The UAS is assumed to be equipped with a DAVIS
camera, which includes an event-based dynamic vision sen-
sor (DVS) and an image-based active pixel sensor (APS).
During the surveillance mission execution, the events from
the DVS sensor are processed on-line and on board by
the Intrusion Monitoring (IM), which implements an asyn-
chronous event-based processing scheme for intrusion detec-
tion. The events generated by the DVS sensor are packaged
using ASAP [31], which synchronizes event packaging and
event processing by adjusting the number of events sent for
processing such that the provided events are processed as
soon as possible while avoiding processing overflow. During
the training stage, the parameters of IM are off-line adapted
for a given surveillance scenario by the Auto-tuning sys-
tem, which implements an optimization method based on
Simulated Annealing. The method maximizes the similar-
ity between the results provided by IM and a ground truth
reference obtained by an automatic object detector (YOLO
V3 [32] in the reported experiments) fed with the visual
images from the DAVIS APS sensor. Of course, the proposed
scheme could be extended to event cameras with no APS
sensor by using an additional onboard visual camera.

The proposed system operates similarly to a ‘‘robotic
security guard’’’. The UAS, periodically or on demand,
autonomously executes surveillance tours performing on-line
intrusion monitoring, reporting, and logging. The robot tra-
jectories are defined by sequences of waypoints selected
for their good visibility of the scenario. When the robot
reaches onewaypoint it stays in steady flight (hovering) while

performing intrusion monitoring using IM. Even during hov-
ering, the static scenario background originates events due
to residual UAS motions and vibrations, requiring specific
mechanisms to distinguish between events created bymoving
targets and those created by the static background. If no
intrusion is detected at that waypoint, the robot keeps its
trajectory to the next waypoint. If an intrusion is detected,
it is reported to theGround Station. Depending on the surveil-
lance policies adopted, the robot can continue the surveillance
tour to avoid compromising the rest of the scenario or, it can
keep monitoring the zone with the detected intrusion. The
surveillance missions are performed fully autonomously and
are executed on-line and on board. The adopted architecture
could also support coordination within multi-robot schemes
through module Communications.

The setting of IM is dependent on the complexity, type,
and object-density of the scenario, which in a dynamic envi-
ronment can be different from one surveillance mission to
another. To cope with this, all data (events and images)
gathered in each tour are logged and off-line processed after
the tour: the images are processed by Object Detector and,
the events, by IM. The cases where Object Detector and IM
disagree are submitted to a human operator for decision. This
procedure enables estimating the performance of IMwith the
current parameters and, if necessary, a new Auto-tuning is
triggered updating the training data set with the data obtained
in the last tour. The execution of the training stage is off-
line, on the Ground Station, and autonomous except for the
cases in which the processing of the training data with the
image-based Object Detector and event-based IM disagree.

IV. ASYNCHRONOUS EVENT-BASED INTRUSION
MONITORING SYSTEM
Event cameras asynchronously generate events with µs res-
olution. Each event is described by e = (t, u, v, p), where
(u, v) are the pixel coordinates, p is the event polarity (i.e.,
either 1 or 0), and t is the timestamp in which the event
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was triggered. Events are triggered by changes of intensity
in the scene, which in general are caused by: (i) camera
motion producing changes of intensity from static objects
in the scene, (ii) sensor inherent noise or due to manufac-
turing irregularities, and (iii) intensity changes from moving
objects. Intruders in motion originate nearby corners in the
event stream, e.g., caused by limbs in human and animal
intruders, or by other robots. Hence, intruders create groups
of events close to corners with globally consistent motion
in the scenario. Intrusion Monitoring (IM) includes asyn-
chronous event-by-event processing techniques for: corner
detection, feature tracking, clustering, and also mechanisms
to distinguish events corresponding to moving objects from
those originated by the scene background. IM receives as
input the adjusted event stream fromASAP [31], and provides
as output the centroid of the detected intruders.

The operation of IM is as follows. The Corner Detector
module implements the FA-Harris asynchronous event-based
corner detector [33], selected due to its good performance
in terms of false positive rate and computational cost when
compared to others such as [19] and [21]. Both capabili-
ties are crucial for real time applications in cluttered envi-
ronments. Next, the corners with consistent motion are
asynchronously tracked by the Feature Tracking module.
Although some asynchronous corner trackers have been pro-
posed [22], we preferred to develop a method adapted to
the intrusion monitoring problem with improved candidate
search and evaluation that trades between computational cost
and accuracy, see Section IV-A. Even though corner tracks
are useful to detect the intruder, they do not always provide
enough information. The proposed Clustering algorithm cre-
ates clusters with the tracked features and nearby events with
consistent motion, see Section IV-B. Besides, IM includes
mechanisms to prevent processing events of static back-
ground caused by the camera motion. The proposed method
models the spatio-temporal information in the event stream
through the Attention Priority Map (APM), see Section IV-C,
to define regions on the scene that trigger more events within
a variable time window. Hence, regions with moving objects
cause higher values in APM. Only the events which value
in APM are higher than threshold ω are processed by the
clustering algorithm. Only the clusters with sufficient num-
ber of events and corners are considered to be caused by
an intruder. The rest are discarded. Finally, the bounding
boxes and centroids of the resulting clusters are extracted
and tracked. Algorithm 1 summarizes the operation of IM.
Figure 3 shows experimental results from the execution of
the above modules.

