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Effects of cell culture conditions on 

Mesenchymal Stem Cells and 

strategies to improve their 

therapeutic application. 

1. Introduction. 

Mesenchymal Stem Cells (MSCs) were 

discovered in 1974 by Friedenstein who isolated 

them from bone marrow and described their 

morphology in vitro as fibroblast-like spindle 

shaped 1. MSCs are multipotent cells that can be 

obtained from various tissues, including placenta 2, 

umbilical cord 3, amniotic fluid 4, bone marrow 5, 

muscle 6, compact bone 7 , synovial fluid 8, fat 9, 

dental pulp 10, hair follicles 11 and blood 12. MSCs 

have two principal characteristics: self-renewal and 

multilineage differentiation 13,14. Self-renewal 

concerns to the MSCs ability to generate identical 

copies of themselves, while multilineage 

differentiation refers to their capacity to give rise to 

cells into the mesodermal, ectodermal and 

endodermal lineages 15. Given that MSCs show 

heterogeneous qualities depending on their tissue 

source, the International Society for Cellular 

Therapy (ISCT) has established three minimal 

standards to define MSCs: they adhere to plastic in 

standard conditions, they express specific markers 

(positive in antigens like CD73, CD105 and CD90 

while  negative for CD45, CD34, CD14 or CD11b, 

CD79α or CD19 and HLA-DR) and they have the 

ability to differentiate into adipocytes, 

chondrocytes, and osteoblast in specific culture 

conditions 16. 

As mentioned above,  the self-renewal and 

multilineage differentiation properties of MSCs are 

interesting points for basic and translational 

investigation,  but also for clinical studies on 

several pathologies, such as cardiology, neurology, 

 

The beneficial characteristics of 

Mesenchymal Stem Cells (MSCs) allow us to 

use them in translational and clinical research. 

Recent studies have shown beneficial effects 

of MSCs for the treatment of several 

pathologies, such as retinal degenerative 

disorders, neurodegenerative diseases, 

diabetes, myocardial infarction, skin 

problems, bone, and liver disorders, among 

others. These cells are found in various 

tissues, but they appear in low quantities, 

which makes necessary to expand MSCs in 

vitro before application. However, in vitro 

manipulation has noticeable consequences on 

MSCs morphology, physiology and function. 

The expression profile of molecules and 

receptors of MSCs undergoes drastic changes 

during cell culture. These alterations give rise 

to different results when MSCs are used in 

cell-based therapies, such as different immune 

response in the host. In this overview, our 

main aim will be to analyze the different 

modifications of MSCs during cell culture, 

and how these changes alter their therapeutic 

properties after transplantation. In addition, 

we will discuss potential strategies to improve 

the therapeutic effects of MSCs. 
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orthopaedics, among others areas 17–20, as they 

promote tissue repair and regeneration (Figure 1 

and Table 1) 21–23. For instance, MSC-based 

therapies are generating increasing interest in the 

current pandemic situation with the Coronavirus 

disease 2019 (COVID-19) caused by the severe 

acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection. Several research groups have 

reported the beneficial effects of MSC application 

for pulmonary complications of COVID patients. 

Shetty and collaboration have demonstrated that 

intravenous application of human MSCs (hMSCs) 

produced improvements in 7 patients with COVID-

19 pneumonia for 14 days compared to 3 placebo-

treated patients. It was suggested that this could be 

due to reduced hyperactivation of the immune 

system and increased endogenous repair due to the 

paracrine effects of MSCs 24. They observed that 

the administration of hMSCs originated changes in 

inflammatory markers, such as a significant 

increase in IL-10 and a decrease in TNF-α. In 

addition, computed tomography images showed 

that  MSCs reduced the lesion area in the lungs at 

the end of the treatment in a critically ill patient 

with COVID-19 24,25. 

 Furthermore, MSCs possess intrinsic 

tropism toward damaged tissues that is mediated by 

chemotaxis signalling pathways 13, being the C-X-

C motif chemokine ligand 12 (CXCL12) – C-X-C 

chemokine receptor type 4 (CXCR4) axis one of 

the key players 26. The CXCL12 is found in 

different tissues and is released in high 

concentrations during injury 27. Importantly, it has 

been demonstrated that MSCs express the CXCR4, 

one of the receptors to which CXCL12 binds to 

mediate migration towards injury tissues 28,29. 

The low quantity of MSCs in their multiple 

sources creates the need to expand them in vitro to 

obtain sufficient cells for therapeutic application 30. 

MSCs cultures are not subject to standardized 

protocols. There are unequal culture media and 

different methods to isolate the cells, such as the  

 

FIGURA 1. Representation of some MSCs therapeutic 

applications. MSCs as treatment in pathological conditions: liver 

disorders (e.g. cirrhosis), autoimmune diseases (e.g. Crohn's 

disease), skin problems (e.g. skin ulcers), bone disorders (e.g. 

imperfect osteogenesis and osteonecrosis), heart diseases (e.g. 

myocardial infarction and cardiac ischemia), pulmonary pathologies 

(e.g. pulmonary COVID-19 infection) and neurological damage 

(e.g. Parkinson’s disease and spinal cord injury).  

explant culture method 31,32 or the enzymatic 

method 32,33.  In addition, MSCs can be expanded 
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on different plastic surfaces, which have peculiar 

hydrophobicity characteristics affecting cell 

growth 14,34. The lack of common rules generates a 

huge variety of results when MSCs are used in pre-

clinical therapies 35. It is suggested that alterations 

in therapies could be associated with modifications 

during MSC culture, such as distinct morphologies, 

different membrane receptors and modifications in 

their secretome 30,36. 

