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This implies the existence of balanced binary sequences of every length m 0 or 3 mo
−
d 4,

≡ thereby 
providing a new solution to a problem posed by Steinhaus in 1963.

1. Introduction

Let X = x1x2 . . . xn be a binary sequence of length n, with xi = ±1 for all i. We define its 
derived sequence ∂X by ∂X = y1y2 . . . yn−1, where yi is the product of xi and xi+1 for
all i. This is a binary sequence again, of length n − 1. By convention, ∂X = ∅ if n ≤ 1,
where ∅ stands for the empty sequence of length 0. Iterating the derivation process, we denote 
by ∂kX the kth derived sequence of X, defined recursively as usual by ∂0X = X and

∂kX = ∂(∂k−1X) for k ≥ 1.

The Steinhaus triangle (or derived triangle) of X is the collection ∆X = {X, ∂X, . . . , ∂n−1X}
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of iterated derived sequences of X. For example, if X = + +−+, then

∆X =

+ + − +
+ − −
− +
−

.

Definition 1 Let X be a finite binary sequence. We say that X
• is zero-sum if its entries sum to 0;
• is balanced if its Steinhaus triangle ∆X is zero-sum, i.e., if the entries of ∆X sum to 0.

For example, the above binary sequence X = + + −+ is balanced, as its Steinhaus
triangle contains exactly 5 +’s and 5 −’s. This concept was introduced by Steinhaus in [4]
with the following problem: does there exist a balanced binary sequence of length m, for
every m ≡ 0 or 3 mod 4? (Without this necessary condition, ∆X would contain an odd
number of terms.) Steinhaus’ problem was first solved positively by Harborth in 1972 [3].
New solutions with special properties, such as symmetry/antisymmetry for instance, recently
appeared in [1] and [2].

The present paper is concerned with binary sequences X which are both zero-sum and
balanced, or equivalently, such that both X and ∂X are balanced. We show that such
sequences exist in all lengths n = 4k.

Theorem 2 For every positive integer n ≡ 0 mod 4, there exists a binary sequence X of
length n which is both zero-sum and balanced.

This result provides one more solution of Steinhaus’ original problem.

Corollary 3 For every positive integer m ≡ 0 or 3 mod 4, there exists a binary sequence
X, of length m, which is balanced.

Proof. If m ≡ 0 mod 4, we are done by Theorem 2. If m ≡ 3 mod 4, then by Theorem 2
again, there exists a binary sequence Y of length n = m + 1 which is both zero-sum and
balanced. Set X = ∂Y . Note that the derived triangle ∆Y is the concatenation of Y (as its
first line) and of ∆X. Now, since Y and ∆Y are both zero-sum, it follows that ∆X itself is
zero-sum. This means that X is a balanced binary sequence of length m, as needed.

Theorem 2 answers a problem proposed by M. Kervaire and listed as open in [1]. Its
proof is given in Section 2. The relevant sequences have been constructed by an algorithmic
procedure explained in Section 3 and refined in Section 4. The last section describes one
instance of unpredictable behavior in the construction procedure.



2. Explicit Solutions

Given a binary sequence X = x1x2 . . . xn of length n and an integer 1 ≤ i ≤ n, we denote by

X[i] = x1 . . . xi

the initial segment of length i of X, and by

X∞ = x1x2 . . . xn x1x2 . . . xn . . .

the infinite periodic sequence with period X. If Y = y1y2 . . . is another binary sequence,
finite or infinite, we denote by

X Y = x1x2 . . . xn y1y2 . . .

the concatenation of X and Y . If Y = y1 . . . ym is finite, we say that the sequence

X Y ∞ = x1x2 . . . xn y1 . . . ym y1 . . . ym . . .

is eventually periodic, with initial segment X and period Y .

