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Abstract

Microfluidic capacities for both recreating and monitoring cell cultures have opened the door

to the use of Data Science and Machine Learning tools for understanding and simulating

tumor evolution under controlled conditions. In this work, we show how these techniques

could be applied to study Glioblastoma, the deadliest and most frequent primary brain

tumor. In particular, we study Glioblastoma invasion using the recent concept of Physically-

Guided Neural Networks with Internal Variables (PGNNIV), able to combine data obtained

from microfluidic devices and some physical knowledge governing the tumor evolution. The

physics is introduced in the network structure by means of a nonlinear advection-diffusion-

reaction partial differential equation that models the Glioblastoma evolution. On the other

hand, multilayer perceptrons combined with a nodal deconvolution technique are used for

learning the go or grow metabolic behavior which characterises the Glioblastoma invasion.

The PGNNIV is here trained using synthetic data obtained from in silico tests created under

different oxygenation conditions, using a previously validated model. The unravelling capac-

ity of PGNNIV enables discovering complex metabolic processes in a non-parametric way,

thus giving explanatory capacity to the networks, and, as a consequence, surpassing the

predictive power of any parametric approach and for any kind of stimulus. Besides, the pos-

sibility of working, for a particular tumor, with different boundary and initial conditions, per-

mits the use of PGNNIV for defining virtual therapies and for drug design, thus making the

first steps towards in silico personalised medicine.

Author summary

In this work, we apply Physically-Guided Neural Networks with Internal Variables

(PGNNIV) to the understanding of the Glioblastoma evolution process. We explain the

metabolic changes between the proliferative and migrative activity of Glioblastoma cell
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cultures by using the go or grow activation functions as a pair of internal variables, whose

dependence on the oxygen level is unravelled by some building blocks of the whole

PGNNIV. Due to its model-free nature, our method is able to identify different classical

mechanistic approaches and to outperform cell culture evolution predictions, as we dem-

onstrate in the paper. Unlike Biologically-Informed Neural Networks we can assimilate

data obtained from different boundary conditions and under different external stimuli to

simulate the tumor progression under arbitrary conditions. We demonstrate this ability

by comparing the predictions with different boundary conditions, resulting in different

oxygenation conditions. This flexibility enables the use of our proposed method for per-

sonalised medical purposes, as the cell culture metabolic information, for a particular

tumor, is encapsulated in a sub-network and may be used for arbitrary in silico tests.

This is a PLOS Computational Biology Methods paper.

Introduction

Cancer is the second leading cause of death in the world, according to the World Health Orga-

nisation, and is responsible for about 10 million deaths per year. These figures are expected to

rise up to 16 million deaths in 2040 [1]. Among the more than 200 types of cancer, Glioblas-

toma (GBM) is the most aggressive primary brain tumor, with a survival median of GBM

patients who undergo the first-line standard treatment (surgery followed by adjuvant chemo-

therapy and local radiation) of 14 months since diagnosis, and a 5-year survival rate of only

6.8% [2, 3]. In addition, it is the most frequent of glioma tumors, accounting for 17% of this

type of cancers [4]. Clinicians and researchers associate this high aggressiveness with its het-

erogeneity, rapid and dynamic progression and high invasive capacity [5, 6]. It is therefore

clear that the characterization of GBM behavior is crucial for the development of therapeutic

strategies against this cancer [7, 8].

The complexity of GBM evolution (and of cell biological processes in general), strongly

depends on the particular microenvironment [9]. This makes it difficult the use of two-dimen-

sional in vitro experiments (Petri dishes) to reproduce the actual behavior of cells in real tissues.

In response to these limitations, microfluidics and micro-technologies permit to recreate the

actual three-dimensional cell microenvironment in a much more realistic way, thus allowing to

get results, associated with the complex biophysical and biochemical cell processes that govern

the tumor dynamics, much closer to the actual in vivo situation than classical Petri dishes [10].

For instance, the study of tumor chemotaxis has been considerably developed [11, 12]. Conse-

quently, and in general, these techniques allow testing drugs much more efficiently [13, 14].

Also, thanks to the flexibility, reproducibility, automation, integration and miniaturisation

of microfluidic experiments, it is possible to generate great amounts of data, in the form of

images and videos of cell culture evolution [15]. This opens the door to using Data Science and

Machine Learning methods as new predicting tools [16, 17]. These tools can be considered

therefore as a new paradigm in the analysis of complex, multifactorial, multiphysical and mul-

tiparametric biological problems, as those occurring during GBM evolution [18]. Therefore, it

begins to be possible working in applied mathematical biology with complex nonlinear mod-

els, typical of other disciplines such as computational mechanics. In particular, models based
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on partial differential equations (PDEs) that have been used for predicting tumor evolution

(see for instance [19]) may be enriched and adapted to consider more complex and coupled

phenomena.

One example of particular interest is modeling of the so-called called go or grow paradigm

[20], characteristic of many tumoral processes, among which GBM is a particular case. Indeed,

hypoxia has been proposed as one of the main driving forces of GBM progression [21]. The

fast proliferation of GBM cells close to brain blood vessels may provoke their occlusion, which

in turns leads to local hypoxia. Thus, many cells die forming a necrotic core around the col-

lapsed vessel. The surviving cells migrate towards other non collapsed vessels, looking for oxy-

genated areas. These migrating structures, formed of high-density areas of cells, are called

pseudopalisades [22]. Once they reach a new vessel, their migration stops and the proliferation

returns. This cyclic process of migration and proliferation is known in the scientific literature

as the go or grow paradigm. It proposes that cells exhibit a migratory or proliferative activity

depending on the oxygen concentration [20]. Hypoxia Inducible Factors (HIFs) are consid-

ered as the main biomolecular activators of this activity [23–25]. Recently, we have been able

to reproduce these histological structures in vitro [26, 27]. Also, we developed a mathematical

model incorporating the go or grow hypothesis, which allowed us to reproduce the GBM evolu-

tion under different experimental configurations also in vitro [28], and to derive, from cell cul-

ture images, information on the cell behavior [29].

However, parametric models are corseted by the mathematical relations that describe the a
priori assumed biological hypotheses, so they present an obvious modeling bias. Besides, in

our experiments, we try to understand the intrinsic mechanisms that control these biological

processes; a knowledge that goes further than the numerical value of a specific parameter and

is generally related to concepts with a clear biological meaning, such as whether the metabolic

change is sharp or smooth, localized or distributed, or presents one or many different levels of

transition.

A new promising family of neural networks, named as Physically-Guided Neural Networks

with Internal Variables (PGNNIV), has just emerged as a tool to identify, evaluate and derive

constitutive models from observable measurements [30, 31]. The fundamental idea is to incor-

porate the physical knowledge on the system into the network and to concentrate the learning

power of Artificial Neural Networks in the intrinsic physical mechanisms that are intended to

be found up. Very recently, a similar approach combining neural networks and physical equa-

tions (Physics-Informed Neural Networks (PINNs) [32]) has been proposed as a way to dis-

cover hidden mechanistic relationships using the Fisher–Kolmogorov–Petrovsky–Piskunov

equation [33] as a benchmark problem, a concept that has been coined as Biologically-

Informed Neural Networks (BINNs). All the same, PGNNIV offer greater flexibility in the def-

inition of the internal variables of interest, including the non-measurable ones. Thus they are

able to unravel more complex metabolic mechanisms, such as non-local or global models [31].