Besides, IM includes several mechanisms to reduce its
computational cost. One of them is the ASAP module [31],
which adjusts the number of events provided to IM such that
events are processed as soon as possible but avoiding process-
ing overflow. The output of IM is continuously analyzed by
ASAP (see line 10 in Algorithm 1) to enable on-line event-
by-event processing. Besides, only events which priority in
the APM is higher than a threshold ω are processed by the

Algorithm 1 Asynchronous Event-Based Intrusion
Monitoring
1: procedure Asynchronous Event-Based intrusion monitoring(e)
2: isCorner←− CornerDetection(e) F Asynchronous corner detection.
3: if isCorner then
4: FeatureTracking(e) F Asynchronous feature tracking.
5: end if
6: if not APMFiltered(e) then
7: µc ←− Clustering(e) F Asynchornous clustering.
8: CentroidTracking(µc) F Cluster centroid tracking.
9: end if
10: PackageProcessingAnalysis() F Feedback to ASAP.
11: return µc F Return tracked centroids.

12: end procedure

FIGURE 3. Results in different steps in the execution of IM: a) Feature
Tracking, b) APM, c) Clustering, and d) Centroid Tracking. To facilitate
visualization in a), c), and d), the obtained results are shown in green on
the visual image provided by the APS, also showing in red and blue the
events provided by the DVS during an equivalent time frame.

clustering algorithm. Thesemechanisms enable a large reduc-
tion of the computational cost without significantly reducing
accuracy as is shown in Section VI.
The notation adopted in the IM modules is summarized

in Table 1. Feature Tracking, Clustering, and APM employ
similar symbols to represent buffers, lists, and timestamps,
using different superindexes to distinguish between modules.

A. ASYNCHRONOUS EVENT-BASED FEATURE TRACKING
Algorithm 2 summarizes the asynchronous event-based fea-
ture tracker used in IM. The proposed method tracks features
adopting an event-by-event asynchronous approach. Each
event feature f = {t, u, v} is represented by its image coor-
dinates x = (u, v) and the timestamp t of the event that gen-
erated the feature. In general events are sparsely distributed
on the image, which hampers their tracking. To copewith this,
our method makes use of a Surface of Active event Features
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TABLE 1. Notation used in Feature Tracking, Clustering, and APM.

Algorithm 2 Asynchronous Event-Based Feature Tracking
1: procedure Asynchronous Event-Based tracking(f, ν)
2: τT ←− UpdateSurfaceOfActiveFeatures(f, BT , S)
3: if isCandidate(f, S, ν) then
4: LTf ←− SearchMatch(2T , D, f) F Find matches in 2T .
5: if LTf = ∅ then
6: 2T

←− Append(f) F Add a new feature to 2T .
7: else
8: f̂o ←− GetOldestTrack(LTf )
9: 2T

←− Update(f, f̂o) F Update f̂o by f in 2T .
10: end if
11: end if
12: 2T

←− CleanTracker(LTf , τ
T ) F Remove old features.

13: return 2T
F Return list of tracks.

14: end procedure

(SAeF) that describes the spatio-temporal evolution of fea-
tures over time. The SAeF, denoted as S ∈ R2, is generated
by spatially accumulating the last nT detected features instead
of using a fixed time window. The list of features represented
on S is buffered in BT . Hence, the detection of a new feature
triggers the update of S and BT –adding the new feature and
removing the oldest. As a result, S keeps a time-varying rep-
resentation that adapts to the scene and camera motion. For
instance, with fast camera motions the resulting S contains
features detected in smaller time windows than with slow
camera motions.

The input features are filtered to cancel noisy samples.
A feature is considered as candidate for tracking if the number
of neighboring features in S is greater than a threshold ν.
Feature candidates are later used to either update or create
new feature tracks. Hence, only features with frequent spatial
occurrence are tracked. The set of feature tracks is stored
in the list 2T

= [f̂1, . . . f̂n], where f̂i is the i-th feature
track. The association between a new feature candidate f and
existing feature tracks is as follows. Each feature candidate
creates a listLTf with the tracks it can be potentially associated
to. f̂i is added to LTf if its distance to f, D(f̂i, f), is lower
than a threshold d , which is typically small (d = 5 pixels
in all the performed experiments) to avoid wrong associa-
tions with nearby objects in the scene. If LTf has one only

element f, that track is updated with f. If LTf has more than
one element, there exist several very close tracks –very likely
redundant due to the low value of d adopted. In this case older
tracks are prioritized since they represent more temporally
consistent –and relevant for tracking– features over time.
Hence, f is associated to the oldest track in LTf , denoted
as f̂o. The remaining tracks in LTf are removed. Finally,
if LTf = ∅, a new track is created and initialized with f.
Each time a feature track is updated, its timestamp is also
updated. If the timestamp of a feature track is older than
τT , the track is removed. τT is selected as the timestamp of
the oldest feature in BT , enabling a time-varying forgetting
reference that adapts to the scene and camera motion. It is
preferred over a constant forgetting reference, which effec-
tiveness is compromised by the camera motion, as reported
in [34].