Theorem 4 Let S0 = I0 P∞0 and S4 = I4 P∞4 be the eventually periodic infinite binary
sequences with respective initial segments

I0=+−−+−+−+
I4=−−+ + + +−−

of length 8, and periods

P0=−−−+−+ + +−−+−+−+ + + +−−−−++
P4=−+−+ +−−−−+ + +−−+−+−+ +−+ +−

of length 24. Then, for every integer m ≥ 0, the initial segments S0[8m] of length 8m of S0,
and S4[8m + 4] of length 8m + 4 of S4, are both zero-sum and balanced.

This is Theorem 2 again, in a more detailed version. The remainder of this Section is
devoted to its proof. As such sequences are hard to dig out with the required properties, we
shall explain in the next two sections how they were discovered.

Proof.

• The case of S0[8m]. Let T8m = ∆S0[8m] denote the derived triangle of S0[8m].
We shall show that T8m is made of 10 bricks, all triangles and diamonds of sidelength 8,
assembled in an eventually periodic structure. It will therefore be easy to compute the entry
sum of T8m and show, as required, that it equals zero.



Figure 1: Structure of the Derived Triangle T8m of S0[8m]

Given any collection X of ±1’s, we denote by σ(X) the sum of its entries.

First, it is easily checked that σ(S0[8m]) = 0, using the eventual periodicity of the
sequence S0 = I0 P∞0 . Indeed, we have σ(I0) = 0, and P0 is the concatenation of three
sequences of length 8 each summing to 0.

We must further show that σ(T8m) = 0 as well. Assume for the moment that T8m is
structured as in Figure 1, with two types of bricks: triangles named T0, Ta, Tb, Tc, and
diamonds named L1, L2, L3, Ra,Rb,Rc. Here are these 10 building bricks.
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As easily checked, these bricks have the following entry sums:

σ(T0)= 0;
σ(Ta)=−2, σ(Tb)=−2, σ(Tc)= 4;
σ(L1)= 2, σ(L2)= 0, σ(L3)=−2;
σ(Ra)= 2, σ(Rb)= 4, σ(Rc)=−6.

With this structure, it is easy to get σ(T8m) = 0, by induction on m. First note that the
triangle T8m+8 is obtained by gluing a band of width 8 to the right side of the triangle T8m.
We call it the band difference from T8m to T8m+8. For the induction step, it suffices to check
that these band differences all have entry sum 0.

For m = 1, we have T8 = ∆I0 = T0, and thus σ(T8) = 0. For m = 2, the band difference
from T8 to T16, being made of the two bricks Ta and L1, has entry sum σ(Ta) + σ(L1) = 0.



For m = 3, the band difference from T16 to T24 is made of the bricks Tb, Ra and L2, and
thus again has entry sum 0. Finally, for m = 4, the band difference from T24 to T32 is made
of the bricks Tc, Rb, Rc and L3, and hence also has entry sum 0.

Assume now m ≥ 5. By the induction hypothesis, we have σ(T8k) = 0 for all 1 ≤ k ≤
m − 1. Now observe on Figure 1 that, by periodicity, the band difference from T8(m−1) to
T8m is made of the same bricks as the band difference from T8(m−4) to T8(m−3), plus the three
supplementary bricks Ra, Rb and Rc. Since σ(Ra) + σ(Rb) + σ(Rc) = 0, it follows that this
band difference has entry sum 0 and, consequently, σ(T8m) = 0 as claimed.

It remains to prove that the structure of the triangle T8m is indeed as depicted in Figure
1. Let A,B be any two bricks from the set

{T0, Ta, Tb, Tc, L1, L2, L3, Ra,Rb,Rc},

and assume that they are adjacent, in the sense that, somewhere in the triangle T8m, the
rightmost entry of some brick labelled A is on the same line as, and left-adjacent to, the
leftmost entry of some brick labelled B. For instance, the bricks T0, Ta are adjacent, and
so are the bricks L1, Ra.

Clearly, by the defining property of derived triangles, two adjacent bricks A,B in T8m

determine a unique diamond located on the southeast of A and on the southwest of B, that
we denote A ∗B. For instance, T0 ∗ Ta = L1 and Ta ∗ Tb = Ra.