Additionally, they may deal with problems involving changeful external stimuli, that is, differ-

ent source terms and boundary conditions, something that PINNs cannot afford.

In this work, we demonstrate how PGNNIV allow unravelling the mathematical structure

that identifies the intrinsic metabolic mechanisms associated with cell changes due to the vari-

ation of some measurable fields, as the oxygen concentration around the cell that can be mea-

sured in microfluidic devices. This identification of the detailed go or grow mechanism related

to hypoxia allows to accurately predict the cell evolution under highly variable external stimuli,

including normoxic, gradient and hypoxic configurations, without the requirement of any ini-

tially prescribed parametric relation. The data used for testing the methodology are generated

in silico, thus allowing evaluating the predictive and explanatory capacity of PGNNIV. Indeed,
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we demonstrate that this methodology does not only permit the identification of complex met-

abolic changes but also improves the prediction accuracy of parametric models.

The paper is structured as follows. The materials and methods section describes the formu-

lation here presented. First, the mathematical model for Glioblastoma evolution is briefly

revised, emphasising how the role of hypoxia is commonly taken into account for modeling

the go or grow paradigm. Then, the model under the PGNNIV framework is presented, detail-

ing the data generation and the network training process. In the Results section, the main

results of the paper are presented: the unravelling of the metabolic behavior and the ability to

predict the cell evolution under different oxygenation conditions. Finally, in the Discussion

section, the present and future of this methodology is discussed, while in the Conclusions, the

main results and conclusions are summarised.

Materials and methods

Our typical experimental configuration for the tests here analysed is shown in Fig 1. Here, the

geometry of the model (assumed as one-dimensional, as the length of the lateral channels is

much larger than the width of the chamber), and the different field variables are represented.

Provided that the lengthscale is large enough, it is possible to identify the cell concentration

with a continuum field u1 = u1(x, t). Besides, the oxygen concentration is associated with a

field u2 = u2(x, t). The oxygen is supplied to the cell culture via the lateral channels. In response

to this stimulus, cells will undergo migration and/or proliferation along the width of the cham-

ber of length l.

Mathematical model of Glioblastoma cell culture evolution

Governing equations. Our starting point is a nonlinear reaction-diffusion system of par-

tial differential equations that governs the evolution of GBM cells and the concentration of

Fig 1. Example of experimental configuration for modeling cell cultures. Due to the long length of the lateral channels with respect to the width

of the chamber, the geometry of the model is assumed as one-dimensional being the length the width of the chamber, l. The cell and the oxygen

concentrations are associated with continuum fields u1 = u1(x, t) and u2 = u2(x, t) respectively. At the location of the lateral channels, x = 0, l,
boundary conditions for both fields have to be supplied; we have represented a gradient configuration, but it is possible to feed oxygen by the two

lateral channels in a symmetric configuration. (a) Scheme of the experimental configuration. (b) One-dimensional approximation of the cell

culture. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010019.g001
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oxygen in a microfluidic device [28]. Although some works support the use of two [34–36] or

even three [27] phenotypes for describing the cell population, we use a previously validated

model offering some flexibility for modeling the switch between proliferative and migratory

activity. In particular, the equations of the fields evolution are:

@u1

@t
¼
@

@x
D1

@u1

@x
� wPgou1

@u2

@x

� �

þ a1Pgru1 1 �
u1

cs

� �

; ð1aÞ

@u2

@t
¼

@

@x
D2

@u2

@x

� �

� a2

u2

u2 þ km

� �

u1: ð1bÞ

The first term of the R. H. S. of Eq (1a) represents the flow term associated with cell culture

migration and has two contributions: the non-oriented motility term D1

@u1

@x (modelled here as

a random diffusion process) and the chemotaxis term � wPgou1

@u2

@x , where cell motility is

induced by the oxygen gradient. Pgo is a correction factor that will be discussed later. The sec-

ond term corresponds to the reaction term and is associated with logistic growth [37], except

for the correction term Pgr that will be also explained later.

With respect to the oxygen evolution equation, Eq (1b), the first term of the R. H. S. is again

the flow term, consisting solely of oxygen diffusion, and the second corresponds to the oxygen

consumption by cells. The correction between brackets in the second term is the Michaelis-

Menten kinetic model [38] and accounts for the kinetics of oxidative phosphorylation that

occurs in the membrane of cellular mitochondria [39].

Eqs (1a) and (1b) must be complemented with appropriate boundary and initial conditions.

The initial condition is a known cell profile that is seeded in the microfluidic device at the

beginning of the experiment (normally constant in the whole chamber). Note that we will refer

to this time as t = 0 even if it is not necessarily the experiment starting time, identifying the

instant when the cell culture profile is measured and the microfluidic device is fully oxygen-

ated:

u1ðx; t ¼ 0Þ ¼ cðxÞ; ð2aÞ

u2ðx; t ¼ 0Þ ¼ O�
2
ðxÞ; ð2bÞ

with c(x) a given known function and O�
2
ðxÞ the ambient oxygen level. The cell culture is sub-

jected to a fixed oxygen concentration at the lateral channels. Besides, we assume that the walls

of the culture chamber at the microfluidic devices are impermeable to cells, so only oxygen

flow is allowed through them. In that case, the boundary conditions are:

@f1
@x
jx¼0
¼ 0; ð3aÞ

@f1
@x
jx¼l ¼ 0; ð3bÞ

u2ðx ¼ 0; tÞ ¼ OL
2
ðtÞ; ð3cÞ

u2ðx ¼ l; tÞ ¼ OR
2
ðtÞ; ð3dÞ

where we have defined f1 ¼ D1

@u1

@x � wPgou1

@u2

@x as the cell flow, l is the length of the culture
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chamber and OL
2
ðtÞ and OR

2
ðtÞ are known functions defining the oxygen levels at the two lateral

channels aside the chamber.

At this point, the presented framework has seven model parameters, D1, D2, χ, α1, α2, cs and

km. Some of them have a well identified value in the scientific literature. For example:

• The oxygen diffusion, D2 = 1 × 10−5 cm2 � s−1 has been reported in many works [40, 41].

• The Michaelis-Menten constant, km = 2.5 mmHg, is very particular of the specific kinetics of

the reaction in hands [41, 42].

All other parameters can be easily determined in specific well-controlled experiments. For

example:

• The parameters related to the logistic cell growth, α1 and cs, can be determined in cell growth

experiments under fully oxygenated conditions and in absence of oxygen gradient, both in

microfluidic devices [43, 44] or using cell spheroids [45].

• The oxygen consumption rate, α2 is easily obtained by measuring the oxygen pressure at the

ambient in an isolated system with a controlled cell culture population and for high oxygen-

ation levels, such that the Michaelis-Menten correction, between brackets in Eq (1b), may be

considered as 1. It is even possible to determine both km and α2 from the oxygen pressure

using an Eadie–Hofstee diagram [46] or a Lineweaver–Burk plot [47].

• The non-oxygen-mediated pedesis constant, D1, is more complicated to determine as spatial

cell cultures are necessary. However, spheroid cultures [48] and microfluidic devices [26]

offer a great opportunity for cell migration evaluation. If full oxygenation is guaranteed in

the whole culture, no oxygen gradient is formed so non-oxygen mediated pedesis is easily

computed, for instance, once given α1, D1 can be determined by evaluating the cell migration

radial velocity V and using the Fisher’s model [49], V ¼ 2
ffiffiffiffiffiffiffiffiffiffi
D1a1

p
.