All the parameters of the tracker are set with fixed val-
ues except nT , the size of buffer BT . As said above, d ,
the minimum feature-track association distance, is set to 5
as a trade-off between avoiding wrong associations from
close tracks and dealing with the lack of continuity in the
occurrence of the input features. Differently, the size of BT

should be chosen according to the camera, scenario camera
motion and complexity. Static scenarios with few objects and
slow camera motion can be represented with small buffers
as few events are triggered under these conditions. However,
cluttered scenes with dynamic objects require larger buffers.
The setting of nT is performed by the auto-tuning method
described in Section V.

B. INTRUDER SEGMENTATION USING ASYNCHRONOUS
EVENT-BASED CLUSTERING
An asynchronous event-based clustering is used to group
the features and events caused by intruders. It employs the
spatio-temporal proximity between events as grouping crite-
ria, not requiring a-priori knowledge of the scene geometry
or the number of objects in the scene. The computational
capabilities on board an aerial robot is often limited. Unlike
other clustering methods that aim for accuracy over effi-
ciency, such as [23], our method includes a mechanism to
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balance efficiency and accuracy in order to avoid processing
bottlenecks while keeping accuracy as high as possible.

The proposed clustering method is shown in Algorithm 3.
Similarly to the tracker in Section IV-A, it keeps a buffer BC

with the nC most recent events. BC is updated with each new
event, adding the new event and removing the oldest. Also,
τC is the timestamp of the oldest event in BC . It is used
as a dynamic time horizon enhancing robustness to camera
or scene motion. A cluster c is defined by: its centroid µc,
a weighted moving average µ̂c that is used for event-cluster
association, and a list LEc of the events in BC assigned to
the cluster, i.e., the events assigned to c which timestamp is
greater than τC . LEc is periodically updated by removing the
events with timestamp lower that τC . Cluster c is deleted if
all its assigned events are removed, i.e., if LEc = ∅.
Event-cluster assignation is performed using proximity cri-

teria. In general, events caused by an object are consistently
triggered during shorts periods of time at specific parts of its
contour. To capture this, µ̂c is a weighted moving average
that represents the centroid of the object contour. Every time
a new event e is assigned to c, µ̂c is updated with µ̂c =(
αx+ (1− α)µ̂c

)
/2, where x = (u, v) are the coordinates of

e and α ∈ [0, 1] is the weighting parameter typically selected
as α > 0.5 to give more weight to the new events. Hence,
the proximity of a new event e to cluster c is evaluated using
the distances from the event to the weighted average µ̂c and
to κ random samples drawn from LEc . Cluster c is considered
close to e if any of these distances is below a threshold r . The
Manhattan distance was adopted as it is more efficient than
the Euclidean distance and both obtained similar performance
in the conducted experiments.

Each new event creates a list LCe with the clusters it can be
potentially assigned to. After all clusters have been evaluated,
three cases are possible. If LCe contains one only cluster, e is
added to the cluster. If LCe contains more than one cluster,
the clusters are merged into one and e is added to the new

Algorithm 3 Asynchronous Event-Based Clustering
1: procedure Asynchronous Event-Based Clustering(e, r, κ)
2: τC ←− Update(e, BC ) F Update Event Buffer

3: for each c ∈ 2C do
4: LEc ←− Forget(c, τC ) F Remove old points from cluster.
5: if Size(LEc ) = 0 then
6: 2C

←− Remove(c, 2C ) F Remove empty cluster.
7: continue
8: end if
9: LCe ←− GetProximity(e, c, r , κ)

10: end for
11: if Size(LCe ) = 0 then
12: 2C

←− CreateNew(e, 2C ) F Create new cluster.
13: else if Size(LCe ) = 1 then
14: 2C

←− AddTo(2C , LCe , e) F Add event to cluster.
15: else
16: 2C

←−MergeAndAdd(e, LCe ) FMerge clusters & add event.
17: end if
18: return µ F Return cluster centroid.

19: end procedure

cluster. If LCe = ∅, a new cluster is created with the event.
Adding event e to a cluster c with nc events involves: adding
e toLEc , and updating µ̂c (as described above) andµc asµc =
(ncµc+ x)/(nc+ 1). Similarly, when an old event is removed
from BC , it should be removed from the cluster it is assigned
to.