The major goal of this review is to provide 

a general overview about the modifications 

occurring in cultured MSCs that may lead to inter-

laboratory variability observed when working with 

this cell type. In addition, we discuss alternatives in 

vitro conditions that may help to obtain more 

effective MSCs for cell-based therapies. The 

significance of this review lies in the importance of 

MSCs as therapeutic tool for the treatment of a 

wide range of pathologies due to their benefits on 

tissue repair and regeneration.  
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COUNTRY 

NCT0042013437 Liver  Cirrhosis 24 wk 30 
BM-

hMSC 
Intravenous I/II Iran 

NCT0122049238 Liver Cirrhosis 48 wk 45 
UC-

hMSC 
Intravenous I/II China 

NCT0145433639 Liver  Liver fibrosis 48 wk 3 
BM-

hMCS 
Intravenous I Iran 

NCT0159120040 Liver  Alcoholic Cirrhosis 96 wk 40 
BM-

hMCS 
Intraarterial II India 

NCT0115765041 Autoimmune  Crohn's disease 144 wk 15 
Ad-

hMSC 
Unknown I/II Spain 

NCT0165976242 Autoimmune  Crohn’s disease 48 wk 16 
BM-

hMSC 
Intravenous I EE. UU. 

NCT0377833343 Autoimmune  Multiple Sclerosis 48 wk 7 
BM-

hMSC 
Intravenous I Sweden 

NCT0187362544 Autoimmune  Rheumatoid Arthritis 48 wk 60 
BM-

hMSC 
Intraarticular II/III Iran 

NCT0282439345 Skin  
Chronic autoimmune 

urticaria 
48 wk 10 

Ad-
hMSC 

Intravenous I Turkey 

NCT0388720846 Skin 
Cutis laxa senile and 

scars 
27 wk 100 

Ad-
hMSC 

Subcutaneus I/II Poland 

NCT0268572247 Skin  Skin ulcers 24 wk 20 
UC-

hMSC 
Topic I China 

NCT0249165848 Skin  Vulgar Psoriasis 48 wk 30 
UC-

hMSC 
Intravenous I/II China 

NCT0151369449 Bone 
Intervertebral 

Degenerative Disc 

disease 

24 wk 15 
BM-

hMSC 
Implantation I/II Spain 

NCT0160538350 Bone  
Osteonecrosis of the 

Femoral Head 
48 wk 23 

BM-
hMSC 

Implantation I/II Spain 

NCT0217288551 Bone  Osteogenesis imperfecta 96 wk 2 MSC Intravenous I Spain 

NCT0018691452 Bone  Osteodysplasia 
Unkno

wn 
8 

BM-
hMCS 

Intravenous I EE. UU. 

NCT0173977753 Heart  Cardiopathy 48 wk 30 
UC-

hMSC 
Intravenous I/II Chile 

NCT0144903254 Heart  
Chronic myocardial 

ischemia 
24 wk 60 

Ad-

hMSC 
Intramyocardial II Denmark 

NCT0238772355 Heart  Severe Heart Failure 24 wk 10 
Ad-

hMSC 
Intramyocardial I Denmark 

NCT0246738756 Heart  
Non-Ischemic Heart 

Failure 
64 wk 23 

BM-
hMSC 

Intravenous II EE. UU. 

NCT0436632357 Pulmonary COVID-19 48 wk 26 
Ad-

hMSC 
Intravenous I/II Spain 

NCT0428810258 Pulmonary  COVID-19 12 wk 90 
UC-

hMSC 
Intravenous II China 

NCT0259483959 Pulmonary  
Progressive Interstitial 

Lung Disease 
48 wk 20 

BM-
hMSC 

Intravenous I/II Russia 

NCT0191982760 Pulmonary  
Idiopathic pulmonary 

fibrosis 
48 wk 17 

BM-
hMSC 

Endobronchial  I Spain 

NCT0266806861 Pulmonary  Pneumoconiosis 24 wk 80 
UC-

hMSC 
Lavage I China 

NCT0105647162 Neurological  
Secondary Progressive 

Multiple Sclerosis 
48 wk 30 

Ad-
hMSC 

Intravenous I/II Spain 

NCT0261116763 
Neurological 

damage 
Idiopathic Parkinson’s 

Disease 
52 wk 20 

BM-
hMSC 

Intravenous  I/II EE. UU. 