The structure of T8m, as depicted in Figure 1, now simply follows from the easily checked
relations:

Ta ∗ Tb=Ra, Tb ∗ Tc=Rb, Tc ∗ Ta=Rc
T0 ∗ Ta=L1, L1 ∗Ra=L2, L2 ∗Rc=L3
Ra ∗Rb=Rc, Rb ∗Rc=Ra, Rc ∗Ra=Rb

L3 ∗Rb=L1.

The argument proceeds as follows. By definition of S0[8m] and of its derived triangle,
the first line of bricks in T8m is the ultimately periodic sequence

T0, Ta, Tb, Tc, Ta, Tb, Tc, . . . .

Now, it follows from the above relations that the second brick line in T8m is the ultimately
periodic sequence

L1, Ra,Rb,Rc,Ra,Rb,Rc, . . . .

Similarly, the third, fourth and fifth brick lines in T8m are, respectively, the sequences

L2, Rc,Ra,Rb,Rc,Ra,Rb, . . . ,

L3, Rb,Rc,Ra,Rb,Rc,Ra, . . . ,

L1, Ra,Rb,Rc,Ra,Rb,Rc, . . . .



Figure 2: Structure of the Derived Triangle T8m+4 of S4[8m + 4]

Since the fifth brick line is equal to the second one, periodicity follows. This establishes the
claimed structure of T8m, and hence the equality σ(T8m) = 0.

• The case of S4[8m + 4]. We denote by T8m+4 the derived triangle of S4[8m + 4].
This case is similar though slightly more complicated, since more bricks are needed to make
up T8m+4. Actually 19 bricks are needed: the triangle T0 of sidelength 4, the triangles
T1, Ta, Tb, Tc and the diamonds S1, Sa, Sb, Sc,Ra,Rb,Rc, L1, L2, L3 of sidelength 8, and
finally the parallelograms S0, h1, h2, h3 of size 4 × 8. (See Figure 2.) Note that the com-
mon symbols between the two cases do not depict the same bricks. We shall only display
T0, T1, Ta, Tb, Tc; the other bricks can easily be reconstructed by the defining property of
derived triangles. We shall, however, give the entry sums of all the bricks.
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The 19 building bricks have the following entry sums. From this data and Figure 2, it is
straightforward to check that σ(T8m+4) = 0, as required.

σ(T0) = 0 σ(T1) = −4 σ(Ta) = 4 σ(Tb) = −2 σ(Tc) = −2
σ(S0) = 4 σ(S1) = −4 σ(Sa) = −6 σ(Sb) = −10 σ(Sc) = −4
σ(h1) = 0 σ(L1) = 10 σ(Ra) = −4 σ(Rb) = 2 σ(Rc) = 2
σ(h2) = −2 σ(L2) = 18 σ(h3) = −2 σ(L3) = −4

The fact that T8m+4 does have the structure depicted in Figure 2 uses the same type of
argument as in the preceding case; namely, that if A,B are two adjacent bricks, then they
uniquely determine a third brick denoted A ∗B, lying southeast of A and southwest of B.

3. The Construction Method

The principal idea, as in [1], is to seek strong solutions, i.e., solutions s with the property
that all initial segments of s of prescribed lengths are also solutions. On the one hand, this
makes the problem easier to explore by computer, as strong solutions can be constructed
by extending those already obtained in smaller lengths. On the other hand, this stronger
requirement might force finitely many solutions only. A balance must be found, hopefully
allowing strong solutions in all desired small lengths, yet sufficiently scarce so that large
lengths can still be explored and quasi-periodic solutions, if any, can emerge.

In [1], a binary sequence X of length n is called strongly balanced if all its initial segments
of length m, with m ≡ n mod 4, are also balanced. Now this condition turns out to be too
strong here: if X has the property that all its initial segments of length m ≡ n mod 4 are
both zero-sum and balanced, then n = 0, 4, or 8.

