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Drones equipped with wireless network cards can provide communication services in open areas. This paper proposes a
hierarchical two-layered network architecture with two types of drones according to their communication equipment: Access
and Distribution. While access drones provide WiFi access to ground users, distribution drones act as WiFi-to-5G relay
forwarding packets into the 5G Core Network. In this context, we formulate a novel optimization problem for the 3-D initial
placement of drones to provide Voice over WiFi (VoWiFi) service to ground users. Our optimization problem finds the
minimum number of drones (and their type and location) to be deployed constrained to coverage and minimum voice speech
quality. We have used a well-known metaheuristic algorithm (Particle Swarm Optimization) to solve our problem, examining
the results obtained for different terrain sizes (from 25m x 25m to 100m x 100m) and ground users (from 10 to 100). In the
most demanding case, we were able to provide VoWiFi service with four distribution drones and five access drones. Our
results show that the overall number of UAVs deployed grows with the terrain size (i.e., with users’ sparsity) and the number

of ground users.

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones,
have been widely studied in the literature for the last decade
partly due to their versatility, which lets UAVs be used in
different domains [1]. The application considered in this
paper is the UAV-assisted deployment of wireless communi-
cation services in open areas [2, 3]. UAVs equipped with
communication electronics have been proposed in the past
as mobile base stations or access points to enhance wireless
coverage, improve capacity or reliability in existing infra-
structure, or even replace damaged infrastructure in emer-
gency situations [4, 5].

Provisioning a communication service to ground users
typically requires the deployment of a UAV-to-ground
access network and, if not in place, a UAV-to-UAV and/or
UAV-to-infrastructure network or backhaul [6]. Most
research papers tend to focus on only one of these networks
and its associated communication technology (e.g., WiMAX
[71, cellular 3/4G [8], or 5G [9] for the backhaul and cellular

for the access network). Clearly, ground users’ devices must
share the radio technology in the access network, which
could be a problem in practice often overlooked (e.g., scar-
city of 5G users or the involvement of a telco operator).
For this reason, some works have also suggested the use of
WiFi [10-12] for the UAV-to-ground access network due
to its low complexity, ubiquity (e.g., smartphones, tablets
and some IoT devices), and independence from operators.
UAV-enabled WiFi deployments bring new opportunities
when creating provisional communications infrastructure
in SAR (Search and Rescue) missions, which is actively
investigated in scientific literature nowadays [12, 13]. How-
ever, designing a WiFi access network requires dealing with
signal coverage and Quality of Service (QoS) issues at the
IEEE 802.11 MAC sublayer. This challenge is translated to
the problems addressed in the literature, such as 3-D place-
ment, trajectory planning, energy efficiency, coverage, or
backhaul connectivity [6, 14].

In this paper, we propose using UAVs to form a two-
level hierarchical network that relays between IEEE 802.11
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(WiFi) and cellular 5G for providing VoIP over WiFi
(VoWiFi) service to ground users (see Figure 1). Access net-
work drones implement WiFi, while distribution/backhaul
drones implement a gateway between WiFi and 5G. This
combination of technologies leverages the high bandwidth
of 5G (up to 1 Gbps) to aggregate VoIP traffic flows in a
low number of 5G radio links, reducing the number of
mobile subscriptions and costs in 5G equipment. In this sce-
nario, we address the problem of the initial 3-D placement of
the UAVs in both networks. As Masroor et al. put it [4], “the
placement of UAVs is an important parameter of resource
management as this can affect the transmit power, coverage,
and the QoS of the system.” More specifically, we propose a
new optimization problem that considers constraints about
signal coverage and QoS and finds the minimum number
of drones that need to be deployed, their position, and type
(ie., access network—A-UAV—or distribution-net-
work—D-UAYV). This work extends our previous research
[15, 16], where we studied the deployment of drones to form
a WiFi access network for VoIP services. Now, we integrate
the access network into a 5G Core Network using a second
layer of drones that hove at a higher altitude and aggregate
the VolIP traffic flows. Note that in this scenario, the quality
of service depends not only on the congestion level of the
access network but also on the distribution network and
5G operator backbone SLAs (Service Level Agreement). As
such, UAVs’ optimal position may depend on users’ loca-
tion, VoIP capacity, and backbone link capacity.
The main contributions of this paper are as follows:

(i) We mathematically formulate a new problem for
the optimal deployment of UAVs that includes
coverage and QoS constraints in the access (WiFi),
distribution (WiFi), and backbone (5G) networks.

(ii) We propose a novel network reference architecture
for the proposed scenario that provides seamless
Voice over WiFi (VoWIiFi) access to the 5G Core
Network.

(iii) We provide an analytical model to estimate the
speech quality in our multilayered scenario. Our
models assume realistic traffic conditions such as
heterogeneous and nonsaturated stations.