The number of samples κ in the cluster contour used
to evaluate event-cluster proximity establishes a trade-off
between computational cost and clustering accuracy. Hence,
it should be chosen considering the limitations of the pro-
cessing platform. In all experiments, κ was set to 100, which
allowed on-line execution while providing good clustering
performance. On the other hand, the size of buffer BC and the
radius r in event-cluster proximity evaluation are dependent
on the scene and environment complexity. In dense scenes,
small values of r are required to prevent wrong associations.
In sparse scenes, high values of r will enhance the algorithm
performance as the proximity to the cluster is found without
evaluating all κ samples. Also, the size of BC should be
chosen according to the scene complexity. Simple scenes
containing only one object on a uniform background can be
represented with small buffers. Conversely, complex scenes
require large buffers to accumulate the events corresponding
to the scene details. The setting of r and size of BC for the
specific scenario is performed by the auto-tuning method
described in Section V.

C. ATTENTION FOCUS FOR ASYNCHRONOUS
EVENT-BASED VISION
State-of-the-art event-based surveillance methods use static
cameras [8], [9] assuming that the static background does
not generate events. Such simplification cannot be assumed
in case of event cameras on board UAS: even the resid-
ual UAS motions and vibrations during hovering can orig-
inate significant number of events. The proposed system
requires methods capable of differentiating the events caused
by static objects due to the robot motion from those orig-
inated by moving objects. To deal with that, the proposed
method differentiates between regions with different event
spatio-temporal density, assuming that, even with non-static
cameras, moving objects cause significantly more events than
the scene background. It is based on building a map that
represents the regions on the scene that trigger more events
within a variable time window, i.e., regions more likely to
contain moving objects. Inspired by neuroscience, this map is
denoted Attention Priority Map (APM). The APM, � ∈ R2,
has the same resolution as the event camera, and is also
updated asynchronously event by event. With each incoming
event, � is updated by increasing the values in a l-sized
window centered at the event coordinates x = (u, v) as
follows:

�ij = �ij + l − D(x, y)+ 1, (1)

where D(·) is the Manhattan distance, y = (i, j), i ∈ [u −
l−1
2 , u+

l−1
2 ], and j ∈ [v− l−1

2 , v+
l−1
2 ].
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FIGURE 4. Example of the operation of APM: left) resulting �, center)
events filtered by APM, and right) corresponding visual image.

� is computed only with the last nA events received.
These events are temporarily stored in a buffer BA, where
τA denotes the oldest timestamp in BA. � is kept updated:
events that become old are removed from BA and from �

similarly as in Equation (1). � is kept normalized within
the range [0, 1]. An incoming event at coordinates (u, v) is
considered to attract attention for intruder detection if�(u, v)
is greater or equal than a threshold ω ∈ [0, 1]. Figure 4
shows an event image and the corresponding� in an example
with a person moving in the scene. Figure 4-left shows the
resulting � with the areas of highest values represented in
white.

The performance of APM depends on three parameters:
ω, which determines the sensitivity threshold in � to pay
attention to a moving object; l, the size of the window in the
building of �; and nA, the size of buffer BA. The type and
complexity of the scene impact on the spatio-temporal density
of the generated events and hence, on the selection of values
for ω, l, and nA. For instance, sparse and simple scenes can be
represented using a low-size bufferBA (i.e., low values of nA),
while complex scenes require larger buffers to support the
scene complexity. Besides, using high-size buffers in sparse
scenes can result in poor representation of the scene dynamics
and unrealistically-large areas of attention. Similar dependen-
cies with the scene type and complexity can be found for ω
and l. Manually tuning these parameters for a given problem
is not straightforward: they are adjusted automatically by the
proposed auto-tuning system presented in Section V.

V. INTRUSION MONITORING AUTO-TUNING
A suitable tuning of parameters of Machine Learning (ML)
and computer vision algorithms is crucial to ensure the
desired performance, and in some cases, to the reduce com-
putational cost. Empirical or manual parameter selection
leads to long inefficient trial-and-error iterative processes that
becomemore complex as the number of parameters increases.

This section proposes a method to tune the parameters of
IM. Only the parameters that are dependent on the surveil-
lance scenario and mission conditions, such as the scene
complexity and sparseness/density, or the size of the objects
in the scene, are tuned. Non-scene-dependent parameters,
such as κ , ν, d , or α, were set with the same values in
all the conducted experiments as described in previous sec-
tions. Automatically tuning non-scene-dependent parameters
would unnecessarily increase the size of the search space,

hampering and adding computational cost to the optimization
process. The parameters that are tuned are: nT , ω, l, nA, r ,
and nC . Their dependencies with the scenario were discussed
in Section IV. Additionally, the threshold λ is considered
for tuning. λ is defined as the minimum number of events
per cluster to consider it as an intrusion detection. Event
rate increases with faster camera motions and with lower
object-camera distances. Hence, choosing an adequate value
of λ depends on the surveillance scenario and mission. The
parameters to be automatically tuned are grouped in param-
eter set v = [nT , ω, l, nA, r, nC , λ], see Table 2. The search
space of each parameter is also shown in Table 2.

TABLE 2. Parameters of IM that are auto-tuned and their search space.