NCT0132510364 Neurological  Spinal Cord Injury 24 wk 14 
BM-

hMSC 
Intralesional  I Brazil 

NCT0224967665 Neurological  Neuromyelitis Optica 48 wk 15 
BM-

hMSC 
Intravenous II China 

*Abreviations: Mesenchymal Stem Cells (MSC), Bone Marrow human Mesenchymal Stem Cells (BM-hMSC), Umbilical Cord human 

Mesenchymal Stem Cells (UC-hMSC), Adipose derived human Mesenchymal Stem Cells (Ad-hMSC). 

TABLE 1. Clinical trials of Mesenchymal Stem Cells therapy for different types of pathologies. 
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2. Changes induced in MSCs during cell 

culture. 

 Each step in cell culture is parallel to MSCs 

morphological disorders, changes in their markers 

profile and physiological perturbations. 

Furthermore, the alterations are determined by 

many variable conditions such as donor age 66, 

tissue source 67, passages number 68, oxygen levels 

69 or medium composition 70 (Figure 2). Zaim et al. 

demonstrated that donor age affects differentiation 

of bone marrow hMSCs (BM-hMSCs). BM-

hMSCs from children between  0-12 years old 

showed more adipogenic, neurogenic and 

osteogenic differentiation potential and more 

proliferation than BM-hMSCs from adults between 

25-50 years old or from elderly over 60 years old  

in the same passage 66 . Another study 

demonstrated that the source of MSCs affects later 

differentiation. The use of BM-hMSCs presented a 

greater differentiation potential to osteogenic cells, 

while MSCs derived from adipose tissue (Ad-

hMSCs) revealed a greater differentiation potential 

to adipogenic cells 67. Furthermore, the passage 

number of the cell culture is another significant 

point. Tan and co-workers showed that surface 

markers of bovine synovial membrane-derived 

MSCs (SD-MSCs) change in passages (P) 4 68. 

There was an increase in the expression of CD73 

between P1 and P2, whereas CD73 levels had a 

significant reduction in P3. In this report, they 

suggested that the decrease on CD73 expression 

could be responsible for the changes in migration. 

When they applied a direct current electric field 

(DC-EF), 85% of cells moved towards the positive 

pole in P1, while a 75% of cells migrated towards 

the negative pole in P4. This variations in the 

direction of SD-MSCs migration correlated with 

the changes in CD73 expression 68. All these 

investigations evidence how the cell culture 

conditions influence SD-MSCs. Throughout this 

section we will focus on describing morphological 

alterations, changes in the markers profile and 

physiological perturbations that MSCs undergo 

during culture. 

 

FIGURE 2. Representation of influencing factors on 

morphological and physiological characteristics, in addition to 

surface markers. Factors responsible for changes in cultured MSCs 

include tissue origin, donor age, medium and supplements, passage 

number, and incubation conditions such as oxygen levels. All these 

parameters cause morphological alterations in MSCs, which change 

from a spindle form to a flattened form. Moreover, there are changes 

in surface markers such as higher expression of CD146, CD105 and 

CD271 and a lower expression of CD34 and CD90. Physiological 

changes include the generation of free radicals that directly affect 

the amino acid profile and lipid peroxidation. Abbreviations: Cluster 

of Differentiation 146 (CD146), Cluster of Differentiation 105 

(CD105), Cluster of Differentiation 271 (CD271), Cluster of 

Differentiation 34 (CD34), Cluster of Differentiation 90 (CD90), 

Reactive oxygen species (ROS). 
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2.1 Morphological alterations. 

The MSCs normally have a spherical form in 

vivo 71. When MSCs are seeded as adherent cells, 

they usually acquire spindle form 72. However, the 

MSCs morphology can change in response to 

medium supplements 73,74, passage number 75 

and/or oxygen conditions 76. One of the most 

common supplements used in cell culture is fetal 

calf serum (FCS) as a nutrition source, protein and 

growth factors 74. Chase et al., demonstrated that 

the use of FCS affects MSCs morphology. Using 

light microscopy, they observed that BM-hMSCs 

cultured in a medium with FCS had a flattened 

shape, while BM-hMSCs cultured in a serum-free 

medium had their characteristic spindle 

morphology 73. Another influential factor affecting 

cell morphology is the passage number, which 

refers to MSC aging. A study grew BM-hMSCs in 

two different media, Minimum Essential Medium 

Eagle - Alpha Modification (α-MEM) and 

Dulbecco's Modified Eagle Medium (DMEM), and 

observed that MSCs acquired atypical and flat 

shapes by P6 75. In addition to medium supplements 

and aging, another factor to consider is the oxygen 

concentration. Holzwarth's team demonstrated how 

low oxygen levels and donor affect cell 

morphology. They cultured BM-hMSCs from 10 

donors under two conditions 21% and 1% oxygen. 

When examining the cells under the light 

microscope, they observed that BM-hMSCs from 

most donors showed the same spindle morphology 

and all the cells appeared as a monolayer at 21% 

and 1% oxygen after one or three weeks. 

Conversely, BM-hMSCs from 7 donors did not 

adopt the typical spindle shape and they did not 

create monolayers at 1% oxygen in the two 

measures of time 76. Examples such as these 

demonstrate that MSCs undergo dynamic changes. 