(iv) We use a metaheuristic search method (i.e., Particle
Swarm Optimization) to solve the previous optimi-
zation problem.

The remainder of the paper is as follows. Section 2
presents a state-of-the-art analysis of UAV optimization
problems for communications services. Then, Section 3
elaborates on the proposed network architecture and the
voice quality assessment method. The proposed optimiza-
tion problem is defined in Section 4, and Section 5 pre-
sents a solution search method based on a well-known
meta-heuristics algorithm (Particle Swarm Optimization).
Then, we examine the solutions obtained for different sce-
narios in Section 6 and analyze the performance. Finally,
Section 7 summarizes the paper by providing conclusions
and future work.
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FIGURE 1: Proposed scenario.

2. Related Works

The optimal placement of UAVs has been identified as an
open challenge in the context of communication services
that use drones as base stations (BS) or relaying nodes in
2D, 3D, single-, and multi-UAV environments [5]. Table 1
summarizes the state of the art in UAV optimal location
optimization problems for wireless coverage provisioning
and clarifies how our work is different from related works.
Works in Table 1 are classified in terms of (a) their objective
function, (b) optimization variables (e.g., initial placement,
trajectory, or resource allocation), and (c) any other con-
straints or considerations that might restrict its usage to a
concrete scenario.

Optimal UAV placement for wireless coverage counts
with a good deal of optimization problems in the literature.
For example, Li et al. [17] propose to maximize throughput
via power allocation and 3D placement for indoor communi-
cations. Maximizing the throughput has also been addressed
in [18], where the authors suggest a 3D UAV placement and
power allocation optimization problem based on software-
defined cellular networks, or in [19] that also employs
software-defined cellular networks but using rate instead of
power allocation. Similarly, Yin et al. [20] suggest deploying
a cellular network (FDMA) by maximizing the downlink rate
under three optimization variables: user association, resource
allocation, and UAV placement. Other authors [21] suggest
combining UAV placement with user association in order to
minimize the maximum traffic demand at UAVs, achieving
a fair traffic distribution among them; or the deployment of
NOMA (Nonorthogonal Multiple Access) networks to miti-
gate the path loss (i.e., maximize received signal strength) or
energy consumption due to transmit power [22, 23], respec-
tively. Finally, in [24, 25], the authors propose to minimize
the number of deployed UAVs while finding the positioning
that maximizes the coverage area while forming a robust back-
bone network.

Besides optimal initial positioning, trajectory optimiza-
tion (ie., a series of discrete points of a flying path that
drones follow in a continuous movement while providing
wireless network coverage [4]) has also been widely
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TaBLE 1: Related work comparison.
Ref. Objective function Variables Networl.( Considerations
technologies
. Resource Speech
Placement  Trajectory allocation Access Backbone SINR BW quality ergy
[17] max. throughput v X X FDMA FDMA v X X X
[18] max. throughput v X v Cellular  Cellular v X X v
[19] max. throughput v X v Cellular  Cellular vV X X
[20] max. downlink rate v X v Cellular  Cellular v X X X
[21] min. maximum traffic v X v Cellular ~ Celllar v X X x
demand
[22] min. path loss v X v NOMA  Cellular X X v
[23] min. transmit power or v X v NOMA Cellular v X X v
max. rate
[24] min. UAVS and max. v v v Cellular Celldlar v v X X
coverage
[25] min. UAVS and max. v v v Cellular Celldlar ¢ X X
coverage
[26] max. energy efficiency X v X mmWave Cellular v X X v
[27] min. power allocation X v v OFDMA OFDMA Vv X X v
[28] min. energy consumption X v v Cellular  Cellular v X X v
[29] max. spectrt:flfl and energy X v v TDD TDD X X X v
[30] max. spectrt:flfl and energy X v v TDD TDD X X X v
[31] max. minimum throughput X v v Cellular  Cellular X v X X
[32] max. minimum user rate X v v OFDMA OFDMA V X X X
[33] max. minimum user rate X v v TDMA  TDMA v X X v
[34] max. end-to-end X v v Cellular ~ Celllar v X X v
throughput
[35] max. end-to-end X v v Cellular Cellular v X X v
throughput
[36] min. outage probability X v v Cellular  Cellular X X v
[15] min. UAVs and user radio v (single- v WiFi N/A J v v
energy layer)
[16] min. UAVs and UAVs v (single- X v WiFi N/A J v v v
energy layer)
This min. UAVs and user / X v WiFi 5G J v v X
paper coverage (multilayer)