A. SIMULATED ANNEALING
Simulated Annealing (SA) [35] was adopted for parameter
auto-tuning. SA is a well-known probability-based meta-
heuristic algorithm that approximates the global optimum
for the set of parameters in a large search space. Unlike
gradient-based optimization methods, SA provides natural
robustness against localminima and is suitable for caseswhen
the function to be optimized is unknown but can be evaluated,
see e.g., [29], as in the described problem. Also, besides
finding a precise optimum if executed during enough time
steps [36], SA is suitable in cases where finding an approxi-
mation to the global optimum in a limited time is preferable to
finding a very precise optimum in a larger possibly-unfeasible
time. This is the case since if necessary, IM parameters should
be re-trained between two consecutive surveillance tours.
Finally, it should be noted that the proposed scheme for
parameter auto-tuning is flexible and, although out of the
scope of the paper, other black-box optimization methods
could be used.

Along the iterations, SA uses the current solution v̂ as
reference to explore other solutions. In the early iterations,
it allows the exploration of distant points in the search space
by accepting high probability solutions that do not improve
the current solution. At later iterations, it explores at shorter
distances in the search space only accepting solutions that
improve the current solution. At each iteration i, SA adds a
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perturbation 1v to the current solution v̂ and evaluates the
cost function J (·) of the candidate solution v, see Section V-B.
The perturbation is sampled from a Gaussian distribution
N (0, σϒi), where σ is the perturbation standard deviation,
and ϒi is the temperature parameter that decreases over time
controlling the annealing process. SA accepts candidate solu-
tions that improve the cost function and also implements a
probabilistic mechanism to accept candidate solutions that do
not improve it in order to prevent local minima. A candidate
solution v is accepted according to a probability obtained

from the Boltzman distribution as p = e−
1J
ϒi , where 1J =

J (v̂) − J (v) is the cost difference between the candidate
solution v and the current solution v̂. For great values of
ϒi, p tends to 1, which favors the acceptance of candidates
with cost higher than J (v̂), enabling exploring distant points
in the search space. Differently, for small values of ϒi, p
tends to 0, and the search is refined locally by accepting
only the candidate solutions that improve J (v̂). The adopted
annealing control followed a geometric model ϒi = ϒ0η

i,
where η ∈ [0.7, 0.96] defines the annealing relation. This
geometric model was preferred over other annealing control
schemes (e.g., linear) due its better experimental results in all
the experiments performed.

B. PARAMETER AUTO-TUNING
The SA optimization process aims at maximizing the similar-
ity of the result provided by the IM to a ground truth reference.
To minimize the involvement of human operators, the ground
truth is taken as the segmented objects classified as person
provided by an automatic detector fed with visual images of
the APS sensor of the DAVIS. YOLO V3 [32] was employed
due its well-known fast-response object detection and pre-
diction capabilities. Also, it can process the whole image
instead of sliding windows or regions, which is interesting
to consider the effect of the background. The scheme of the
proposed auto-tuning method is summarized in Figure 2. The
Object Detector module receives visual images and returns
as output bounding boxes with the detected objects. The IM
receives as input the event stream and returns the centroid
of the detected intrusions. In the Synchronizer module both
outputs are compared to evaluate the performance of IM
leading to four possible outcomes: false positive, when IM
reports an intrusion that is not reported by the object detector;
true positive, when both object detector and IM report an
intrusion and the distance between both centroids is lower
than a threshold; true negative, when both IM and object
detector report no intrusion; and false negative, when the
object detection reports an intrusion and IM does not, or when
the distance between the centroids of both reported intrusions
is greater than the threshold.

The training set is composed of episodes, sequences of
images and events gathered by the DAVIS during UAS flights
in the intrusion monitoring scenario. Episodes were preferred
over single images and their equivalent batch of events since
they are more suitable to capture the scene dynamics and

complexity. The training episode set should contain a suffi-
cient number of episodes that cover the range of conditions
where IM should operate including lighting conditions, object
density and size, and presence of intruders, among others.
At each SA iteration, the Synchronizer estimates the perfor-
mance of IM configured with parameter set v by employing
its intrusion detection accuracy:

A(v) =
TP(v)+ TN (v)

TP(v)+ FP(v)+ TN (v)+ FN (v)
, (2)

where FP(v), TP(v), TN (v), and FN (v) are respectively the
number of false positives, true positives, true negatives, and
false negatives obtained by IM configured with parameter set
v in the training episode set.
Parameter Tuning implements the SA algorithm and eval-

uates the parameter set v using cost function J (v) = 1 −
A(v). At each iteration, IM and Object Detector processes
the episodes in the training set. Syncronizer computes A(v),
which is used by Parameter Tuning to obtain the updated
parameter set v̂.

VI. EXPERIMENTAL VALIDATION AND ANALYSIS
The proposed scheme was validated and evaluated in sets
of experiments conducted in realistic scenarios. The scheme
operation and its performance in daylight conditions is sum-
marized in Section VI-A. Section VI-B evaluates its per-
formance adopting different auto-tuning approaches. Finally,
its performance in dark conditions and robustness against
lighting conditions is analyzed in Section VI-C.