• The value of χ is substantially more difficult to determine. Indeed, as the cell migration

depends on the oxygen level (and not only on the oxygen gradient), it is difficult to estimate

this value from one single experiment or measurement. However, we can measure the cell

culture migration under an oxygen gradient in a very localized region where the oxygen

level may be considered almost constant [50]. Nevertheless, as it will be discussed later, we

are rather interested in the overall value χPgo. In this relation, χ is a reference value and Pgo

is a correction term incorporating the effect of hypoxia in the migration.

Fig 2 illustrates some schematic experiments that can be implemented to determine the

model parameters appearing in Eq (1) using conventional cell culture techniques and micro-

fluidic devices.

In addition to the model parameters, the evolution of the GBM cell culture is also influ-

enced by the boundary and initial conditions, in terms of the functions c(x), O�
2
, x 2 [0;l],

OL
2
ðtÞ and OR

2
ðtÞ, t 2 Rþ, which play the role of problem data. That is, for the problem to be

perfectly defined we need to specify the functions c, OL
2

and OR
2

together with the ambient oxy-

gen pressure O�
2
.

Go or grow activation functions. The metabolic behavior of the GBM cells, in particular,

its response to changes in the oxygen pressure, is mathematically encoded in the functional

form of Pgo and Pgr. These two functions regulate the activation/deactivation of both pro-

cesses: migration and proliferation. There is sound evidence in the scientific literature that the

switch between the proliferative and migratory activity in a cell population is hypoxia-medi-

ated [23, 24], that isPgo =Pgo(u2) and Pgr =Pgr(u2). However, there is not much knowledge

about the details of this metabolic change (e.g.: are migration and proliferation simultaneous
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or not? Is the transition between them smooth? Is it strictly monotonic? Is it restricted to a nar-

row interval in the oxygen concentration region?).

In a recent paper [28], this transition was modelled by using piecewise linear functions of

the ReLU kind, that is:

Pgoðu2Þ ¼

1 if u2 � 0

1 �
u2

ygo
if 0 < u2 � ygo;

0 if ygo < u2

8
>>>>><

>>>>>:

ð4Þ

and

Pgrðu2Þ ¼

0 if u2 � 0

u2

ygr
if 0 < u2 � ygr:

1 if ygr < u2

8
>>>>><

>>>>>:

ð5Þ

Here, θgo and θgr play the role of oxygen thresholds. Additionally, it has been assumed that

θgo = θgr, so this model implicitly assumes thatPgo(u2) +Pgr(u2) = 1, even if this consideration

should, in principle, be modified to rely on a deeper understanding of the cell metabolism and

in particular of the cell energy consumption. Indeed, the only biological evidence is that Pgr is

a nondecreasing function and Pgo is a nonincreasing one. The relation between the two may

be, in general, more complex, assumed as unknown, or even be unveiled also by the network.

Fig 2. Scheme of the different experiments that can be performed to obtain the model parameters. Obtaining the source term parameters does not

require a spatial cell distribution, although this is necessary for characterising the cell parameters associated with migration. (a) Determining α1 and cs.

(b) Determining α2 and km. (c) Determining D1. (d) Determining χ. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010019.g002
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The parameter values associated with Eqs (4) and (5) provided reasonably accurate results

in the characterisation of certain cell cultures. In particular, GBM culture evolution of the cell

line U251-MG in microfluidic devices has been well described, even for different experimental

configurations using these expressions [28]. Similar results were obtained now using Machine

Learning tools (in particular, using Convolutional Neural Networks), also revealing some limi-

tations of the parametric model [29].

However, the go or grow model may differ from one GBM cell line to another. Besides, the

model should be adapted for other tumor families or different frameworks. Therefore, since

the functional relation u2 7! (Pgo, Pgr) encodes the cell metabolic changes in response to

changes in the oxygen stimulus, its accurate characterisation is crucial for a complete under-

standing of the evolution of cell cultures, as it describes the changes that take place in the cell

population behavior and consequently in the tumor progression [27, 51]. If Π = (Pgo, Pgr),

the go or grow relation, may be written as:

Π ¼ Πðu2Þ; ð6Þ

where Π : Rþ ! R2 is the unknown functional relation to be learned. Unravelling the one

input-two output relation Π is therefore a key aspect in an in silico model able to capture

tumor progression in an oxygenated medium. However, one main problem arises: as Pgo and

Pgr are mathematical artefacts that only make sense when considered in Eq (1), they are non-

measurable variables, so there is no experimental set up that permits to measure them directly.

Furthermore, the measurement of the oxygen pressure in cell culture is usually difficult due to

technical considerations, even if possible under some particular conditions [52, 53]. This adds

an extra difficulty when defining or calibrating the model Π.

Physically-guided neural network with internal variables

Concept of PGNNIV. Physically-Guided Neural Networks with Internal Variables

(PGNNIV) are a generalisation of the former concept of Physics Informed Neural Networks

(PINN) [32]. In this latter, the physics of the problem informs the network via the output vari-

ables: the physical equations constrain the values of the output variables to belong to a certain

physical manifold. For instance, to ensure that they satisfy a given partial differential equation.

In other words, the loss function is directly defined in terms of the problem physics. PGNNIV

go one step further, as in this case, the physical equations constrain the values reached by an

arbitrary number of neurons in some intermediate layers. As a consequence, it is possible to

interpret some hidden features and some relationships between internal variables (IV) of the

problem that now acquire a physical interpretation [30, 31]. The physics does not constrain,

but only guides the network learning capacity, as the measured data may be supplied to endow

the network with explanatory capacity.

Going into the details, a PGNNIV is a problem formulated in the following archetypal way.

Let us consider a PDE system of equations that is split into:

Fðu; vÞ ¼ f ; in O;

GðuÞ ¼ g; in @O;

HðuÞ ¼ v; in O;

ð7Þ

where u and v are the unknown fields of the problem, F and H are functionals representing

the known and unknown physical equations of the problem in hands. G is a functional that

specifies the boundary conditions, and f and g are known fields. Once discretised, Eq (7) has

an analogous representation in finite-dimensional spaces in terms of vectorial functions F, G
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and H and nodal values u, v, f and g. The Physically-Guided problem is therefore formulated

as:

y ¼ YðxÞ; v ¼ HðuÞ;

s: t: x ¼ Iðu; f ; gÞ;

y ¼ Oðu; f ; gÞ;

Rðu; v; f ; gÞ ¼ 0;

ð8Þ

where:

• R are the physical constraints, related to the relationships given by F and G.

• I and O are functions specifying the input and the output of the problem, that is, the data

used as starting point to make predictions and the data that we want to predict.

• Y and H are models. Y is the predictive model, whose aim is to infer accurate values for the

output variables for a certain input set and H is the explanatory model, whose objective is to

unravel the hidden physics of the relation u 7! v.

A PGNNIV is built when the problem (8) is formulated in the language of Neural Networks,

with an appropriate structure and topology for Y and H.