addressed, mainly focusing on energy efficiency. Chakareski
et al. [26] proposed an energy-efficient framework for
deploying mmWave 5G cellular networks, in [27, 28], the
authors proposed a joint optimization problem for trajectory
and power allocation, and finally, [29, 30] present a joint
spectrum and energy efliciency optimization problem.
Through put maximization optimization via trajectory has
also been proposed in several works. Hu et al. [31] proposed
a resource and trajectory optimization problem by introduc-
ing user scheduling and bandwidth allocation; and [32, 33]
proposed to combine trajectory with radio resource alloca-
tion in vehicular and UAV-enabled relaying systems.
Finally, other works such as [34, 35] proposed to maxi-
mize the end-to-end rate by considering trajectory power
allocation optimization while deploying multi-hop relay

networks. Finally, [36] proposed to minimize the probabil-
ity of outage through a joint power allocation and trajec-
tory optimization problem.

Few works have addressed the provision of VoIP service
with drones. To the best of our knowledge, only our previous
work [15, 16] has done it considering a single-layer of
drones to set up a WiFi access network. In both papers, radio
coverage and speech quality constrained the 3D multi-UAV
placement optimization problem, seeking the minimum
deployment costs (i.e., number of UAVs deployed). Between
solutions with the same number of drones, we chose the one
that minimized users’ radio energy or UAV's energy, respec-
tively. However, both works addressed only the WiFi access
network, leaving the distribution and backbone networks for
future research. This paper takes a step further by



considering a two-layered hierarchical network that per-
forms access, distribution, and connection to the backbone
using two different radio technologies: WiFi and 5G.
Regarding the objective function, we propose to find the
minimum number of deployed UAVs (independently of
their type) needed to maximize user coverage. In light of
Table 1, we can state that our work differs from those found
in the literature in three main aspects: (a) a multilayered
UAV placement that performs traffic aggregation, (b) more
realistic constraints for real-time voice speech quality by
modelling the MAC sublayer of the access network, and (c)
the deployment of a WiFi access network instead of a
cellular-based one, hence minimizing any compatibility
issues regarding user smartphones.

3. Proposed Scenario and QoS Assessment

As shown in Figure 1, our scenario consists of a two-level
hierarchical network that relays between IEEE 802.11 (WiFi)
networks (i.e., for access and distribution) and cellular 5G
backhaul links. The QoS experienced by users will be influ-
enced by packet loss and delay in these networks. This
section is devoted to defining the network architecture and
the analytical model used to estimate the speech quality
experienced by users in our scenario.

3.1. Network Architecture. Figure 2 illustrates the proposed
network architecture. The network entities (from left to
right) are as follows:

(i) Ground users are equipped with WiFi-compliant
terminals (e.g., smartphones) operating at the

Pl
R=R,—1 +(95-1 p
o~ L+ (5-L) (P,i/BurstR) + B,

Loeit

In the previous equation, two impairments (I, ¢ and I,;)
are subtracted from the maximum achievable quality (R;),
which is a representation of the Signal-to-Noise Ratio.

I,.¢ represents a combination between impairment
equipment parameter at zero packet loss (I,) and a function
that depends on I,, the packet loss rate, and packet loss
behavior. I, is a codec-dependent constant associated with
codec compression degradation (a list of values from ITU-
T codecs were presented in ITU-T Rec. G.113 Appendix I),
B, represents the codec packet loss robustness, which also
has a specific value for each codec (listed in ITU-T Rec.
G117 Appendix I), P, represents the packet loss rate (in
%) in the WiFi channel, and finally, BurstR characterizes
the burst ratio (i.e., equals 1 if the packet loss is random
and greater otherwise). In this paper, we use the G.711 codec
(I,=0 and B,;=25.1) and assume random losses (ie.,
BurstR=1).

pl =
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2.4GHz band associated to the Access Point
installed at A-UAVs.

(ii) A-UAVs play a double role: (a) for users, they act as
access points (at the 2.4 GHz band), and (b) they are
associated with the distribution (second) layer of
drones through another WiFi connection at 5 GHz.

(iii) D-UAVs behave as WiFi APs for associated A-
UAVs, and they also provide a backbone link to
the 5G network. As such, D-UAVs are seen as 5G
User Equipment (UE) maintaining a connection to
the 5G Core Network (i.e., GTP-U tunnels).

In the previous architecture, the speech quality experi-
enced by users is impaired on each subnetwork due to the
medium access control mechanism and network congestion.
The following section elaborates on the proposed QoS
assessment method considered in this paper (E-Model).