The aerial platform used in the conducted experiments, see
Figure 5, was a custom-made frame endowedwith a PixHawk
1 autopilot running PX4 position-based low-level controller,
a U-BloxGPS receiver, aDAVIS 346 event cameramounted at
−45◦ pitch rotation, and an INTEL R© NUC6i7KYK2 embed-
ded computer for on-line onboard computation and data log-
ging. The navigation system was implemented on top of
the UAL abstraction layer [37]. The proposed scheme was
implemented in C++ using ROS Kinetic. The IM parameter
auto-tuning system was performed off-line in an external
computer with an AMD Ryzen 5 2600 processor and an
NVDIA GeForce GTX 1070 Ti GPU.

The experiments consisted in evaluating the presence of
intruders at different zones of the monitoring area, and were
conducted around the laboratories of the School of Engineer-
ing of the University of Seville. A set of surveillance missions
with different UAS trajectories and waypoints was defined.
The zones (each of them defined by a 6-DoF waypoint in the
UAS trajectories) were selected with no special care, only
determined by the intrusion monitoring application needs.
Figure 6 shows one of these surveillance missions where the
UAS transverses 420 m (go and back) approx. It includes
15 zones with high diversity in object density and type, object
size and camera distance to objects, or intrinsic movement
of some objects, such as trees, among others, and for this
reason this mission is taken to illustrate the performance of
the proposed scheme. The trajectory followed by the UAS in
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FIGURE 5. Aerial platform used in the experiments.

the execution of one mission is shown in red, and the event
camera field of view in each waypoint, in blue.

First, prior flights were performed in different condi-
tions (different day and night times, lighting conditions, and
weather conditions, among others) to collect data for param-
eter auto-tuning. The robot started the trajectory and, when
it reached one waypoint, it stayed in hovering and recorded
5 sequences of 10swith the collected events and images from
the DAVIS sensor. To prevent bias in parameter training, 50%
of the flights were recorded with people acting as intruders,
and the rest, with no intruders.

After parameter set training, the scheme was evaluated
in surveillance missions where the robot autonomously fol-
lowed the trajectory. At each waypoint, the robot stayed
in hovering while it executed on-line and on-board the IM
event-based processing system configured with the trained

FIGURE 6. Example of surveillance mission used in the system
experimentation conducted at the laboratories of the School of
Engineering of the University of Seville. The frames represent the 6 DoF
waypoints in the surveillance mission. The blue circular sectors represent
the field of view of the event camera at each waypoint.

parameter set. Some results from different steps in the
event-based processing were shown, for brevity interleaved
with the algorithm description, in Figures 1, 3, and 4. A video
with some of the results is available as supplemental material.
The scheme performance was assessed using the following
well-known metrics [38]:

Accuracy =
TP+ TN
P+ N

, (3)

Precision =
TP

TP+ FP
, (4)

TPR =
TP

TP+ FN
, (5)

FPR =
FP

FP+ TN
, (6)

where P is TP + FN , N is TN + FP, and TP, TN , FP, and
FN stand respectively for the true positive, true negative,
false positive, and false negative rates. The above metrics are
expressed in percentages.

In the performed experiments IM required an average of
2.71µs to process every event. Besides, as described above,
the different modules in IM include filtering effects. For
example, APM discarded 59% of the events as originated by
the background; these events were not processed by Clus-
tering, which represents ∼70% of the processing time of
IM. Moreover, IM processes the events sent by ASAP, which
dynamically adjusts the number of events that are processed
by IM to avoid processing overflow. In the experiments,
the average event rate was ∼ 625, 000 events per second.
The combined filtering effect of the different implemented
modules and the fact that the corner detector used can be
executed in real-time [33], allowed the processing hardware
to execute the proposed scheme on-line and on-board.

A. PERFORMANCE EVALUATION
The zones considered were very diverse in object density, size
of objects, or intrinsic movement of some objects (e.g., trees),
see for instance Figure 7. The first analyzed approach was to
capture the particularities of each zone in a specific parameter
set trained only with data from that zone. This approach
uses zone-dependent auto-tuned parameters where the robot
changes its IM parameter set from one zone to another.
For all zones, the SA optimization was set with ϒ0 = 1.0,

η = 0.955, and σ = 0.35, which were chosen empirically to
bring ϒi close to zero in a fixed number of epochs. Iterating
through too many epochs might require an unreasonable
amount of time, whereas too low iteration numbers might
cause inaccurate parameter tuning. We found that 150 epochs
were a suitable trade-off between training time and expected
accuracy for all the experiments. Each epoch corresponds to
the processing of a sequence of 10s.

The auto-tuning process started with an initial parameter
set, which values were randomly selected within their bounds
defined in Table 2. At each iteration, the cost function J (·) was
evaluated for the candidate parameter set v and used to com-
pute1J . Then, a new parameter set v was generated in order
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FIGURE 7. Visual images of each of the 15 zones (ordered left to right and top to bottom) in the surveillance mission shown in Figure 6.

