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Abstract

For each graph G the dimension of G is defined as the smallest dimension in
the Euclidean Space where there is an embedding in which all the edges of G are
segments of a straight line of length one. The exact value is calculated for some
important families of graphs and this value is compared with other invariants. An
infinite quantity of forbidden graphs for dimension 2 is also shown.
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1 Introduction

Let G be a graph. The dimension of graph G, denoted by dim(G), is defined
as the smallest natural number n ∈ N such that G has an embedding in Rn
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where all the edges of G are segments of a straight line of length one.

In this work the exact values of the dimension of graph G are calculated
for some important families of graphs: the complete graphs, the bipartite
complete and the tripartite complete graphs. This value is also compared with
other invariants: the chromatic number and the genus of a graph. In addition,
bounds of the dimension are given by planar and outerplanar graphs.

It is easy to check that the graphs with dimension of maximum n, with n >
1, can neither be characterized by minors nor even by forbidden topological
minors. The following question arises: Can the graphs with dimension of
maximum n be characterized by a finite quantity of forbidden subgraphs? A
negative answer is obtained by showing an infinite family of forbidden graphs
for dimension 2.

2 Dimension of some families of graphs

In this section the exact values of the dimension of graph G are calculated for
some important families of graphs.

2.1 Dimension of the complete graphs

In the following result the dimension of a complete graph is obtained.

Theorem 2.1 dim(Kn) = n − 1

Proof.

The following n points are considered in the Euclidean Space Rn−1, y0 =
(0, 0, 0, ..., 0), . . . , yk = (z1, z2, ..., zk−1, (k+1)zk, 0, ..., 0), where k = 1, 2, ..., n−
1 and zk = 1√

2k(k+1)
. One can easily check that these n points in Rn−1 are at

distance one. Therefore dim(Kn) ≤ n − 1.

We can prove, by induction in n, that the embedding of these points is
unique up to movements. Given n points in Rn−1, let us take the first n − 1
points. They are contained in a lineal variety of dimension n − 2. By a
movement, this variety can be taken to the hyperplane Xn−1 = 0. As this
variety is isomorphic to Rn−2, by hypothesis of induction it can be supposed
that these first n − 1 points are y0, . . . , yn−2, by adding the value 0 as the
(n − 1)-th coordinate.

It is not difficult to show, by induction in the component, that the two
unique points of Rn−1 that are at distance one from the n− 1 previous
points are yn−1 = (z1, . . . , zn−1, nzn−1) and (z1, . . . , zn−1,−nzn−1). By making



a symmetry with respect to the hyperplane Xn−1 = 0, the n − 2 previous
vertices become invariant, while the two last points transform into each other.

As a consequence of the uniqueness of the embedding and since the
points y0, . . . , yn−1 are not contained in a lineal variety of dimension n − 2,
dim(Kn) > n − 2 and therefore the result is obtained.

�

The following consequences are deduced from the previous result:

Corollary 2.2 The embedding of Kn in Rn−1 is unique up to movements.

Corollary 2.3 Given n vertices in Rn such that the distance between any pair
of vertices is equal to 1, there are only two vertices whose distance is 1 from
all the vertices.

Corollary 2.4 Let x be an edge of Kn, dim(Kn − x) = n − 2.

Furthermore, the following result is also obtained:

Corollary 2.5 dim(P7 + K2) = 4.

Proof.

Let us suppose the opposite case where the graph P7+K2 has an embedding
in R3. This graph has 9 vertices and the edge u1u2, vivi+1, with i = 1, . . . , 6,
and uivj, with i = 1, 2 and j = 1, . . . , 7. The vertices u1, u2, v1 and v2 induce

K4. It can be supposed that their coordinates are (0, 0, 0), (1, 0, 0), (1
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From Corollary 2.3, given 3 points which form an equilateral triangle of
unitary sides, only two points exist that are at distance 1 from all the points
in R3. Hence, it can be deduced that given the points u1, u2 and vi, with
i < 1, two points will exist at distance 1 from all of the points. These are vi−1

and vi+1.

The coordinates of the vertices vi, with i = 3, . . . , 7, are respectively,
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In this case, segments v1v2 and v6v7 intersect at (1
2
, 23

√
3
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, 5

√
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33
), therefore a

contradiction is obtained.