3.2. Voice Quality Assessment. Voice quality assessment has
been studied during the last decades [37]. Some of the
approaches suggested in the literature to measure or esti-
mate speech quality, such as P.863 or P.563, require inva-
sive monitoring (e.g., sampling the original voice signal).
On the contrary, the E-model [38] is an analytical model
that allows one to estimate the speech quality assuming
additive impairments to the quality. The E-model pro-
vides a quality score, namely, the R factor, that ranges
from 0 (poor) to 100 (excellent) that is calculated as
follows [15, 39, 40]:

~(0.024d +0.11- (d - 177.3) - H(d - 177.3)). (1)

Iy

The latest impairment, I, is associated with the delay
in the communication chain. A widely accepted approxi-
mation for I; can be obtained from one-way delay in
the communication path d, where H is the Heaviside
function (H(x)=0 for x<0 and H(x)=1 for x>0. In
our case, x=d —177.3. The one-way delay d (in millisec-
onds) includes all additive delays from source to destina-
tion, which depend on the network topology and the
chosen codec (i.e., packetization delay).

In order to solve Equation (1), one has to model both
network performance parameters (i.e., network delay d and
the packet loss rate P,)). Since our scenario consists of WiFi
access and distribution networks and a backhaul 5G link, the
overall delay and packet loss ratio should be

Pplzl_((1_Ppl,a)(l_Ppl,d)(l_Ppl,b))’ (2)
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d=d,+d,+d,;+d, (3)

where (a), (d), and (b) subscripts refer to impairments at
the access, distribution (i.e., influenced by IEEE 802.11 phys-
ical and MAC sublayer), and backhaul link, respectively.
Finally d, accounts for the packetization delay, which could
be assumed as a constant (e.g., 20 ms for G.711 codec).

The previous performance metrics can be estimated for
the IEEE 802.11 network through well-known analytical
models (see [15, 16]) that enable the prediction of the packet
loss ratio and delay in the WiFi network just by defining the
number of stations, traffic models (i.e., packet size and fre-
quency), and stations’ received signal strength. On the other
hand, 5G links performance can be assumed to be included
in the Service Level Agreement with the telco provider
[41], so one can easily obtain P, and d,,.

4. Problem Definition

In this section, we state the terminology, main assumptions,
and a formal definition of the problem of optimal placement
under the scenario illustrated in Figures 1 and 2.

4.1. Terminology. Table 2 summarizes the notation used in
this paper. We use three sets to represent distribution drones
(92), access drones (&), and ground users (%). The location
of each element in these sets is represented in Cartesian’s

coordinates: d, a, and u, respectively.
Let us introduce some functions that will be recurrently
used in this paper:

(i) The coverage function, € (x), represents the set of
stations associated with a specific UAV-mounted

AP identified by its location, e.g. x. For example:

(a) %(gl) represents the set of A-UAVs associated
with the i-th D-UAV.

(b) G(a ;) represents the set of users associated with
the j-th A-UAV.

(c) C=Y2 |%(a,)| represents the number of users
covered by the system (and hence associated to
any A-UAV).

(ii) The speech quality function, R(d;, a j)» provides the
speech quality experience by users associated with
the j-th A-UAV (see Equation (3)) which in turn
is associated with the i-th D-UAV. This function
takes into account the level of congestion in the
access and distribution networks

(iii) The uplink throughput function, S(d;), provides the
aggregated throughput (in Mb/s) handled by the i
-th D-UAV. Clearly, it cannot exceed the maximum
throughput achievable by the 5G link (S

max)'

4.2. Assumptions. For the sake of tractability, the following
assumptions are made:

(i) Ground users are confined in a flat outdoor terrain
with known dimensions. Their position is also
known (this could be implemented through users’
smartphone’s GPS or image processing).

(ii) Users’ calls go through a compatible VoIP applica-
tion that uses a known audio codec.

(iii) APs’ channelization is arranged in such a manner
that the interference between adjacent radio chan-
nels is negligible. By using directional antennas,
one could simply adjust the radio beam pattern to
minimize inter-UAV interference.

(iv) Ground users could potentially be simultaneously
on a call. Thus, each A-UAV will not have more
users associated than its VoIP Capacity [42]
(maximum number of simultaneous calls under
a guaranteed QoS). Then, VoIP Capacity is a

harder constraint than coverage and will play a
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TABLE 2: System terminology summary.

Symbol Example Description

D {31, 32, RN ED} Set of D-UAVS’ locations

D || Number of deployed D-UAVs

;i {xp ¥ 2} Cartesian coordinates of the i-th D-UAV

o {Ep 32, ey EA} Set of A-UAVS’ locations

A | | Number of deployed A-UAVs

Hj {xj,yj, Z; Cartesian coordinates of the j-th A-UAV

U {ﬁl, Uy, o EU} Set of ground users’ locations

U |% | Number of ground users

ﬁk {X Yo 2} Cartesian coordinates of the k-th user

decisive role in determining the number of A-
UAVs deployed.