Discretised model

Spatial discretisation. Let us first discretise the Eq (1). This may be done by using Finite

Differences (FD) or Finite Elements (FE) as it is usual when working with Partial Differential

Equations (PDEs) [54]. The one-dimensional character and simple geometry of the cell culture

in microfluidic devices under oxygen gradients [26] allow us to use FD to discretise the gov-

erning equations. Then, we define the nodal values of the fields u1 and u2 using the vectors u1

and u2, that is, uij = ui(xj) where xj = jΔx, j = 0, . . ., n, is the spatial coordinate associated with a

given discretisation of the domain [0; l], Dx ¼ l
n. The spatial derivatives may be computed

using any finite difference scheme, resulting in a linear operator D. Then, Eq (1) results in:

_u1 ¼ D D1Du1 � wΠgo � u1 � Du2

� �
þ a1Πgr � u1 � 1 �

u1

cs

� �

; ð9aÞ

_u2 ¼ DðD2Du2Þ � a2ðu2 � ðu2 þ kmÞÞ � u1: ð9bÞ

We have used the symbols� and� for indicating pointwise multiplication and division

respectively. It is important to note that Πgo and Πgr are here vector functions. The framework

considered permits considering functional relationships, that is, the value of Π at a point x
could depend on the value of the field u2 at the whole computational domain. However, the

underlying nature of the go or grow framework allows us to consider P(x) =P(u2(x)), x 2 [0;

l], or equivalently, for the vector Π,Pj =Pj(u2j), permitting to work with sparse graphs for the

network topology (that is, sparse tensors and operators). In addition to the model Π, it would

be possible to consider the rest of the specific model parameters (D1, χ, α1, cs, D2, α2, and km)

as parameters to be learned during the training process. However, as this is similar to conven-

tional parametric fitting (except for the fact that we use the broad capabilities of NN hardware

and software [30]), we consider them here as known, with their values detailed next when

specifying data generation.
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In order to adapt the problem to our notations, let us describe Eq (9) as:

_u ¼ Fðu;ΠÞ;

Π ¼ HðuÞ:
ð10Þ

Temporal discretisation. With respect to the time integration, many options are possible.

Multistep and Runge-Kutta methods [55] are one of the most efficient, although they are also

computationally expensive. For our purposes, it is enough to consider a two-point scheme.

Given the ODE _y ¼ f ðyÞ, we discretise it using the generalized mid-point rule, that is, by

approximating y(t + Δt) − y(t)’ Δtf (βy(t) + (1 − β)y(t + Δt)), β 2 [0; 1]. This approximation

leads to the discretisation:

ynþ1 ¼ yn þ ðDtÞf ðbyn þ ð1 � bÞynþ1Þ: ð11Þ

With this notation, taking β = 1 we recover the forward Euler method and with β = 0 we

recover the backward Euler approach.

Applying Eq (11) to Eq (10) we obtain:

unþ1 ¼ un þ ðDtÞFðbun þ ð1 � bÞunþ1;ΠÞ;

Π ¼ Hðbun þ ð1 � bÞunþ1Þ:
ð12Þ

Finally, we may define the residual R, that is indeed the equation encoding the problem

physics, as:

Rðun; unþ1Þ ¼ unþ1 � un � ðDtÞFðbun þ ð1 � bÞunþ1;Πðunþ1; unÞÞ: ð13Þ

The presented framework is generalisable to multistep and Runge-Kutta integrators. For

instance, for the latter:

unþ1 ¼ un þ ðDtÞ
Xs

i¼1

biki; ð14Þ

with

ki ¼ F un þ ðDtÞ
Xs

j¼1

aijkj;Π

 !

i ¼ 1; :::; s;

Π ¼ H un þ ðDtÞ
Xs

j¼1

aijkj

 !

;

ð15Þ

where aij, bi and ci, i = 1, . . ., s are the particular coefficients of the selected numerical scheme.

In that case, the residual R may be written as:

Rðun; unþ1Þ ¼ unþ1 � un � ðDtÞ
Xs

i¼1

biki; ð16Þ

where ki is given by Eq (15).

PGNNIV construction. The crucial part of building the PGNNIV is the definition of the

network topology, as well as of the input and output layers. As explained when defining the

biological problem, there is no way of straightforwardly measuring the variables Pgr and Pgo,

so these will be our internal variables, v = Π, while u = (u1, u2) are the measurable ones, that is,
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the cell and oxygen profiles at two consecutive time steps. Therefore:

Iðu; vÞ ¼ un; ð17aÞ

Oðu; vÞ ¼ unþ1: ð17bÞ

The reason for defining the input and output variables this way is to achieve accurate pre-

dictive capacity, besides the required explanatory capacity. Indeed, once the model has been

trained, it is possible to predict the outcome, that is, the cell and oxygen profiles at time t + Δt,
from the ones given at time t. Note that the cell profiles (the output) at time t + Δt are obtained

in real-time, as there is no need for solving any differential equation (we only need a network

evaluation). The predictive and explanatory subnetworks are, therefore:

unþ1 ¼ YðunÞ; ð18aÞ

Π ¼ Hðu2Þ: ð18bÞ

The PGNNIV graph and flow are illustrated in Fig 3. It is important to note that, although

the explanatory subnetwork is the juxtaposition of two multilayer perceptrons, it is applied at

each nodal value, so it acts as a convolutional network moving through the different colloca-

tion points in space. Note that if β = 1, as it is the case for this work, the input solely corre-

sponds to the field values at time step n.

In a PGNNIV, the network loss function is the combination of a physics-associated term

and a data-associated term. However, given the topology of the presented network, illustrated

in Fig 3, all known physics of the problem is introduced explicitly in the network by means of

the topology. Thus, the loss term is directly computed as:

L ¼
XNdata

n¼1

X2

i¼1

k ûnþ1

i ðu
nÞ � unþ1

i k2: ð19Þ

where we have denoted by ûnþ1
i the predicted value of the field u by the PGNNIV. Recall that,

observing the expression of the residual given by Eqs (13) and (19) may be written as:

L ¼
XNdata

n¼1

k Rðun; unþ1Þ k2; ð20Þ

where we have defined the residual as a function of the data, R = R(un, un+1).

Note that the architecture defining the PGNNIV, represented in Fig 3 and summarized in

Eqs (18) and (20), representing respectively the predictive and explanatory network, does not

depend on the initial and boundary conditions. This implies that the network may be trained

with data coming from different experimental configurations, thus ensuring that the explana-

tory network H is properly represented in the data. Once trained, predictions can be made, for

any external stimuli and initial state. This is indeed one of the main differences between

BINNs and PGNNIVs.

Data generation and training process

Data for model validation. Here we describe the data that will be used to feed the net-

work. It is important to note that here the data-set is generated synthetically for validation pur-

poses, but in real-life applications, this data-set would be the result of experimental

measurements.
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Fig 3. Structure of the PGNNIV. Network topology and the different operators. The measurable (independent) variables, which are treated as the

input variables, are represented in green while the predicted (dependent) variables, that are treated as the output of the network, are represented in

magenta. The known operators are represented in blue, the unknown operators are represented in yellow and the hybrid operators are represented in

orange. For illustrative purposes, we have split the network into three subnetworks. (a) Components of the network related to the problem physics, Eq

(9), that is the discrete representation of Eq (1). (b) Explanatory subnetwork, whose aim is to unravel the relationship implicit in Eq (6). (c) Subnetwork

related to the integration procedure, that is the one relating the input and output variables.

https://doi.org/10.1371/journal.pcbi.1010019.g003
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Benchmark models. In order to evaluate the performance of the method let us suppose

four different true functional relationships for the metabolic model Π = Π(u2) that are

described in Table 1. For illustration purposes, we assume for the different models that Pgr(x)

= 1 −Pgo(x), although the PGNNIV may unravel the metabolic behavior for true models not

satisfying this relationship.