An embedding of P7 + K2 in R4, can be given by assigning the coordi-
nates (1

2
, 2433

√
3

658
, 0,

√
36894
329

) to v7 and by conserving the coordinates of the other
vertices.



2.2 Dimension of the multipartite complete graphs

Let us now enunciate the result that indicates the dimension of the bipartite
complete graphs:

Theorem 2.6 (i) dim(Km,n) = 4, con 3 ≤ m ≤ n.

(ii) dim(K2,n) = 3, con n ≥ 3.

(iii) dim(K1,n) = 2, si n ≥ 2.

(iv) dim(K1,1) = 1.

Items ii, iii and iv are straightforward. Item i will be proved in the next
section.

The following result calculates the dimension of the tripartite complete
graphs:

Theorem 2.7 (i) dim(Km,n,p) = 6, con 3 ≤ m ≤ n ≤ p.

(ii) dim(Km,n,p) = 5, con m ≤ 2 y 3 ≤ n ≤ p.

(iii) dim(Km,2,p) = 4, con m ≤ 2 y p ≥ 3.

(iv) dim(Km,2,2) = 3, con m ≤ 2.

(v) dim(K1,1,p) = 3, con p ≥ 3.

(vi) dim(K1,1,p) = 2, con p ≤ 2.

3 Relationship between the dimension and other invari-
ants

In this section we study if a graph has a given invariant then the dimension
of a graph is bounded or if a graph has a given dimension then the invariant
of a graph is bounded.

First, we relate the dimension of a graph with the chromatic number of a
graph:

Lemma 3.1 dim(G) ≤ 2χ(G).

Corollary 3.2 If there exists a coloring of the vertices of G with χ(G) colors
so that there exist k colors that have been assigned to a maximum of 2
vertices, then dim(G) ≤ 2χ(G) − k.



Corollary 3.3 dim(Kp1,...,pk,pk+1,...,pk+h
) ≤ k + 2h, when p1 ≤ . . . ≤ pk < 3 ≤

pk+1 ≤ . . . ≤ pk+h.

As was seen in Theorems 2.6 and 2.7, in some cases the inequality is strict
and in other cases it is an equality.

From this result we can approach the proof of item i of Theorem 2.6.

Proof. By Corollary 3.3 dim(Km,n) ≤ 4 is obtained. On the other hand,
it is clear that dim(Km,n) ≥ dim(K3,3), therefore it is enough to prove that
dim(K3,3) ≥ 4.

Let us suppose the opposite. An embedding of K3,3 in R3 exists with all the
edges of length 1. Three disjoint vertices are considered taken two by two, and
the three spheres whose radii are equal to 1, centered in these vertices. Two of
these spheres intersect, a maximum of a circle and this circle intersects with
the other sphere at a maximum of two points. However, an adjacent vertex
with the centers of the 3 spheres has to be in their intersection, therefore there
would be a maximum of two of these vertices and a contradiction would be
obtained. Hence the result holds.

By Four Colors’s Theorem (see [1]), we know that if a graph is plane then
its chromatic number is at most 4, therefore the following result is obtained:

Corollary 3.4 If G is a plane graph then dim(G) ≤ 8.

One open problem is to calculate the maximum value that the dimension of
a plane graph can have. By Corollary 2.5 and 3.4, we know that this number
ranges from 4 to 8.

As the chromatic number of the outerplanar graphs is at most 3, the di-
mension of the outerplanar graphs is at most 6. However this result can be
improved in the following way:

Theorem 3.5 If G is an outerplanar graph, then dim(G) ≤ 3.

Proof.

Let us suppose that the result is not true and that G is the smallest
outerplanar graph with dim(G) > 3. G has a vertex v of degree 2. Let G′

be a graph which is obtained when the vertex v of G is removed and the
edge between u and w is added(u and w are the neighbors of v). G′ is an
outerplanar graph and it has a vertex less than G, hence dim(G′) ≤ 3. An
embedding of G′ in R3 is considered with all the unitary edges and such that
u and w are at distance 1. Since there are infinite points in R3 which are



at distance 1 from u and w, vertex v can be placed at one of them, where
the edges uv and wv don’t intersect with the rest of the graph. Therefore we
would have an embedding of G in R3 with all the unitary edges which is a
contradiction.

This result cannot be improved, since it is easy to check that dim(K1 +
P6) = 3.