4.3. Optimization Problem. The formal definition of our
optimization problem is stated in

C
min (D+A)+ (1— —)
Do U

C
—>
U

R (Zi

subject to

Cmin
ZJ) >R, Vd, €D, aje %(E,)

s(?ii) <8 vd, e,
Ei €I p, vﬁ,. €9,
a, e, Va,ed,
D<D,,,

A<A

(4)

where 2, and &, stand for the collection of valid posi-
tions for distribution and access UAVs, respectively; so one
could restrict flying zones or establish a range of valid
altitudes for each type of UAV.

The previous expression optimizes the location of Distri-
bution and Access UAVs (2, o, respectively) that mini-
mizes the total number of UAVs deployed (D + A) while
maximizing user coverage (C/U) subject to the following
constraints:

(i) User coverage ratio, C/U, must exceed a threshold
(C

min)‘

(i) Offered speech quality, R(Ei, Z{j)vﬁi €9, E[j €®

(Ei), must be greater than a threshold (R,).
(iii) D-UAVs uplink throughput, S(Ei)vﬁi € 9, must be
lower than 5G links capacity (S

max)'

Observe that the analytical expression in Equation (4) is
composed of two terms: (D + A) which is an integer (always
>2 since we need to deploy at least one drone of each kind)
and (1 — C/U) which represent the rate of uncovered users.
The latter is a real number always less than 1 (e.g., a coverage
of 80% would provide 0.2) and, as such, is subordinated to
the first (which is an integer). So minimizing the number
of drones in the solution always takes precedence over
coverage (which is already a problem constraint). Thus, the
second term is only used to break the deadlock between var-
ious solutions with the same number of drones (the one with
greater coverage is preferred).

5. Problem Resolution

The optimization problem in (4) can be solved through
metaheuristics search algorithms. In our previous work
[15, 16], we demonstrated the effectiveness of Genetic Algo-
rithm and Particle Swarm Optimization, comparing their
results with exhaustive search. For simplicity’s sake, and
given our previous experience, we will use a PSO algorithm
(further proposed by other authors [43]) in this paper.

5.1. Search Algorithm. Algorithm 1 contains the pseudocode
of the search algorithm used to solve the optimization prob-
lem in (4). The input of the algorithm is the set of valid posi-
tions for UAVs (X)), the set of ground users’ location (%),
and the problem constraints (D,,, Cirin> Riins> Smay)- This
algorithm looks for the optimal location of UAVs (9, )
that meets the problem constraint and increases the number
of drones (A, and D) until a valid solution is found. For a
given number of drones (D < A), their positioning is jointly
optimized by the SolveOptim_PSO function.

On each iteration, the SolveOptim_PSO (see Algo-
rithm 2) is called to find the optimal location (2%, &/*) for
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Input: &, %, D
Output: 9, o
Initialization: A=0,D=0
while A=A+1and A<A_ . do
D=0;
while D=D+1and D<A<D,, do
D, of = SolveOptim_PSO (%, D, A)
if 2+ 3 and o + & then
return 9, o
end
end
end
return &

max> Cmin’ Rmin’ Smax

ALGORITHM 1: Search algorithm pseudocode.

(SolveOptim_PSO)
Input: X, %, D, A, C
Output: 9, o~
Initialization: 9* =3, J* =&
P = CreateParticles (2, D, A)
P =P
while !(exit criteria met) do
for particle i=1 to |2 | do
P, = UpdateParticle (X, &, %} );
(2, )] = P
/* Evaluate the i-th particle */
f; = Check (%, 2;, o)
if (f;> 0 and f, < f) then
/+ Update if better %/
Pr=P;
fi=fs
if f, <min (f) then
/+ Update if best */
(2", d"] = P,
end
end
end
end
return 9*, J*

R, S

min> “*min> “max

ArcoriTHM 2: Particle Swarm Optimization function

the specified number of UAVs (i.e., D and A input parame-
ters), returning an empty set if the problem constraints cannot
be met. During execution, candidate locations (i.e., particles)
are randomly created (CreateParticles), evolved (UpdateParti-
cle), and evaluated (Check) following a common Particle
Swarm Optimization approach:

(i) The CreateParticles function returns a set of parti-
cles randomly generated, 97, by considering the
collection of valid positions (2') and the number
of Distribution and Access UAVs, D and A, respec-
tively. Each element in & represents a candidate set
of locations for all UAVs, so they can be decom-
posed into the & and  sets

(ii) The UpdateParticle function updates the set of par-
ticles () by considering the best-found location for
each particle (")

(iii) The Check function contains the fitness evaluation
that returns a score for a given location. Then, the
algorithm evaluates if the candidate position is valid
(f;>0), and if it improves the best-found location
for that particle (f; < f). If so, the best-found loca-
tion for that particle is updated

(iv) The algorithm finishes when the exit criterion is
achieved (e.g., the overall improvement between
two consecutive generations is lower than 107%). It
returns the location for Distribution and Access
UAVs (2" and &) if any, or an empty set
otherwise

The next section elaborates on the fitness evaluation
procedure (Check function); the reader can find rest of the
PSO-related functions in our previous work [16], along with
some implementation details.