We claim that our PGNNIV based on the governing Eq (1), encoding the known physics of

the problem, is able to discover the actual biological metabolic model among the four pre-

sented in Table 1. This is possible due to the universal learning capabilities of neural networks

[56, 57].

Profile generation. The data were generated by simulating cell profiles using Eq (1) with

the boundary conditions (3). The model was first written using a dimensionless version,

obtained by defining t = Tτ, x = Lξ, u1 = U1υ1 and u2 = U2υ2, where T is a characteristic time, L
a characteristic length and U1 and U2 are characteristic cell and oxygen concentrations, obtain-

ing:

@u1

@t
¼

@

@x
�D1

@u1

@x
� �wPgou1

@u2

@x

� �

þ �a1Pgru1 1 �
u1

�cs

� �

; ð21aÞ

@u2

@t
¼

@

@x
�D2

@u2

@x

� �

� �a2

u2

u2 þ
�km

� �

u1; ð21bÞ

with boundary and initial conditions:

u1ðx; t ¼ 0Þ ¼ �cðxÞ; ð22aÞ

u2ðx; t ¼ 0Þ ¼ �O�
2
ðxÞ; ð22bÞ

@u1

@x

�
�
�
�
x¼0

¼ 0; ð23aÞ

@u1

@x

�
�
�
�
x¼�l

¼ 0; ð23bÞ

u2ðx ¼ 0; tÞ ¼ �OL
2
ðtÞ; ð23cÞ

u2ðx ¼
�l; tÞ ¼ �OR

2
ðtÞ; ð23dÞ

Table 1. Different functional relationships defined for the validation procedure. The different functions include features such as different smoothness and

nonlinearities.

Chemotaxis activation function Growth activation function Parameters Model name

PgoðxÞ ¼ I½0;y�ðxÞ PgrðxÞ ¼ I½y;þ1ÞðxÞ θ Heaviside, Binary step

PgoðxÞ ¼ 1 � x
y

� �
I½0;y�ðxÞ PgrðxÞ ¼ x

y
I½0;y�ðxÞ θ Piecewise linear, ReLU

PgoðxÞ ¼ k
xþk PgrðxÞ ¼ x

xþk k Michaelis-Menten

PgoðxÞ ¼ 1

2
1þ tanh x� y

Dy

� �� �
PgrðxÞ ¼ 1

2
1 � tanh x� y

Dy

� �� �
θ, Δθ Sigmoid, Logistic

https://doi.org/10.1371/journal.pcbi.1010019.t001
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where the dimensionless parameters and functions are:

�D1 ¼
D1T
L2

; �w ¼
wTU2

L2
; �a1 ¼ a1T;

�cs ¼
cs
U1

; �D2 ¼
D2T
L2

; �a2 ¼
a2TU1

U2

;

�km ¼
km
U2

; �cðxÞ ¼
cðxÞ
U1

; �O�
2
ðxÞ ¼

O�
2
ðxÞ
U2

;

�OL
2
¼

OL
2

U2

; �OR
2
¼

OR
2

U2

; �l ¼
l
L
:

ð24Þ

In addition to the model parameters in Eq (24), we have to consider the ones related to the

different go or grow models described in Table 1:

�y ¼
y

U2

; D�y ¼
Dy

U2

; �k ¼
k
U2

: ð25Þ

All parameters stated in Eqs (24) and (25) should have a precise biological meaning and

depend on the problem physics. The values of the different parameters are reported in Table 2.

Here, their value is only illustrative as they are used only for data generation, trying to make

relevant all the biological phenomena.

The different cell and oxygen profiles were generated by using the method described in

[58], especially suitable for parabolic partial differential equations. The system of equations

was solved numerically by means of a time-space integrator based on a piecewise nonlinear

Galerkin approach which is second order accurate in space, and compatible with this kind of

nonlinear equations and boundary conditions, using the Matlab pdepe suit. Additional

details may be found in [28]. A mesh size of Δξ = 1.0 and a time step of Δτ = 0.01 were used. As

initial conditions, we set a value of �cðxÞ ¼ 2 and �O�
2
ðxÞ ¼ �OL

2
þ

�OR
2
� �OL

2
�l x. The duration of the

experiment is τ� = 10. Therefore, once the temporal series of the fields (cell and oxygen profile)

are generated, the output of each simulation is an array of size [nt, nx, nu] with nt = τ�/Δτ
+ 1 = 1001, nx ¼

�l=Dxþ 1 ¼ 51 and nu = 2.

Feeding the network. In order to recreate in silico different Glioblastoma On-Chip exper-

iments, we created different cell profiles by varying the boundary conditions, that is, the oxy-

gen levels �OL
2

and �OR
2
. Two families of configurations were simulated: symmetric and with

Table 2. Dimensionless model parameters used for data generation. The values are selected to make relevant all bio-

logical phenomena.

Parameter Value

�D1
1

�w 1

�a1 0.5

�cs 10

�D2
1

�a2 0.05

�km 2

�l 50

�y 2

D�y 2

�k 2

https://doi.org/10.1371/journal.pcbi.1010019.t002
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oxygen gradient. The eleven in silico experiments performed are reported in Table 3. Each

experiment is treated, from the PGNNIV point of view, as a batch of data as illustrated in Fig

3c: the batch k, k = 1, . . ., M, with M = 11, is therefore obtained by considering the k-th experi-

mental configuration and the network is fed using each pair ðun
1
; un

2
Þ as input data and each

pair ðunþ1
1
; unþ1

2
Þ as output, n = 0, . . ., nt − 1. Each batch is therefore formed by an input of size

[nt − 1, nx, nu] (from values n = 0 to n = nt − 2) and an output of size [nt − 1, nx, nu] (from val-

ues n = 1 to n = nt − 1). The objective is then learning the underlying go or grow model for a

particular experimental condition.

Training process. The neural network is trained using N = 103 epochs. At each epoch, all

batches associated with the experimental configurations described in Table 3 are used for the

network feeding: the M = 11 synthetic configurations, each one of them corresponding to one

batch of data (so that the network parameters are updated after each batch feed), were sampled

without replacement, so they were used in a different order at each epoch iteration. p = 80% of

data at each batch is used for training purposes and 1 − p = 20% is used for testing the network.

In total, N ×M iterations of the network are considered until reaching convergence. The

Adam optimizer [59] is selected with a learning rate r = 0.001 and an exponential decay rate of

β1 = 0.8 for the first moment and β2 = 0.8 for the second moment are selected.

The training process takes 234 s in a core processor i7-6700 @3.4 GHz and RAM 64 GB,

that is, without the use of GPU. Therefore, for an accurate comparison, we have adjusted the

parametric model using also Adam optimizer, and it has taken 113 s.

Results

As in all problems involving PGNNIV, the neural network has both predictive and explanatory

capacity. To illustrate both concepts, we will discuss first the explanatory capacity of the net-

work, which is particular to this method. For comparative purposes, we will compare the

learned relationship, H in Eq (8) or Π in Fig 3 with standard parametric learning, where we

postulate the model described by Eqs (4) and (5), also assuming θgo = θgr.