A weaker constraint consists in requiring only that initial segments of X of length m ≡
n mod 8 (instead of mod 4) be zero-sum and balanced. But then an opposite difficulty
emerges: the number of strong solutions thus defined seems to explode with n, making it
very hard to uncover easy-to-describe quasi-periodic solutions.



One way out consists in restricting the set of allowed extensions of length 8 of already
constructed strong solutions. This idea does work and has allowed us to obtain Theorem 4.
However, it requires some fine-tuning. Indeed, depending on the set of allowed extensions,
the resulting construction algorithms exhibit completely different behaviors. In some in-
stances, the process dies out after a few steps. In more favorable cases, after a vigorous
initial growth, the number of strong solutions decreases and becomes periodic. Finally, in
yet other cases, the number of strong solutions seems to explode. We shall present instances
of all these phenomena, ending with a related easy-to-state but very challenging open prob-
lem.

To proceed with more details, we need the following notation.

Notation 5 We denote by ZBn the set of all zero-sum balanced binary sequences of length
n, and by SZBn the subset of ZBn defined as

SZBn = {X ∈ ZBn : X[m] ∈ ZBm for every m ≡ n mod 8}.

Here again, X[m] denotes the initial segment of length m of X. The elements of SZBn will
be called strongly zero-sum-balanced sequences. Clearly, if ZBn )= ∅ then n ≡ 0 mod 4. Our
purpose is to establish the converse. We shall in fact show that the subset SZBn is nonempty
whenever n ≡ 0 mod 4.

There is a simple algorithm to construct the set SZBn+8 assuming we already know SZBn,
based on the following.

Remark 6 For each X ∈ SZBn, and for each zero-sum binary sequence z of length 8, the
extension Xz belongs to SZBn+8 if and only if Xz is balanced.

Indeed, Xz is zero-sum as both X and z are, and since X is strongly zero-sum-balanced, it
follows that Xz is strongly zero-sum-balanced whenever it is simply balanced.

The starting points are n = 4 and n = 8, where we have SZBn = ZBn by definition.
First, the number of zero-sum binary sequences of length 4 is

(
4
2

)
= 6 and, similarly, it is(

8
4

)
= 70 in length 8. Among these zero-sum sequences, it is easy to select those which are

balanced by constructing their Steinhaus triangles. We find:

SZB4={−−++, −+−+, +−+−, + +−−},
SZB8={+−−+−+−+, +−+−−+−+, +−+−+−−+,

−+−+−+ +−, −+−+ +−+−, −+ +−+−+−}.

Starting from SZB8 and using Remark 6, it is algorithmically easy to successively build
SZB16, SZB24, SZB32, etc. We get the following cardinalities.



n 8 16 24 32 40 48 56

|SZBn| 6 28 116 430 1386 3882 10094

Something similar occurs for n ≡ 4 mod 8. These results suggest that the number of strongly
zero-sum-balanced sequences explodes with n, making them difficult to exploit. As indicated
above, our way out is to restrict the allowed extensions of length 8 in the construction
algorithm.

4. Restricting Extensions

We need some more notation in order to explain our refinement of the above method.

Notation 7 Let Z8 denote the set of zero-sum binary sequences of length 8, ordered lexico-
graphically.

Again, the set Z8 has
(
8
4

)
= 70 elements. Its first three elements are

z1=−−−−+ + ++
z2=−−−+−+ ++
z3=−−+−−+ ++,

and its last three elements are

z68=+ +−+ +−−−
z69=+ + +−+−−−
z70=+ + + +−−−− .

Given any subset A ⊂ {1, 2, . . . , 70}, we shall denote by

Z8[A] = {zi : i ∈ A}

the subset of elements of Z8 whose index belongs to A. Thus, for example,

Z8[{2, 3}] = {z2, z3} = {−−−+−+ ++,−−+−−+ ++},

and SZB8, given in the preceding section, can be described as

SZB8 = Z8[{22, 24, 30, 41, 47, 49}].