5.2. Fitness Evaluation (Check Function). For every candi-
date solution (i.e., 2, &), a fitness score has to be calculated
based on the optimization problem. Let us define the score
of a particle (i.e., candidate solution) as f:

C
D+A)+(1-—), if constraints are satisfied,
U
f —

C .
——, otherwise,
U

(5)

where constraints refers to coverage, quality of service, and
throughput evaluation.

5.2.1. Coverage Evaluation. Checks if the total number of
covered users (C) is greater than the threshold (C,;,). It uses

the coverage function, €(x,), that returns a set of locations

of associated Stations for an Access Point located at x;
(i.e., in Cartesian coordinates).

This function can be applied to any AP in the system
(i.e., both D-UAVs and A-UAVs). For example, (6) repre-

sents the coverage function for the i-th D-UAV (gi), but it

can be adapted for any A-UAV just by replacing d and a
with @ and u, respectively.

RSSI (Ei, a’k> > RSSI,;,

a, €.al| SINR (Zi,., a’k> > SINR,;,

RSSI (Ei, a’k> > RSSI (Zii, aJ) Va, #a

(6)



The previous expression returns the subset of stations
that (a) are compliant with RSSI and SINR minimum
thresholds and (b) have the greatest signal intensity. Then,
RSSI and SINR can be calculated as follows.

(i) The Received Signal Strength Indicator (RSSI)
depends on the distance and angle between the trans-
mitter and the receptor. Equation (7) represents the
RSSI calculus (in dBm). In this expression, an initial
transmission power is considered (P,), further add-
ing power gains (G) and subtracting any losses (L).

RSSI(}’, 7) =P, +G(0,,) - L(||} - 7||,9x,y), (7)

G(6) = 10 log,, (109" . cos?6), (8)

L(d, 0) = Py45(0)Lios(d) + Pxros(0) Lios(4)s )

where 8 represent a simple gain pattern of an antenna
(limited by G,,,,) and L represents a path loss expression
widely proposed in air-to-ground channel models [44-46].
It considers that ground users receive three different groups
of signals: (a) Line-of-Sight (LoS), (b) Non-Line-of-Sight
(NLoS), and (c) other reflected components which cause
multipath fading. Each group has its own probability of
occurrence depending on the environment, density, height,
and elevation angle. According to [47], the probability of
fading is significantly lower than the probability of receiving
the LoS (P,s) and NLoS (Py;,s) components, so we will
neglect it for simplicity. L; ¢ and Ly, s represent the average
path loss for LoS and NLoS components, respectively, and
can be expressed as [44]

4rf . d
Lyo5(d) =20 log,, <%) + 81085 (10)

4nf.d
c

Lytos(d) =20 logy, ( ) + ENLos> (11)
where the first term accounts for the free space propaga-
tion loss & . and &y ¢ represent any additional losses due
to the environment (a list of values can be found in [45])
and f is the channel frequency.
Finally, the probability of receiving each component is
given by [48]

1
Pros(0) = 1 —patsomipa’ (12)
PNLOS(G) =1-"Pp(0), (13)

where a and f are environment-dependent constants
(e.g., rural and urban) as defined in [45] (e.g., a =3 =0 for
no buildings).

(i) The Signal-to-Interference-plus-Noise-Ratio (SINR)
can be calculated by subtracting every noise and
cochannel interference from the received signal
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TaBLE 3: Input parameters.

Parameter Value

Users 60

Size 100m x 100m

VoIP codec G.711 (20 ms interval)
D-UAVs WiFi 802.11ac at 5 GHz (80 MHz)
A-UAVs WiFi 802.11n at 2.4 GHz (20 MHz)
D-UAVS5’ altitude [10,35] m
A-UAVs altitude [40, 55] m

RSSI i —82dBm

SNRin 20dB

R.in 65

Cooin 90%

Lsg-sia 1%

dsg_sta 5ms

Sinax 1Gb/s

strength. Let Z be the collection of APs operating
at an overlapping channel (channel planning is out
of the scope of this paper). Then, SINR can be
expressed as

P
SINR= — (14)
N+ Yyer Ik

where P, represents the received signal power, N
accounts for the noise, and each I;Vk € Z stands for the
received interference from any overlapping transmissions.
Since we assume that the sources of interference are negligi-
ble due to a correct channel planning, SINR can be reduced
to SNR and it can be calculated as

SINR‘dB (}’ 7) :RSSI(Y, }’) - F—N‘ , (15)
dB

N4 =174 + 10 log,(Cgw)> (16)

where N is the noise, F accounts for the receiver’s noise
figure, and Cpy, stands for the signal bandwidth, which
depends on the IEEE 802.11 standard revision under
consideration.