FIGURE 8. Values of cost functions J(v̂) and J(v) during the parameter
training for zone 7. J(v) describes the performance of the different
solutions obtained along the exploration of the search space.

FIGURE 9. Evolution of the values J(v̂) during the zone-dependent
training for each zone.

to further search for a configuration that reduced the cost
function. Figure 8 shows the values of J (v̂) and J (v) during
parameter training for zone 7. J (v) describes the cost obtained
for each configuration of v along the exploration of the search
space. On the other hand, J (v̂) represents the cost obtained
with the current set of parameters v̂, which at each iteration
are used as prior to generate the next set of candidates v.
Figure 9 shows the evolution of J (v̂) during the auto-tuning
process for each zone of the monitoring area. Due to the

TABLE 3. Performance evaluation in each zone using zone-dependent
auto-tuned parameters.

random initial parameter set and the different characteristics
in each zone, the cost obtained at the first epoch varied among
the different zones. As pointed out in Section V-A, the cost
J (v̂) could increase during the first iterations of the training
(whenϒi is close to 1) to enlarge the exploration of the search
space and prevent local minima. After 20 epochs the cost
function was below 0.2 for all zones considered, showing
fast convergence. After 150 epochs, when the training was
completed, the cost function reached values below 0.1 for all
zones.
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After training, more than 30 evaluation missions were per-
formed in different conditions including different day hours,
lighting, and meteorological conditions. Table 3. shows
the average performance metrics in each zone obtained in
the evaluation missions. The trained scheme provided high
Accuracy in all zones, with an average of 96%. Further,
the values of Accuracy and FPR showed a low number of
‘‘false alarms’’, evidencing high false positive rejection capa-
bility. Also, TPR showed reasonable capabilities regarding
missing detections.

B. ANALYSIS OF ZONE SENSITIVITY
This section evaluates the proposed scheme using the same
parameter set for all zones in the monitoring mission.
The naïve approach of using one parameter set v′ com-
puted as the mean, median, or statistical fashion of all
the independently-tuned parameter sets (one for each zone)
wouldwork only for those zoneswhich parameters were close
to v′. Hence, we opted for training a single zone-independent
parameter set using a training set that includes sequences
taken from all zones in the mission. At each epoch several
randomly chosen sequences from different zones were used
for the evaluation of the cost function. The SA optimization
was set with ϒ0 = 1.0, η = 0.955 and σ = 0.35, the same
values as in Section VI-A.

The performance results obtained are reported in Table 4.
Two types of results are shown: left) evaluation using the
zone-independent approach, i.e., using one parameter set
trained for all zones; and right) evaluation using the parame-
ter set averaging approach, i.e., using for all zones the aver-
age of the parameter sets specifically trained for each zone.
In general, theAccuracy values obtained by zone-independent
training were 5% greater for all zones than those obtained
by parameter set averaging. The performance of parameter
set averaging was satisfactory for some zones, but, poor in
others, such as zones 3 and 4, which had high complexity and
differences w.r.t. the other zones. On the contrary, the zone-
independent approach reported Accuracy values higher than
80% for all zones and an average Accuracy of 91%. Although
the performance of the zone-independent approach was lower
than that of the zone-dependent approach, it was still satisfac-
tory and involved a significantly simpler and more efficient
training process, favoring scalability to larger surveillance
areas. It is worth considering that, finding a single parameter
set that results in high Accuracy for every zone might not be
possible in all problems, due to the diversity of the zones in
the surveillance mission. Hence, zone-independent training
is proposed as a trade-off solution when all the zones of
a surveillance mission are relatively homogeneous, whereas
zone-dependent training should be used otherwise.

C. PERFORMANCE UNDER LOW ILLUMINATION
CONDITIONS
The results in Sections VI-A and VI-B show the performance
of the proposed scheme in experiments performed during the
day with different lighting conditions. This section analyzes

its robustness in experiments conducted during the night with
low and pitch dark lighting conditions.

First, the scheme using the zone-independent parameter
set trained with daylight data (described in Section VI-B)
was evaluated in flights performed under dark lighting condi-
tions. Table 5-top shows the average performance obtained.
The resulting Accuracy values in the different zones ranged
between 73% and 84%. They were significantly lower than
those obtained in the daylight experiments. Also, TPR per-
formed worse than in daylight experiments due to the high
number of false negatives caused by the level noise increment
in event streams taken with dark lighting conditions. Besides,
although Precision and FPR performed well, these results do
not provide a complete measurement of performance as can
be seen in Eqs. (4) and (6), both of them are independent of
the number of false negatives. The obtained results suggest
that a different set of parameters are needed to satisfactorily
operate with dark lighting conditions.