We now introduce subsets SZBn(A) of SZBn, parametrized by subsets A ⊂ {1, 2, . . . , 70},
hoping to get a more tractable size growth.



Notation 8 Let A ⊂ {1, 2, . . . , 70}. We denote by SZBn(A) the subset of SZBn defined 
recursively as follows. For n = 4 or 8, set SZBn(A) = SZBn. Assume now n > 8. Let X be
a binary sequence of length n, and write X = X[n − 8]z where z is the tail of length 8 of X. 
Then, by definition,

X ∈ SZBn(A) ⇐⇒ X[n − 8] ∈ SZBn−8(A) and z ∈ Z8[A].

In other words, a sequence X belongs to SZBn(A) if it is built from an initial segment in 
SZB4 or SZB8 by successive extensions zi1 , . . . , zik of length 8 all belonging to the subset 
Z8[A] of Z8.

Experimenting with various subsets A, we obtain the following:

• For n ≡ 0 mod 8 and A = {1, 2, . . . , 14}, the construction process vanishes after a few
steps. In fact, we find that |SZB56(A)| = 1 but |SZBn(A)| = 0 for all 64 ≤ n = 8k.

• Still for n ≡ 0 mod 8, the case A = {1, 2, . . . , 15} is the first one where the construction
process does not vanish. We find that |SZB96(A)| = 2 and, thereafter, |SZBn(A)| = 1 for all
104 ≤ n = 8k. This is where our sequence I0 P∞0 of Theorem 4 comes from! Explicitly, we
have

I0 = z22 = +−−+−+−+

where z22 ∈ SZB8 as required, and

P0 = z2 z7 z15 = −−−+−+ + +−−+−+−+ + + +−−−−++,

so that
I0 P∞0 = z22 z2z7z15 z2z7z15 . . .

Summarizing, we have

SZBn({1, 2, . . . , 15}) = SZBn({2, 7, 15}) = {I0 P∞0 [n]}

for all 104 ≤ n = 8k.

• For n ≡ 4 mod 8, starting from SZB4 and using just the first 24 elements of Z8 as allowed
extensions, the construction process eventually dies away. However, with A = {1, 2, . . . , 25},
we do get a nonvanishing process. It turns out that

|SZBn({1, 2, . . . , 25})| = 1 for all 140 ≤ n = 8k + 4.

Again, this is where our sequence I4 P∞4 of Theorem 4 comes from. We have

I4 P∞4 = −−+ + z25 z5z7z23 z5z7z23 z5z7z23 . . .

In particular, we have SZBn({1, 2, . . . , 25}) = SZBn({5, 7, 23, 25}) for all sufficiently large
n ≡ 4 mod 8.



5. A Critical Case

Here we consider n ≡ 0 mod 8 only. We have seen that for A = {1, 2, . . . , 15}, we have 
|SZBn(A)| = 1 for all sufficiently large n. On the other hand, for the full set SZBn, its 
cardinality |SZBn| seems to explode with n. Is there an intermediate behavior, i.e., a suitable 
subset A ⊂ {1, 2, . . . , 70} for which the evolution of |SZBn(A)| looks unpredictable? After 
considerable experimentation, we may have found such a critical set.

To start with, if A = {1, 2, . . . , 46}, nothing too surprising occurs. After reaching a height 
of 6437 at n = 8 ∗ 16 = 128, the numbers |SZBn(A)| slowly go down and end up cycling as 
15, 19, 19, 16, 17, 18 at n = 8 ∗ 81 = 648.

However, with one more element, i.e., using A = {1, 2, . . . , 47}, it becomes much harder to
predict the behavior of |SZBn(A)|. After a fast initial growth up to 9022 reached at n = 128
again, followed by a decay down to 25 at n = 8∗48 = 384, these numbers meander for dozens 
of iterations (precisely, between the 34th and 99th ones) below 100. It is only at the 100th
iteration, i.e., at n = 800, that the barrier of 100 is crossed again, with |SZB800(A)| = 126. 
Erratical behavior goes on, yet with an overall slow growth, perhaps ultimately unbounded.