5.2.2. Speech Quality and Throughput Evaluation. The goal
of this evaluation is to guarantee that (a) the speech quality,

given by the QoS function R(d, Hj) for every D-UAV-A-
UAV association in the system, is over a minimum threshold
(Ryin) and (b) that the aggregated throughput at D-UAVs
do not exceed the maximum capacity of 5G links (S,,,,)-
Both constraints can be formally represented as (17) and
(18), respectively.

R(Zi,a’J.)szm, vﬁiegz,va’je%(ﬁi), (17)
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£ i
N 90 o % ok
00 x (m)
y (m)
5z D-UAV ® Associated users
v7 A-UAV O Non covered users
F1GUrE 3: Example solution.
S(d,) <SS Vdi €D (18) . (1= PR )T (1 -l )>
Swm(“) = - Z E[T] “Lppys

To verify these constraints, one has to estimate end-to-
end performance parameters such as packet loss ratio, delay,
and effective throughput. Then, as introduced in Section 3.2,
the end-to-end speech quality (e.g., see R factor in (1)) can
be estimated through the E-model. This requires to know
the end-to-end packet loss ratio (Py) and delay (d). More-

over, P and d can be further decomposed (see Equations

(2) and (3)) considering the three networks traversed in
the proposed network architecture: (a) the WiFi access net-
work, (b) the WiFi distribution network, and (c) the 5G link
SLA. Notice that the delay and loss in the 5G link can be
agreed with the service provider (i.e., the telco operator)
and hence can be seen as constant values. However, the first
two (WiFi networks) have to be estimated.

To derive the VoIP Capacity of any AP in our system, we
extend Bianchi’s Markov-chain analytical model [49] of the
IEEE 802.11 MAC sublayer performance. Our analytical
model takes the location of the access point (e.g., a) and
its associated stations (&(a)) as input parameters and
returns a T expression for each contending station as its
probability of transmission attempt. The output of our ana-
lytical model can be used to derive the estimated delay,
packet loss ratio, and aggregated throughput at a given AP
as follows:

(1 —FER(E))T(H) res(a) (1 —r(z))
&(@)|-A-El1]

Lyyir; (E) =1- >

(19)

Dyigi (Z) :E[B(E)} -E[T], (20)

(21)

where FER(%) stands for the average Frame Error Rate at
the access point, which can be derived from its SINR and
Modulation and Coding Scheme (MCS); E[B] is the expected
number of back-oft slots that a packet waits before transmis-
sion; and E[T] is the average slot duration and it can be cal-
culated by averaging the duration of each type of event (e.g.,
transmission, collision) with its probability. The reader is
encouraged to read a more detailed derivation of all these
parameters in our previous works [15, 16, 40]. Finally, A
and Lppy represent the number of packets transmitted per
second and their payload length, respectively (e.g., 50
packets/second and 160 Bytes for G.711 codec).

Finally, (2) and (3) can be completed as

Py=1- ((1 Ly (Zi,)) (1 ~Lyp (a’j)) (1- L5G_SLA)>,

(22)

—

d=20ms + Dy, <d,.> + Dyigs (E j) tdsg g (23)

where 20 ms accounts for the packetization interval for
the G.711 codec. Once computed, P, and d can be further

substituted in (1) to obtain R.

5.2.3. Computational Complexity. In terms of computational
complexity, the most demanding procedure in our heuristic
search is the fitness evaluation (Check function). If we
assume that D is upper bounded by A and that the maxi-
mum number of calls to the Check function is upper
bounded in our heuristics, the computational complexity



10
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Speech quality (R)
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FiGURE 4: Numerical results.
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of the SolveOptim_PSO function can be expressed as O
(A-U); hence, the computational complexity of Algo-
rithm 5.1 can be expressed as O(D-A*-U).

6. Results

We have used our PSO-based search algorithm to find opti-
mal solutions in different scenarios. This section begins with
a 100 m x 100 m scenario and 60 ground users for illustrative
purposes. Then, we explore other scenarios changing the
terrain size (from 25mx 25m to 100 m x 100 m) and the
number of users (from 10 to 100).

6.1. Example Solution. This section provides a first example
solution in a 100m x 100 m terrain with 60 ground users
randomly placed. The rest of the parameters used are listed
in Table 3. Such settings are common to all experiments in
this section unless otherwise specified.