Let us relate the dimension of a graph with the genus of a graph (remember
that the genus of a graph is the smallest genus on the compact surfaces where
the graph admits an embedding). The following result is required:

Proposition 3.6 (i) Let G be a graph, there exists a subdivision of G, de-
noted by S(G), such that dim(S(G)) = 3.

(ii) Let G be a planar graph, there exists a subdivision of G, denoted by
S(G), such that dim(S(G)) = 2.

Proof.

It is clear that any finite graph can be represented in R3 so that their
edges are segments of a straight line. In addition, the complete graph whose
cardinal is the continuous 2ℵ0 , can also be represented in this way (see [3]).
On the other hand, all finite planar graphs can be represented in R2 such that
all the edges are segments of a straight line (see [4]).

Let us distinguish three cases:

Case 1: The lengths of the edges are natural numbers.

In this case the edges are subdivided such that all edges have length 1.

Case 2: The lengths of the edges are rational numbers.

If the lengths of the edges are rational numbers then a homothecy of di-
lation factor the minimum common multiple of the denominators of rational
numbers is considered and the previous case is applied.

Case 3: The lengths of the edges are irrational numbers.

If some of the lengths of the edges are irrational numbers, then an edge
x with irrational length lx and a rational number r sufficiently near to lx

2
are

taken, such that x can be replaced by two new adjacent edges of length r.
Therefore, these edges are sufficiently near to the edge x such that these edges
don’t intersect with the rest of the edges of the graph.

By repeating the process with all the edges of irrational length, a subdi-
vision of the graph is obtained with all the edges of rational length and the
previous case is applied.



Considering an appropriate subdivision of any graph with genus n ≥ 1,
graphs with genus n and with dimension 3 can be found. However, there exists
an upper bound of the dimension in function of the genus, as the following
result shows:

Proposition 3.7 dim(G) ≤ 2�7+
√

1+48γ(G)

2
�.

Proof.

Ringel and Youngs in [2] proved that χ(G) ≤ �7+
√

1+48γ(G)

2
�. By Lemma

3.1, the result is obtained.

4 Finite or infinite set of the forbidden graph of bounded
dimension

A forbidden graph in a partial order for a specific property, is a graph that
doesn’t have the property, however any smaller graph, in this partial order,
has this property. It is clear that the graph with the property ”to have a max-
imum dimension of 1” can be characterized by forbidden minors. The unique
forbidden finite graphs are K1,3 and K3. There is one forbidden numerable
graph:

• The graph composed of two connected components, each one of which is an
infinite path and an infinite numerable quantity, ℵ0, of the disjoint edges.

There are also two forbidden non numerable graphs:

(i) The graph composed of ℵ1 (the cardinal ℵ0), disjoint edges.

(ii) The graph composed of 2ℵ0 (the cardinal following the cardinal of the
continuum) disjoint vertices (in the generalized continuum hypothesis
this cardinal is ℵ2).

However, even in the finite case, the graphs with the property ”to have
a maximum dimension of 2” are not been able to characterize by forbidden
minors, not even by topological forbidden minors. Logically, these graphs
are been able to characterize by forbidden subgraphs. The question arises
in a natural way: Is the forbidden subgraph set for the property ”to have a
maximum dimension of 2” finite or not?.

The answer is negative, as we can deduce from the following result:

Theorem 4.1 The graphs in the Figure 1 are forbidden graphs with the prop-
erty ”to have a maximum dimension of 2” with n ≥ 2.
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u1 u2 un−1 un

v0 = w0 vn = wnv1 v2 vn−1vn−2

w1 w2 wn−1wn−2

Fig. 1. Forbidden graphs with the property ”to have a maximum dimension of 2”
Proof.

Since K3 has an unique embedding in R2 up to movements, it is easy to
see that, extending this embedding, the graph minus the edges wkwk+1, with
k = 0, . . . , n − 1, has an unique embedding in R2. In this embedding the
vertices v0and vn are at distance n− 1, therefore extending this embedding to
the graph, the edges wkwk+1 are overlapped on vkvk+1, hence the dimension
of the graph has to be bigger than 2.

On the other hand, it is not difficult to find an embedding in R2 when an
edge is eliminated. It is enough to consider four cases depending on the type
of eliminated edge: ukuk+1, vkvk+1, wkwk+1 and ukvk or uk+1vk.

As a consequence the following result is obtained:

Corollary 4.2 The forbidden graph set with the property ”to have a maximum
dimension of 2” is infinite.
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