Then, we will comment on the predictive capacity of the network. As this capacity is not

particular to the presented method but common to all regression techniques, we will compare

our results to those obtained with standard parametric fitting.

Table 3. Experimental configurations used for data generation. The different configurations recreate both symmet-

ric and gradient configurations in low, medium and high oxygenated conditions (these values have to be compared

with the model-associated ones, Eq (25)).

Configuration (k) �OL
2

�OR
2

1 0 0

2 0 1

3 1 1

4 2 0

5 2 2

6 3 0

7 3 3

8 4 0

9 4 4

10 5 0

11 5 5

https://doi.org/10.1371/journal.pcbi.1010019.t003
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Unravelling the metabolic changes of the GBM cells

In Fig 4 we depict the learned relationship Π for the four ground truth models proposed in

Table 1. In all cases, a good agreement is shown between the real and the predicted models.

Only when the parametric family for the go or grow model is adequately selected, the paramet-

ric learning (that is a particular PGNNIV where the function Π is parametrized) outperforms

model-free PGNNIV, as it has been reported elsewhere [30, 31]. Note that when no explicit

knowledge is assumed about cell metabolism, it is difficult to either derive or postulate

parametric relations such as those in Eqs (4) and (5), which are solely used as a mere instru-

mental tool.

Fig 5 shows the errors when unravelling the metabolic behavior Π. Denoting by P̂ the

model learned by the network, the error is defined as:

E2
P
¼
R 5

0
ðP̂ðxÞ � PðxÞÞ2 dx: ð26Þ

These errors are computed for bothPgo andPgr. Except in the aforementioned case when the

parametric family assumed includes the true model, the PGNNIV prediction clearly outperforms

standard parametric approaches and keep the errors reduced for a broad family of families.

Predicting cell culture evolution

The aim now is to explore the predictive capacity of the neural network. Once the model Π
has been learned, it is represented by the multilayer perceptron topology together with all the

Fig 4. Unravelling capacity of the PGNNIV. For all models in Table 1, presenting different nonlinearities, smoothness and scales, the ground truth

model is recovered correctly, especially in relation to the growth metabolic behavior. (a) Heaviside transition model. (b) ReLU transition model. (c)

Michaelis-Menten transition model. (d) Logistic transition model.

https://doi.org/10.1371/journal.pcbi.1010019.g004
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network parameters (weights and biases). Therefore it may be encapsulated as a one input—

two output black box and inserted in any numerical integration scheme. For instance, we can

consider any Runge-Kutta integrator of the form given by Eq (14) for the spatially-discretised

equations, that is, to follow the approach for data generation, except for the fact that we use the

learned model Π instead of any other of those presented in Table 1.

For illustrative purposes, let us compare the cell and oxygen profiles for three different

boundary conditions: a normoxic configuration where �OL
2
¼ �OR

2
¼ 4, a hypoxic configuration

where �OL
2
¼ �OR

2
¼ 0 and a gradient configuration where �OL

2
¼ 0 and �OR

2
¼ 4. Our aim is to

predict the cell profile after τ = 20. The results are shown in Fig (6), where we have represented

for each cell profile the real one (the derived when using directly the function in Table 1), the

one predicted after fitting the parametric model described by Eqs (4) and (5) and the one pre-

dicted by PGNNIV. For all the models tested, a good agreement is shown between the pre-

dicted and the real profiles, and PGNNIV always outperforms the prediction of the parametric

models, except, as it was explained before, for the ReLU case. The improvement of the predic-

tion is particularly significant for the gradient configurations (Fig 6b). Indeed, the specific fea-

tures of the model have a greater impact for oxygen levels in the transition between normoxic

and hypoxic behavior since it is in this case when the differences between the different models

most influence the cell evolution.

In order to explore quantitatively the improvement, we define the error associated with the

cell prediction as:

E2
cell ¼

R 50

0
ðû1ðx; t ¼ t

�Þ � u1ðx; t ¼ t
�ÞÞ

2 dx: ð27Þ

In Fig 7 we compare the error of the cell prediction given by Eq (27) when estimating the

cell profile using the parametric approach and the one based on PGNNIV.

Fig 5. Error E2
P

between the predicted and the real model. The error of the prediction is robust over the different transition functions tested and

outperforms any parametric fitting.

https://doi.org/10.1371/journal.pcbi.1010019.g005
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It is important to note that the training data-set was used for simulations for τ� τ� with τ�

= 10, so we explore here the prediction capacity of the network out of the region defined by

the training data-set.

Computational requirements

In order to evaluate the computational requirements of the method, we compare it to standard

parametric fitting performance. Recall that parametric fitting depends on the algorithm

selected, in terms of both time and memory requirements. Conventional algorithms, such as

Levenberg-Marquardt [60] are more memory demanding and require a large number of evalu-

ations for large datasets, when compared for instance to Stochastic Gradient Descent (SGD)

with small batch sizes. Therefore, for an accurate comparison, we have adjusted the parametric

model using a similar PGNNIV (using Adam optimizer with same hyperparameters) except

for the fact that the model function Π was totally parametrized in terms of θgo = θgr = θ.

The training process for the non-parametric PGNNIV takes 234 s in a core processor i7-

6700 @3.4 GHz and RAM 64 GB, compared to the 113 s that takes for the parametric

PGNNIV, using TensorFlow package (Python). The differences are obviously related to the

number of network parameters, that are 2 × (8 × 8 + 8) = 144 for the non-parametric approach

and 1 for the parametric one. Even so, in the two approaches, the low computational require-

ments are due to the NN framework used to face the problem.

Fig 6. Prediction of the cell profile at τ� = 10 for the different models tested and different experimental configurations. PGNNIV improves the

prediction (when compared to the parametric model) of all cell profiles, slightly for the normoxic configuration and significantly for the gradient

configuration. (a) Hypoxic configuration. (b) Gradient configuration. (c) Normoxic configuration.

https://doi.org/10.1371/journal.pcbi.1010019.g006
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Discussion and open possibilities

The present: Characterisation of complex biological cell processes

Discovery of hidden cell metabolisms is a major concern in biology. Indeed, unravelling the

changes of the cell behavior when exposed to different stimuli can put us on the track of mech-

anisms driving the different cell signalling paths [61, 62]. As a result, parameters as the hypoxic
threshold [28] are replaced by richer behaviors, as the ones illustrated in Fig 8.

Moreover, from a mechanistic perspective, different metabolic paths and schemes may be

tested in silico using computational approaches [63], in order to decide whether a path candi-

date is compatible with the metabolic changes discovered by means of the PGNNIV. There-

fore, this knowledge on the macroscopic cell metabolic behavior at the population level is

important not only from an epistemic point of view, for modeling purposes, but also as a

promising tool for molecular biologists, in their attempt to isolate and define the different sig-

nalling pathways, thus providing a deeper understanding on the underlying mechanisms.