The PSO-based search algorithm in Algorithm 2 has
been implemented in Matlab 2020a, providing the results
shown in Figure 3. In this scenario, four A-UAVs and two
D-UAVs are required to cover 58 of the 60 ground users
while guaranteeing a minimal speech quality of 65 (R factor).

In Figure 3, ground users are represented with circles
filled with color (if covered) or not (if uncovered). Each
ground user is associated with an A-UAV of the same color
whose location has been derived from the algorithm. Finally,
each A-UAV is associated with a D-UAV in a similar man-
ner. As such, colors represent the final association between
different layers. According to Figure 3, two 5G links would
suffice to serve the 58 ground users under coverage.

6.2. Numerical Analysis. In this section, we examine the
solutions found in several scenarios. In particular, the num-
ber of ground users has been increased from 10 to 100 (in
steps of 10) in four square terrain sizes (25m x 25m, 50 m
x50m, 75m x 75m, and 100 m x 100 m). Each experiment
(i.e., scenario) has been repeated 30 times to obtain a 95%
confidence interval by randomly placing ground users uni-
formly along the terrain. Finally, Figure 4 illustrates the aver-
age value of the results obtained with the corresponding
confidence interval.

Figures 4(a) and 4(b) show the optimal number of D-
UAVs and A-UAVs, respectively, for different numbers of
users (U) and terrain sizes. At first sight, it can be observed
that the overall number of UAVs tends to grow when either
the terrain size or the number of users increases.

If we take a closer look into the 50 m x 50 m series, the
number of A-UAVs experiences a steep growth after 20
users. This effect is due to network congestion, so more
UAVs are required to satisfy the speech quality constraints.
This behavior is reaffirmed in Figure 4(c), which represents
the speech quality, and shows that speech quality degrades
when more users are added to the system. Indeed, after 70
users, more D-UAVs are required to aggregate the traffic
from the access network so that QoS is not negatively
affected. In our results, it is likely that each D-UAV associ-
ates with up to three A-UAV hence reducing the number
of 5G links required to provide the service. Although this
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100 ot

Execution time (s)

Ground users

—— L =25mx25m
--- L=50mx50m

L =75mx75m
-—--= L=100mx100m

FIGURE 5: Performance analysis.

behavior is similar various terrain sizes, the final number
of UAVs changes with user sparsity (m?/U); if the terrain
is increased with the same number of ground users,
UAVs have to cover a larger area to satisfy coverage con-
straints (C/U >C,,;,); hence, the number of drones is
driven by the signal coverage constraint instead of the
speech quality constraint.

Figure 4(d) shows the percentage of users covered in
each scenario. Our results suggest that larger areas tend
to provide lower ratios of user coverage due to a greater
distance between users and A-UAVs. This, in turn, penal-
izes the path loss. Figure 4(e) represents the average
received signal strength (RSSI) for each series of experi-
ments. As illustrated, the RSSI increases with the number
of ground users. This is attributable to the fact that requir-
ing more A-UAVs to meet the speech quality requirements
(e.g., reduce congestion) also produces UAVs located
closer to users, hence increasing RSSI values. As a conse-
quence, the effective area covered by each A-UAV is
reduced (see Figure 4(f)).

6.3. Computational Performance. The previous series of
experiments have also been analyzed in light of computa-
tional performance. To this end, we measured the average
time spent during the execution of the algorithm. Figure 5
illustrates the execution time in seconds for the same series
of experiments in an Intel Core™ i5-4460 processor with
8GB of RAM.

The results shown in Figure 5 suggest that the execution
time increases with user density (U/m?) for a given terrain
size, so more dense scenarios require more CPU time. How-
ever, the execution time is almost linear when solving low
user-density scenarios (e.g., 100m x 100m). In all cases,
the results were obtained in less than 100 seconds.

7. Conclusion and Further Steps

This paper has dealt with the creation of a drone-assisted
VoWiFi communication service, which could be of use in
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cases such as emergency situations or covering live events
that lack better alternative infrastructure. We have defined
a new optimization problem for the deployment of drones
to create a two-layer network (access and distribution) con-
nected to 5G. Our problem is aimed at finding the minimum
number of drones (and their type and location) required to
deploy the service constrained to a minimum user coverage
and speech quality.

Using a PSO-based search algorithm, we have calculated
the optimal solution for terrains up to 100 m x 100 m and
100 users with moderate computational resources. The over-
all number of UAVs tends to increase with the terrain size
(i.e., with users’ sparsity) or with the number of users. The
next step planned is to explore new applications in this field:
(a) to implement a model-based Call Admission Control
(CACQ) algorithm in UAVs, so new calls can be rejected if
the network is saturated; and (b) to explore new applications
of the 3-D UAV optimal placement, such as quality-
guaranteed videocalls or IoT sensing through drones, that
might require a different network architecture.
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