The question is, which are the molecular 

mechanisms underlying the morphological 

alterations?  

2.2. Modifications in the markers profile. 

There is not a set of definitive markers 

which define a unique phenotype in MSCs due to 

their variability (origin, conditions, age, isolation 

method). However, there are common receptors for 

growth factors, chemokines, cytokines, matrix 

proteins, cell-cell receptors and inmuno-

modulating receptors 26. Most membrane markers 

have been determined in vitro, hence there is a 

limited knowledge of their properties in vivo 77. 

These antigens are not exclusive of MSCs as 

Schrage et al. showed in their study by 

demonstrating that CD46 is also an endothelial 

marker (antibody ME-9f1) 78. Moreover, MSCs can 

have a different expression receptor fraction 

according to their source, for example Stro-1 

appears in BM-hMSCs but there is a lack of this 

antigen in Ad-hMSCs 79. As previously discussed, 

the ISCT indicated that the positive MSCs surface 

markers are CD73, CD90 and CD105. 

Furthermore, Maleki et al. compared hMSCs from 

ovary, testis, hWJ-MSCs and hair follicle, and they 

found that all these hMSCs also shared Stro-1, 

CD44, CD166 and CD106 80. On the other hand, 

Ly and co-workers in their review added three 

repetitive membrane markers, e.g. Stage-specific 
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Embryonic Antigen-4 (SSEA4), CD271 and CD46 

81. Several investigations have demonstrated that 

the markers profile changes when MSCs are 

cultured in vitro. For example, Braun and 

collaboration have shown that clusters of 

differentiation, such as CD146, CD105 and CD271 

of adventitial stromal cells (AST), were over-

expressed after four days in vitro. However, CD34 

had less expression between the fourth and 

sixth  day 72. Another example of marker that 

changes in vitro  was identified by Yu et al., who 

demonstrated high expression of Stro-1 in dental 

pulp stem cells (DPSCs) of rat and human at P9, as 

compared to P1 82. 

Moreover, it has been shown that BM-

hMSCs seeded in a 3D alginate culture or under 

mechanical stimulation present low CD90 

expression 83,84. This protein is involved in the 

regulation of cell-cell contact and cell-matrix 

junctions. The lack of this marker has 

consequences such as impaired cell migration, 

affected actin filaments and loss of cell-cell and 

cell-matrix junctions, which could alter cell 

morphology 85.  

2.3. Physiological perturbations. 

Cell culture conditions, such as oxygen 

concentration, passages, supplements, contribute to 

maintain cellular homeostasis. The oxygen levels 

applied in culture are usually those that we have in 

the atmosphere (20%), but this point is 

questionable since cells in the body are indeed 

exposed to 2-7% oxygen. This is an important issue 

because high oxygen levels generate metabolism 

perturbations and oxidative stress, generating one 

of the most notorious consequences that is the 

increase of the radical oxidative species (ROS) 

concentration, one of the typical senescence marks 

in cultures cells. In addition to the activation of the 

senescence process, high oxygen levels reduces 

cell survival and proliferation, which is a 

bottleneck to use MSC in therapy 86. ROS are small 

molecules usually generated in mitochondria and 

they can react easily due to their free electron 

(superoxide anions [O2-], hydrogen peroxide 

[H2O2] and hydroxyl radicals [OH-]).  ROS can 

coordinate different cell levels because of its ability 

of regulating redox state of proteins and lipids, 

among others, generating  cellular 

perturbations87.  Shin et al.  demonstrated that 

increased ROS levels relate to changes in amino 

acid profile and lipid peroxidation. BM-hMSCs 

with high ROS levels due to serum starvation 

exhibited alteration of amino acids like lysine, 

tyrosine, and γ-aminobutyric acid (GABA) 

accumulation. At the same time, there is a gain of 

lipid peroxidation giving rise to a decreased 

membrane permeability and fluency 88. 

3. Consequences of the in vitro MSCs 

modifications for their use in cell 

therapy. 

The changes occurring in cultured MSCs, 

such as morphological alterations, the different 

profile of surface markers and the physiological 

modifications, limit their widely use in clinical 

application. For example, the increased size of 

MSCs in vitro influences their therapeutic effect 
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after cell delivery. In consequence,  transplanted 

MSCs may exhibit a reduced migration to the target 

tissue 89,90 or may originate adverse events during 

cell therapy that compromise patient safety  91,92 . 

On the other hand, changes in the surface markers 

occurring in cultured MSC are related to the 

immune response, giving rise to rejections of 

transplanted cells 93. Moreover, physiological 

modifications of cultured MSC derived from 

patients with pathologies can develop an altered 

phenotype. For instance, MSCs derived from 

diabetic patients with critical limb ischemia were 

found to display a prothrombotic phenotype  94. 