Sometimes, there are some energetic constraints (the more fundamental ones are those

given by the first and second principles of thermodynamics) that restrict the accessible states

in a biological system [64–66]. These constraints are translated into macroscopic ones in a

continuum population model. For instance, one possible constraint is the former hypothesis

thatPgr +Pgo = 1. However, this is a special case of the more general constraint G(Pgr, Pgo) =

0, that could be founded on an energetic argument about the resources available for the cell to

Fig 7. Prediction error. The non-parametric model built using the PGNNIV approach is able to correctly estimate the cell profile evolution for any

arbitrary model better than specific parametric ones. The predictions are more accurate (lower error) and more precise (lower variability) along with

the different tested boundary conditions.

https://doi.org/10.1371/journal.pcbi.1010019.g007

PLOS COMPUTATIONAL BIOLOGY Understanding glioblastoma invasion using physically-guided neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010019 April 4, 2022 19 / 27

https://doi.org/10.1371/journal.pcbi.1010019.g007
https://doi.org/10.1371/journal.pcbi.1010019


grow or proliferate. All these extra constraints may be incorporated in the PGNNIV framework

in a direct and straightforward fashion either by expressing some relational equations between

variables explicitly, or by adding appropriate penalty terms in the loss function obliging to fulfil

a mathematical constraint, such as pkG(Pgr, Pgo)k2, with p a penalty parameter [30].

A last remark is that PGNNIV, as any method inspired in Neural Networks, can be used as

a universal approximator of the hidden interaction mechanisms between different cell popula-

tions, thus incorporating the ingredients of population sociology in systems biology [67]. For

instance, if many cell populations are considered, C1, . . ., Cn, one may establish many ad-hoc
interrelation mechanisms, λ = λ(C1, . . ., Cn), where λ is any model functional parameter,

describing for instance migration or proliferation. The crosstalk between different cell popula-

tions has demonstrated to be important in many cellular processes such as those presented

here [68, 69]. Of course, this interrelation would be properly learned if:

• The known physics and biology of the system is well enough described in terms of specific

mathematical equations. That is, all known mechanisms are explicitly stated, but only them.

This enables the PGNNIV to concentrate its unravelling power in the unknown

interrelations.

• The available data is large enough to capture the prescribed dependency (as in the problem

presented in this work). This is commonly difficult in many experimental sciences, particu-

larly in biology, but new tools and trends such as microfluidics are promising in this regard.

As in any machine learning approach, care must be taken when interpreting the results and

deriving conclusions, as the learning methods suffer from overfitting. A suitable strategy (train

and test approaches, cross-validation, validation trials. . .) is therefore crucial for drawing gen-

eralisable conclusions.

The future: Towards in silico personalised medicine

This work presents a method for going from cell expression at the tissue level, that is, the for-

mation of cellular structures such as pseudopalisades in GBM invasion, to cell behavior at the

Fig 8. Parametric vs non-parametric approaches. The degree of information about the cell metabolism is richer in the non-parametric approach.

https://doi.org/10.1371/journal.pcbi.1010019.g008
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population level in response to the ambient stimuli. In one sense, it presents a link between cli-

nicians and molecular biologists. A tumor biopsy may be extracted from one patient, culti-

vated and monitored in microfluidic devices where it may be exposed to different stimuli. The

microfluidic devices have demonstrated to be capable of in silico reproducing histological fea-

tures such as necrotic cores and pseudopalisades [26, 27], which can be captured using image

and video techniques. PGNNIV is a tool able to infer, from the culture response to several sti-

muli, the intrinsic model of the cell reaction to such stimuli. This ability to integrate the knowl-

edge of the response to different stimuli is a particular capability of PGNNIV, which puts them

one step ahead of other methods such as BINNs in unravelling cell metabolism.

Once the intrinsic model is learned, its generalisable capability is much wider than the one

offered by the histological features, as the latter is the response to very specific conditions (in

mathematical terms, to very specific boundary conditions). In a sense, this strategy is the same

as parametric fitting, except for the fact that there is no need for making any assumption about

the model functional structure, provided that we know the internal variables we want to relate.

This last issue is not minor, but is, indeed, the main objective of biology research: to make sci-

entific conclusions about the effect and association of chemical factors with biological

response.

This extra generalisation capability, when combined with appropriate mathematical mod-

els, offers new possibilities in in silico drug and treatment design. Once the cell response to the

different stimuli is unravelled, we may variate the different stimuli levels and the different con-

ditions. Again, in mathematical terms, this is represented by boundary conditions, initial con-

ditions and source terms of the associated partial differential equations. Consequently, we can

evaluate, again from a tissue perspective, more than from a cell population point of view, the

general histological features that happen in the cell virtual tissue, which is called a Virtual Digi-

tal Twin. These histological features are responsible of key factors in cancer progression such

as vessel occlusion [70], intravasation, extravasation and metastasis [70, 71], necrosis and acti-

vation of inflammatory response and/or angiogenesis [72, 73], in particular for GBM [74].

Therefore, in silico tests will accelerate the design of new drugs and therapies as they allow to

test the hypotheses in a more flexible, faster and cheaper way.

It is important to note that all the here described sequence of steps relies on one single

patient-specific biopsy, thus turning all this approach fully patient-specific, grounding this

approach within the global framework of personalised in silico medicine [75]. From a specific

patient, we infer specific histological and cellular features and, therefore, the different in silico
trials are adapted to their particular disease, running away from parametric models, whose

universality is corseted by their particular functional form.

The whole process is illustrated in Fig 9, where all the steps are summarized both in concep-

tual terms and using the particular example illustrated in this work. To conclude, PGNNIV is

a tool for transferring the knowledge on the tissue response to knowledge on the cell gene

expression. This knowledge is the one that enables to work on the cell expression level and to

generalise both to arbitrary conditions and individual patients.

Conclusions

The emerging technology of microfluidics has brought to the field of cell culture not only the

possibilities of biotechnology research in more realistic biomimetic environments but also the

chance of incorporating data-intensive tools such as Artificial Intelligence and Machine Learn-

ing. The term coined for this framework is Intelligent Microfluidics.

Here, we have illustrated how PGNNIV may be a valuable tool to infer the cell response at

the population level from the cell response at the tumor microenvironment level in response
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Fig 9. Summary of the described framework. Starting from the clinical patient, we can recreate histological features associated with the tumoral

tissue in the microfluidic devices, extract the cell response to stimuli using PGNNIV and use the information to evaluate different therapies and

drug candidates. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010019.g009
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to external stimuli. Unlike other Physically-Informed Data Science methods, in PGNNIV the

physics does not constrain, but only guides the network learning capacity, as the measured

data may be supplied to endow the network with explanatory capacity. Using in silico data, we

have proven the unravelling capacity of PGNNIV for different benchmark test models, thus

allowing us to work in model-free and non-parametric frameworks. Indeed, PGNNIV based

simulations outperform the explanatory ability of any parametric model, except, at most, if the

selected model belongs to the selected parametric family, which is, in practice, a strong and

unrealistic assumption.

In addition, this explanatory ability is directly translated into an improvement of the pre-

diction for different ambient conditions. The predictive ability does not only improve the one

associated with classical parametric fitting but is also independent of the underlying model,

thus making unnecessary the assumption of extra hypotheses, for example about cell metabo-

lism. This improvement is achieved regardless of the environmental conditions, even if these

ones are not used during the training process. In a certain sense, the ability of PGNNIV to pre-

dict out of the range of the training dataset is exploited here at its best.