To evaluate that hypothesis, a parameter set using only data
collected during the night was trained by adopting the zone-
independent approach. YOLO V3 did not provide sufficient
reliability for detecting the intruders in dark lighting con-
ditions, thus data were manually annotated. Table 5-center
shows the average performance metrics obtained in evalua-
tion surveillance missions also performed during the night.
The values of Precision, TPR, and FPR were close to the val-
ues obtained during the day (Section VI-A), but the average
Accuracy value was slightly lower due to the greater number
of false alarms caused by the lower signal-to-noise ratio in
dark scenarios. The noise increment affected the operation
of the APM by reducing the priority of moving intruders.
Although these results are acceptable, manual annotation is
a very time-demanding task.

To cope with these issues, we analyzed the option of estab-
lishing a parameter set for dark lighting conditions by adapt-
ing the values of the parameter set trained for daylight condi-
tions. To understand the intuition of the problem, datasets of
different zones taken in daylight and dark lighting conditions
were extensively analyzed. First, in all zones the number of
events generated in dark lighting conditions were at least
twice greater than those generated with daylight conditions.
Many of them resulted from the event over-generation caused
by edges, whereas others resulted from the noise level incre-
ment due to the low lighting conditions. This phenomenon
was also reported in [14]. Furthermore, the parameter sets
trained for daylight and dark lighting conditions in different
zones were also analyzed. The main changes occurred in only
three parameters: ω, nC , and nA. The values of ω, the thresh-
olds in the APM, ∼30% from daylight to dark lighting con-
ditions. Due to the higher noise level, the APM enhanced its
filtering effect and imposed more restrictions to consider an
event as originated by an intruder. Also, the values of nA,
the sizes of the APM buffers in dark lighting conditions, were
four times greater than in daylight conditions. The increment
in the events triggered in dark lighting conditions required
greater buffers to represent the scene. Finally, nC , the sizes
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TABLE 4. Evaluation in each zone of IM trained with the zone-independent (left) and with the parameter set averaging (right) approaches.

TABLE 5. Performance of the proposed scheme in night experiments
using parameters trained with: top) only daylight data, center) only dark
lighting data, and bottom) daylight parameters adapted to dark
conditions.

of clustering buffers in dark lighting conditions, were 50%
smaller than in daylight conditions. The higher noise level in
dark lighting can cause clustering large regions in the image.
Low values of nC limit the size of these clusters.

Table 5-bottom shows the performance obtained using the
parameter set trained with daylight data but adapting the
values of ω, nC , and nA to dark lighting conditions. Although
its performance is slightly worse than that obtained by train-
ing with dark lighting data, parameter adaptation provides
a trade-off solution that keeps high performance in both
daylight and dark lighting without requiring training for dark
lighting conditions.

VII. CONCLUSION AND FUTURE WORK
This paper proposes an event-based processing scheme for
intrusion monitoring with UAS. Event cameras are very inter-
esting sensors for outdoor aerial robot applications. They
provide high dynamic range, being highly robust to lighting
conditions, and enabling day/night operation with the same
event camera. Also, they provide very high temporal resolu-
tion, being insensitive to motion blur. Finally, they are small
and have low power consumption.

The proposed scheme includes two main perception
blocks. First, an asynchronous event-based processing system
detects intrusions on-line using only the events. It includes
several event-based algorithms: namely, corner detection,
tracking, clustering, and event filtering through the atten-
tion priority map. All of them process the events one-by-
one, resulting in a fully asynchronous processing system
that exploits the advantages of the sequential nature of event
cameras. The algorithms were endowed with mechanisms to
reduce their computational cost in order to enable on-line
onboard execution. The second block is an off-line semi-
supervised training mechanism that adjusts the parameters
of the event-based processing algorithms to a particular sce-
nario and problem. It is based on an optimization process
that maximizes the similarity between the output of the
event-based processing and ground truth results obtained
applying an object detector to the visual images provided
by the APS sensor of the DAVIS camera. The proposed
perception scheme was implemented in ROS, integrated in
a fully autonomous aerial robot architecture, and extensively
validated in challenging scenarios with a wide variety of
lighting conditions, including day and night experiments in
pitch dark conditions.

A limitation of the proposed scheme is that it does not iden-
tify the type of intruder (e.g., person, car, or a bike). Intruder
identification using event-based deep learning techniques is
object of current research. In this work, the different signal-
to-noise ratios of events triggered at day and night were
addressed by scaling some parameters of the event-based
processing system based on empirical evidence. Current work
focuses on modeling the event generation under different
lighting conditions from an analytical point-of-view. Fur-
thermore, the proposed method assumes intruders moving at
higher velocities than the UAS. Additional experimental eval-
uation where both UAS and intruder move at similar speeds is
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subject of further analysis. Finally, this work was developed
in the context of the GRIFFIN ERC Advanced Grant, which
objective is to develop autonomous flapping-wing robotic
systems capable of navigating, perching, and manipulating
objects. The advantages of event cameras overcome some of
the limitations of flapping-wing robot perception caused by
agile maneuvers and abrupt movements [39]. Future work
will also extend the proposed scheme to be used on board a
flapping-wing robot to detect and track moving targets during
perching and flight.
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