The most frequent administration routes are 

intravenous 89,96,97, intranasal 98–100, 

intramyocardial 101,102, intramuscular 103,104, 

intracoronary 105–107, intrathecal 108,109, intra-

arterial 110–112 (Figure 3). However, MSC delivery 

is affected by the increased size of these cells. Most 

of the infused cells are found in the lungs one hour 

after BM-hMSCs intravenous administration in 

mice 89. Schrepfer and co-workers showed, through 

fluoresce microspheres of different dimensions, 

that lung capillaries have an average diameter 

between 4-15 µm in mice. It is suggested that the 

retention of BM-MSCs in the lungs could be due to 

the increased size of cultured MSCs, which reach 

an average diameter of 15-19 µm 90. The retention 

of MSCs in non-target organs is associated with a 

reduced efficacy of the cell therapy. On the other 

hand, studies have shown that the increased size of 

the MSCs is unsafe for intracarotid administration 

91,92. Ge at al. showed that intra-carotid injection of 

large placental-derived hMSCs (average diameter 

29 μm) in rats caused severe vascular obstructions 

and strokes in comparison with those rats that were 

injected with small placental-derived hMSCs 

(average diameter 13-17 μm) 91. Moreover, another 

study with rats demonstrated that the intracarotid 

administration of large MSCs (average diameter 25 

μm) resulted in a reduction in cerebral blood flow 

at doses of 2x106 cells related to cerebrovascular 

accidents 92. 

 

FIGURE 3. Representation of MSCs administration routes in 

mouse. Among the most used methods of cell delivery in the 

literature are intravenous, intra-arterial, intramyocardial, 

intracoronary, intranasal, intrathecal, and intramuscular 

administration. 

The immunosuppression is another relevant 

property of MSCs that may be altered during cell 

culture, which should be taken into consideration 

during allogenic therapies. In this context, the 

expression level of human leukocyte antigen class 

I (HLA-I) in the surface of MSCs has been shown 

to change under specific cell culture conditions. 

For instance, MSCs treated with Interferon gamma 

(IFN-γ) exhibited reduced levels of HLA-I and 
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elicited a weaker immune response than non-

treated cells 93. 

Apart from the lack of an unanimous 

protocol to culture cells, their use in several 

pathologies is debatable because of their 

incompatibility with the host, generating 

arrhythmia 113,114, increasing the aggressiveness of 

previous tumours 95,115, favouring  thrombotic 

events 94 and atypical tissue differentiation 116. For 

instance, Djouad et al. demonstrated that co-

injection or local separated injection of two types 

of MSCs (line C3H / 10T1 / 2 and primary BM-

MSCs of two mice) with B16 melanoma cells in the 

same treatment resulted in a higher tumours 

incidence compared with B16 melanoma cells 

injected as control. This team suggested that the 

most accentuated tumours with MSCs could be due 

to the MSCs immunosuppressive activity, giving 

rise to the inhibition of the immune response on the 

tumour 95. In addition, MSCs are characterized by 

releasing factors such as vascular endothelial 

growth factor (VEGF) involved in angiogenesis 

that could favour the development of tumours 95. 

On the other hand, the pathological condition of the 

donor may influence the therapeutic properties of 

MSCs, as demonstrated by Capilla-González et al. 

94. They demonstrated that Ad-hMSCs derived 

from two diabetic patients with critical limb 

ischemia (CLI) showed a reduction in proliferation 

and migration, as well as an altered differentiation 

ability compared to Ad-hMSCs from healthy 

individuals. This defective phenotype was 

associated with a deficient platelet-derived growth 

factor (PDGF) signalling pathway. More 

importantly, Ad-hMSCs from diabetic patients 

exhibited a pro-thrombotic profile, which could be 

responsible for distal microthrombosis after intra-

arterial administration of autologous Ad-hMSCs in 

these two patients 94. Therefore, there is an urgent 

need to develop new strategies to improve the 

therapeutic properties of MSCs.  

 

4. Strategies to potentiate the 

therapeutic properties of MSCs. 

 

Criteria such as optimum basal medium 117, 

cell density in passages 118, plastic surface quality 

119 and medium supplements 120 affect to the 

research findings and investigators should take into 

considerations these effects when making 

conclusions. Sotiropoulou et al., demonstrated that 

BM-hMSCs improved their proliferation by 

changing parameters as cell density, medium 

conditions, and growth surface (i.e. flasks). They 

showed that proliferation presented a higher rate 

with an initial low density in contrast with high 

density, they obtained an optimal value with an 

initial rate of 1000 cell/cm2. Moreover, Eagle's 

minimal essential medium-alpha modification with 

Glutamax (α-MEM/GL) in a Falcon flask was the 

medium and plastic surface with best results in 

terms of proliferation.  This research team 

suggested that these results could be due to the fact 

that Glutamax has a more stable L-alanyl-L-

glutamine dipeptide compared to the L-glutamine 

presented in other culture medium. Furthermore, 

the increase in cell proliferation after a 4-weeks 
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period in culture in Falcon flasks could be 

explained with its peculiar manufacturing method. 

Falcon flasks acquire hydrophilicity on their 

surface through a treatment based on the corona 

effect carried out in closed chamber, while the rest 

of the flasks used in the study (Greiner, Nunc and 

Costar) acquire hydrophilicity by exposing the air 

that surround the flask to the environment without 

closed chamber, which could be the cause of less 

proliferation in these flasks 34.  