The flexibility of PGNNIV allows that any information about biological systems may be

incorporated totally or partially into the computations. This includes cell-cell interactions or

cell-substrate interaction among other cues. In an opposite way, it is possible to focus the

learning power on any relationship between fields of interest (biological, chemical, mechan-

ical. . .) that is intended to be learned or quantified, both for theoretical (learn about the molec-

ular metabolic processes) or for experimental (describe the main features of the process)

purposes.

The presented methodology let us glimpse some steps in the direction of personalised medi-

cine, as it is model-free, it allows to work with tissues extracted from different patients without

the need of the specification of any particular model that would ruin out the method generali-

sation ability. Once characterised, the tumoral population may be in silico subjected to differ-

ent stimuli and conditions, corresponding to different exploratory treatments. The response

may be analysed from a clinician point of view, that is, at the tissue level, in order to evaluate

the treatment success or failure. This strategy of in silico test-evaluation is quick and cheap and

can strongly reduce animal experimentation, therefore facilitating research in areas such as

biotechnology and biomedical engineering.
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PLOS COMPUTATIONAL BIOLOGY Understanding glioblastoma invasion using physically-guided neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010019 April 4, 2022 23 / 27

https://doi.org/10.1371/journal.pcbi.1010019


Writing – review & editing: Jacobo Ayensa-Jiménez, Mohamed H. Doweidar, Jose A. Sanz-
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12. Tatárová Z, Abbuehl J, Maerkl S, Huelsken J. Microfluidic co-culture platform to quantify chemotaxis of

primary stem cells. Lab on a Chip. 2016; 16(10):1934–1945. https://doi.org/10.1039/C6LC00236F

PMID: 27137768

13. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, et al. Microfluidic assay for simulta-

neous culture of multiple cell types on surfaces or within hydrogels. Nature protocols. 2012; 7(7):1247–

1259. https://doi.org/10.1038/nprot.2012.051 PMID: 22678430

14. Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW. Micromilling: a method for ultra-rapid

prototyping of plastic microfluidic devices. Lab on a Chip. 2015; 15(11):2364–2378. https://doi.org/10.

1039/c5lc00234f PMID: 25906246

15. Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, et al. Microfluidic platforms for

cell cultures and investigations. Microelectronic Engineering. 2019; 208:14–28. https://doi.org/10.1016/

j.mee.2019.01.004

16. Riordon J, Sovilj D, Sanner S, Sinton D, Young EW. Deep learning with microfluidics for biotechnology.

Trends in biotechnology. 2019; 37(3):310–324. https://doi.org/10.1016/j.tibtech.2018.08.005 PMID:

30301571

17. Galan EA, Zhao H, Wang X, Dai Q, Huck WT, Ma S. Intelligent Microfluidics: The Convergence of

Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter. 2020; 3(6):1893–

1922. https://doi.org/10.1016/j.matt.2020.08.034

18. Cai X, Briggs RG, Homburg HB, Young IM, Davis EJ, Lin YH, et al. Application of microfluidic devices

for glioblastoma study: current status and future directions. Biomedical Microdevices. 2020; 22(3):1–10.

https://doi.org/10.1007/s10544-020-00516-1 PMID: 32870410

19. Eikenberry SE, Sankar T, Preul M, Kostelich E, Thalhauser C, Kuang Y. Virtual glioblastoma: growth,

migration and treatment in a three-dimensional mathematical model. Cell proliferation. 2009; 42

(4):511–528. https://doi.org/10.1111/j.1365-2184.2009.00613.x PMID: 19489983

PLOS COMPUTATIONAL BIOLOGY Understanding glioblastoma invasion using physically-guided neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010019 April 4, 2022 24 / 27

https://doi.org/10.1093/neuonc/not151
http://www.ncbi.nlm.nih.gov/pubmed/24137015
https://doi.org/10.1371/journal.pone.0078943
http://www.ncbi.nlm.nih.gov/pubmed/24265731
https://doi.org/10.14694/EdBook_AM.2012.32.48
http://www.ncbi.nlm.nih.gov/pubmed/24451717
http://www.ncbi.nlm.nih.gov/pubmed/25404148
https://doi.org/10.1101/gad.1596707
https://doi.org/10.1101/gad.1596707
http://www.ncbi.nlm.nih.gov/pubmed/17974913
https://doi.org/10.1093/neuonc/nou147
http://www.ncbi.nlm.nih.gov/pubmed/25082799
https://doi.org/10.1093/neuonc/now024
https://doi.org/10.1093/neuonc/now024
http://www.ncbi.nlm.nih.gov/pubmed/26917237
https://doi.org/10.1038/nature13118
http://www.ncbi.nlm.nih.gov/pubmed/24622198
https://doi.org/10.1002/bit.21851
https://doi.org/10.1002/bit.21851
http://www.ncbi.nlm.nih.gov/pubmed/18553401
https://doi.org/10.1039/C6LC00236F
http://www.ncbi.nlm.nih.gov/pubmed/27137768
https://doi.org/10.1038/nprot.2012.051
http://www.ncbi.nlm.nih.gov/pubmed/22678430
https://doi.org/10.1039/c5lc00234f
https://doi.org/10.1039/c5lc00234f
http://www.ncbi.nlm.nih.gov/pubmed/25906246
https://doi.org/10.1016/j.mee.2019.01.004
https://doi.org/10.1016/j.mee.2019.01.004
https://doi.org/10.1016/j.tibtech.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30301571
https://doi.org/10.1016/j.matt.2020.08.034
https://doi.org/10.1007/s10544-020-00516-1
http://www.ncbi.nlm.nih.gov/pubmed/32870410
https://doi.org/10.1111/j.1365-2184.2009.00613.x
http://www.ncbi.nlm.nih.gov/pubmed/19489983
https://doi.org/10.1371/journal.pcbi.1010019


20. Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A. ‘Go or grow’: the key to the emergence of

invasion in tumour progression? Mathematical medicine and biology: a journal of the IMA. 2012; 29

(1):49–65. https://doi.org/10.1093/imammb/dqq011 PMID: 20610469

21. Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia,

necrosis, and accelerated growth in glioblastoma. Laboratory Investigation. 2004; 84(4):397. https://doi.

org/10.1038/labinvest.3700070 PMID: 14990981

22. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades

in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively

migrating cell population. Cancer research. 2004; 64(3):920–927. https://doi.org/10.1158/0008-5472.

CAN-03-2073 PMID: 14871821

23. Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clinical cancer

research. 2010; 16(24):5928–5935. https://doi.org/10.1158/1078-0432.CCR-10-1360 PMID: 20962028

24. Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of

human tissues a crucial parameter? Small molecules and hypoxia. Journal of cellular and molecular

medicine. 2011; 15(6):1239–1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x PMID: 21251211

25. Wang P, Yan Q, Liao B, Zhao L, Xiong S, Wang J, et al. The HIF1α/HIF2α-miR210-3p network regu-

lates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic

conditions. Cell death & disease. 2020; 11(11):1–13. https://doi.org/10.1038/s41419-020-03150-0

PMID: 33208727

26. Ayuso JM, Virumbrales-Muñoz M, Lacueva A, Lanuza PM, Checa-Chavarria E, Botella P, et al. Devel-

opment and characterization of a microfluidic model of the tumour microenvironment. Scientific reports.

2016; 6(1):1–16. https://doi.org/10.1038/srep36086 PMID: 27796335
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