As mentioned earlier, medium supplements 

are interesting since their use can lead to beneficial 

modifications in cell phenotype and physiology to 

face the negative effects of cell culture explained in 

previous sections. Under the terms of proliferation 

rate of BM-hMSCs, application of basic fibroblast 

growth factor (bFGF), Platelet-Derived Growth 

Factor (PDGF-BB) , Ascorbic Acid (AA) or the 

combination of all of them provide higher 

expansion until P6, without affecting the 

differentiation capabilities 120–122. Furthermore, 

Capilla-Gonzalez et al. showed that the use of 

PDGF-BB can reverse the negative characteristics 

of Ad-hMSCs from diabetic patients previously 

mentioned. They demonstrated that Ad-hMSCs 

incubated with PDGF-BB improved migration, 

proliferation and pro-thrombotic phenotype in ex 

vivo studies. Furthermore, they demonstrated an 

improved homing of Ad-hMSCs  incubated with 

PDGF-BB in a mouse model of cutaneous 

wounds94. Moreover, senescence is a process that 

cells undergo as they are grown in vitro, and ROS 

generation is one of its hallmarks. Several studies 

have shown the advantages of using bFGF in this 

process. The supplementation of culture media 

with bFGF have proved a high proliferation rate, a 

limited apoptosis, a reduced senescence and longer 

telomeres 34,123,124. Apart from that, it has been 

suggested that diminished HLA class I marker in 

MSCs could be responsible for the inmune 

response 93. Giuliani and co-workers have 

demonstrated that the addition of IFN-γ 

supplement to the culture for two days offers a 

remarkable results in the surface markers 

responsible for interactions between fetal, 

embryonic and BM-hMSCs with NK, including an 

up-regulation of HLA class I 125. At this point, the 

discrepancy between adverse or positive effects in 

surface markers changes due to the composition of 

the medium, could be questioned. In this context, 

studies have also focused on the reversibility of 

these modifications. Gharibi et al. have 

demonstrated that the use of bFGF in BM-hMSCs 

causes changes in the CD146 marker. Moreover, 

CD146 returned to basal levels one week after the 

absence of bFGF 120 (Figure 4). 
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FIGURE 4. Medium supplements effects in MSCs. The 

supplements use presents controversies in the results, the positive 

effects of factors such as bFGF, PDGF-BB, AA and IFN-γ are 

exposed in this representation. In green, bFGF presents results of 

improvement in the senescence process such as reduced apoptosis, 

lower senescence rate, more elongated telomeres, higher 

proliferation rate and reversible changes in the CD146 marker. In 

blue, bFGF, PDGF-BB, AA show a higher proliferation rate. In 

orange, PDGF-BB shows migration changes. In purple, IFN-γ 

causes an increase in the HLA class I marker, responsible for the 

interaction between MSCs and NK. Abbreviations: basic Fibroblast 

Growth Factor (bFGF), Platelet-Derived Growth Factor (PDGF-

BB), Ascorbic Acid (AA), Interferon gamma (IFN-γ), Clustter of 

differentiation CD146 (CD146), Human leukocyte antigen class I 

(HLA I), NK (Natural Killer). 

The route of administration can affect the 

therapeutic effects of MSCs since it may be 

relevant depending on the pathology to be treated. 

The increased size of MSCs in vitro gives rise to 

adverse effects in their administration, for example 

in intravenous administration, most cells are 

trapped in the lungs, so the number of cells is 

reduced in a distant target organ 90. Therefore, the 

intravenous route would be appropriate for 

treatment of lung disease. For instance, Yip and 

collaboration demonstrated that a unique 

intravenous dose of MSCs is safe for the treatment 

of Acute Respiratory Distress Syndrome (ARDS), 

which is a pathology associated with COVID-19. 

This research included 9 patients that were divided 

in three groups receiving different doses of 

Umbilical Cord hMSCs (UC-hMSCs), 1x106 

cells/kg, 5x106 cells/kg or 1x107 cells/kg 

respectively. It was shown that the use of UC-

hMSCs is safe and viable, and there is a lack of 

negative effects with the three different dosis. 

Moreover, this team identified changes in 

immunological biomarkers, they observed a 

reduction of dendritic cells one month later. They 

suggested that these modifications of immune 

response on account of UC-hMSCs treatment could 

be used to controlled the inflammatory response of 

ARDS and the results could be better if some doses 

are applied over time 126. Furthermore, Zheng and 

collaboration have demonstrated the intravenous 

administration of Ad-hMSCs is safe in SARS-

CoV-2. A group of 6 patients receiving a unique 

dose of 1x106 cells/Kg showed lower levels of 

surfactant protein D (SP-D) in comparison with 6 

control patients who was injected saline solution. 

The SP-D is a biomarker of the injured epithelial 

cells, which is symptom of COVID-19, so this 

reduction may account for the protective function 

of Ad-hMSCs. Moreover, this investigation 

verifies the lack of toxicity and adverse effects of 

MSC in therapy 127. On the other hand, for 

neurological diseases, the blood-brain barrier is an 

obstacle for MSC homing to central nervous 

system. In this cases, the intrathecal or the 

intranasal routes would be a more effective 

alternative, as well as less invasive method than 

intraparenchymal or intracerebroventricular routes 

100,128.  
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Another alternative to improve the 

therapeutic potential of MSCs could focus on 

enhancing MSC migration. In a recent study, Xu 

and collaboration showed that the exposure of BM-

hMSCs to hypoxic conditions (1%) for 4 and 6 

hours improved their migration in vitro. This team 

suggested that these conditions come in parallel 

with the increase in the expression of hypoxia 

inducible factor 1-alpha (HIF-1α). They also 

demonstrated that, when HIF-1α is blocked, there 

was a reduction in the expression of the CXCL12 – 

CXCR4 axis, a key player in cell migration. 

Advances on this topic and more studies would be 

necessary to understand this phenomenon in vivo 

129.  

4.1. Biomaterials. 

The use of biomaterials is an alternative to 

obtain better therapeutic effects of MSCs as they 

facilitate the retention of MSCs into the damaged 

tissues. 

 MSC function depends on biophysical 

conditions and bioactive signals. Among others, 

the influential factors affecting MSC processes 

include environment porosity, architecture, 

inflammation, the cellular matrix, and cell-to-cell 

contact. All these examples evidence the relevance 

of mimicking the in vivo environment during cell 

culture and administration 130,131. Biomaterials are 

substances that simulate biological systems and act 

as a protective scaffold to maintain the properties 

of seeded cells, including MSCs 132. A multitude of 

biomaterials have been successfully used in 

research, including gelatine, carboxymethyl 

cellulose (CMC), collagen type I, bone 

extracellular matrix (bECM) 132,elastin 133, chitosan 

134, Matrigel 135, fibrin 136, fibronectin136, protein-

reactive nanofibrils137, among others. Using an 

experimental rat model of myocardial infarction, 

Roche and colleagues demonstrated that the 

retention of hMSCs into infarcted heart was more 

efficient with the use of biomaterials, while the 

saline control group had less retention. They used 

four types of biomaterials based on hydrogels 

(alginate and chitosan / β-glycerophosphate) or 

epicardial patches (alginate and collagen). Twenty-

four hours after implantation, the biomaterials 

showed between 50 and 60% retention of hMSCs, 

as compared to the control saline group that 

displayed 10% retention 138. Furthermore, Lu and 

co-workers demonstrated that the use of 

biomaterials as scaffolding for delivering MSCs 

had improved results in an experimental model of 

traumatic brain injury (TBI) in rats. In this study, 

human marrow stromal cells were seeded in 

collagen scaffolds and then, deposited in the 

nucleus of the TBI (4 days after injury). hMSCs 

implanted with the collagen scaffolds showed 

higher migration and the lesion volume was lower, 

as compared to rats injected with saline, collagen 

or hMSC alone. Moreover, the scaffolding rats 

exhibited improved neurological functions when 

they were subjected to behavioural tasks, such as 

the Maze Morris test (Figure 5) 139. Furthermore, it 

has been shown that Ad-MSCs presented beneficial 

effects for osteochondral defects when they were 

intramuscularly transplanted with a scaffold based 

on polymeric nanofibrils decorated with cartilage-
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derived decellularized extracellular matrix137. They 

demonstrated that the scaffold with Ad-MSCs 

exhibited better chondrogenic regeneration 

potential, even without exogenous growth factors. 

Rats transplanted with Ad-MSCs seeded in  

scaffolds had better characteristics regarding cell 

morphology, matrix staining, and cartilage 

thickness in comparison with groups without Ad-

MSCs 137. 

All these investigations corroborate the 

importance of the use of biomaterials to serve as 

substrate, locators, and templates for transplanted 

MSCs 140. In addition, they improve the survival 

and differentiation of MSCs  135,138,139. 

4.2. Secretome. 

Until now, the advantages and 

disadvantages of using MSCs, as well as some 

possible solutions, have been discussed. At this 

point, the question would be how MSCs provides 

therapeutic effects if they have a short lifetime after 

administration. The answer to this lies in the 

paracrine effects of MSCs, which are mainly 

responsible of their secretome. Despite 

transplanted cells have a short-life, MSC secretome 

induces lasting effects in the adjacent cells and the 

microenvironment.  The secretome is the set of 

proteins released by the cells with an important role 

in regulating several cellular processes 141. It is 

characterized by being composed of growth 

factors, cell adhesion molecules, cytokines, 

chemokines, lipids, exomes, hormones, 

microvesicles, among others 142,143. Between the 

advantages of using the secretome in cell-based 

therapies are: 1) secretome is not a proliferative 

agent, unlike MSCs, reducing the possibility of 

inducing tumorigenic effects; 2) it is not toxic and 

it has a low immunogenicity; and finally, 3) its 

administration is safer than administration of 

MSCs 144. All these advantages make the secretome 

an interesting therapeutic alternative.  

Texeira and collaborators demonstrated that 

the bilateral injection of the secretome derived 

from Human Umbilical Cord Perivascular Cells 

(HUCPVC) in the rat hippocampal dentate gyrus 

showed similar results than HUCPVC 145. In 

particular, they observed similar improvements of 

endogenous cell proliferation, survival, and 

differentiation in the HUCPVC group and 

HUCPVC secretome group, in comparison with the 

control group (rats treated with Neurobasal A 

medium). Additionally, it was shown an increase in 

bFGF expression related to the early stages of 

neurogenesis, survival, and maturation 145. 

Moreover, the use of the BM-hMSCs secretome 

showed improvements in brain structure and 

animal behaviour in a neurodegenerative disease 

model 146. This research team generated a rat model 

of Parkinson's disease with a unilateral injection of 

6-hydroxydopamine in the medial forebrain. After 

five weeks, unilateral injections of the secretome 

were applied to the substantia nigra and striatum of 

Parkinson animals. Animals injected with the 

secretome showed an increase in the density of 

cells capable of catalysing dopamine precursor 

dihydroxyphenylalanine (DOPA). In addition, 
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secretome induced behaviour improvements in vivo 

through Rotarod and Staircase tests (Figure 5) 146. 

5. Conclusions and future prospects. 

 Throughout this review, three main points 

have been addressed: 1) changes induced in MSCs 

during cell culture, 2) how these changes affect the 

use of MSC-based therapies and 3) strategies to 

improve the therapeutic effects of MSCs. MSCs 

have great potential for cell therapy and 

regenerative medicine due to their easy extraction 

from multiple sources 147, their ability to migrate to 

damaged tissues 148,149,  their multilineage 

differentiation 150,151, their self-renewal 152, and the 

lack of ethical concerns 153. All these advantages 

reinforce the use of MSCs to treat several diseases, 

such as myocardial infarction 154,155, cardiac 

ischemia 156,157, neurological disorders 100,158,159, 

imperfect osteogenesis 160, or more recently the 

COVID-19 24,25,126,161,162. 

 Latest advances in this research area hold 

promises for the applications of MSCs in 

regenerative medicine. However, MSC-based 

therapies still present barriers that need to be 

overcome. In conclusion, all the procedures that are 

carried out during cell culture generate 

morphological and physiological modifications in 

MSCs that directly affect their clinical application. 

Moreover, the lack of a unanimous protocol 

originates discrepancies in the results obtained by 

researchers, and, in many cases, this makes 

difficult to reproduce the experiments. Therefore, it 

is important that the investigators make the effort 

to unify protocols to obtain conclusions that are 

more robust. On the other hand, strategies are being 

implemented to enhance the therapeutic properties 

of MSCs, but there is still much potential to be 

improved. The scientific community should further 

investigate how to develop strategies that 

significantly increase the efficacy of MSC-based 

therapies in a safety way, allowing the translation 

to humans. 

FIGURE 5. Motor coordination and balance, and spatial memory and 

learning some behavioural tests. On the left, it is represented two 

behavioral tests related to motor coordination and balance. Staircase test. 

In this test, two stairs are used with feed in each step on both sides of the 

transparent container, and between them a platform where the animal is 

placed. It can be measured the effectiveness and the distance reached by 

forelimbs depending on the feed consumed and observations. Rotarod 

test. This methodology consists of a rotating cylinder with modifiable 

speed. Rodents are placers on the rod, and it can be measured their 

resistance, strength, balance, and coordination. On the right, there is a test 

connected with spatial memory and learning.   Maze Morris test. In this 

test, rodents are placed in a container of water in which there is a platform 

that can be viewed by individuals. After several repetitions, the platform 

is hidden to check the memory and learning of rodents. The length of the 

route, the time spent, the analysis of different quadrants can be measured.  
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As a critical analysis, the communication 

between the different research teams is required to 

the unification of protocols. The main obstacle to 

achieve this point is the lack of transparency in the 

publications, which often do not specify all the 

information in a detailed manner or even the 

obtained results. A universal protocol to culture 

MSCs should include an effective isolation 

method, the use of a specific cell culture vessel, the 

detailed media composition (including reagent 

references) and the standardized culture conditions, 

such as oxygen levels. Furthermore, the type of 

MSCs must also be taken into account since it has 

been shown that MSC properties may vary between 

source tissues. Apart from that, the experimental 

strategies to improve the therapeutic properties of 

MSCs are based on three main points: the 

minimization of the changes that MSCs undergo in 

vitro, the use of biomaterials to favor MSCs 

application, and the utilization of MSC secretome. 

The choice of the most appropriated strategy will 

depend on the specific aim of the therapy. For 

instance, the use of MSCs combined with 

biomaterials to facilitate their engraftment and 

survival, would be an appropriated option when 

doing local cell administration (e.g., intracranial 

injections). However, when a systemic 

administration is used in allogenic therapies, the 

MSC-derived secretome could be an interesting 

choice since it has a low risk of rejection, as well 

as a reduced tumorigenic potential, unlike live 

cells.  In conclusion, the scientific community 

should make efforts in synergy to seek solutions to 

the aforementioned issues, bringing new 

perspectives for a personalized medicine that will 

allow us to successfully treat the specific 

pathological condition of each patient. 
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