A closer examination reveals that few indices in {1, 2, . . . , 47} are actually used in these 
extensions for large n. Trying to pin down the essential elements, we have found the following
critical subset. Let A = {15, 22, 34, 35, 47}. Then the behavior of |SZBn(A)| is very close to 
the one just described. In particular, we cannot answer the following question.

Problem 1 Is the numerical sequence |SZB8m({15, 22, 34, 35, 47})| bounded or unbounded?

Our guess is that it is unbounded, but we cannot prove it. We can ask a still more specific 
question. Define

Y
X=

=
z
z
22z

z
35z

z
47=

=
+
+ +
− − + − + −

+ 
+
+ 

+
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+
+ 

+ −
+ 
− − − +
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− +

+ 
+
+ 
− +

+
−

15 34 47 − − − − − − − − − − − − .
The sequence X is strongly zero-sum-balanced of length 24, i.e., it belongs to SZB24. There
are many elements of SZB24m({15, 22, 34, 35, 47}) which are concatenations of X and Y . 
Here are a few instances thereof:

X4k−1Y, X4kY, X(X3Y )k, (X4Y )k, X11(XY )k, (X20Y )k, X4Y (X3Y X5Y )k, . . .

for all k ≥ 1. We do know a few more such one-parameter families of words in X, Y giving 
rise to strongly zero-sum-balanced sequences. Finding infinitely many such families would
settle Problem 1. But we are unable to do so. For instance, while (X4Y )k and (X20Y )k are 
words of the desired kind, we do not know any other words of the shape (XmY )k having this 
property. We thus end up with a very challenging open problem.

Problem 2 Describe all words in X = z22z35z47 and Y = z15z34z47 giving rise to strongly 
zero-sum-balanced binary sequences. Less ambitiously, are there infinitely many one-parameter 
families of such words?



Figure 3: Structure of the Derived Triangle of X8Y

The proof that the above words in X,Y give rise to strongly zero-sum-balanced sequences
follows the same method as in Section 2, by exhibiting periodic structures in their derived
triangles. We shall illustrate it for the words X4k−1Y and X4kY , with a picture and a few
comments. (See Figure 3.) The corresponding derived triangles are, again, an essentially
periodic assembly of a few bricks. The entry sums of these bricks are separately specified
below. In Figure 3, the entry sum of each of the nine diagonal bands, corresponding to each
successive letter of X8Y , is given inside a bubble. Thus, a quick glance shows that the entry
sums of the derived triangles of the words Y , XY , X2Y , X3Y , X4Y , X5Y , X6Y , X7Y , X8Y
are given by 4, 8, 20, 0, 0, 8, 20, 0, 0, respectively. More generally, for t ≥ 1, the derived
triangle ∆(XtY ) has entry sum 0 if t ≡ 0 or 3 mod 4, entry sum 8 if t ≡ 1 mod 4, and entry
sum 20 if t ≡ 2 mod 4. In particular, the words X4k−1Y and X4kY give rise to strongly
zero-sum-balanced binary sequences, as announced.

σ(Ta)σ(Tb)σ(Tc)σ(Fa)σ(Fb)σ(Fc)
0 4 0 −6 4 −2

σ(A)σ(B)σ(C)σ(Da)σ(Db)σ(Dc)σ(Ea)σ(Eb)σ(Ec)
2 2 −4 −2 −4 2 −6 4 −2



σ(A1)σ(A2)σ(A3)σ(B1)σ(B2)σ(B3)σ(B4)σ(B5)σ(B6)
12 −14 2 −6 −2 0 −6 14 0

σ(C1)σ(C2)σ(C3)σ(C4)σ(C5)σ(C6)σ(C7)σ(C8)σ(C9)σ(C10)σ(C11)σ(C12)
6 0 2 14 12 −10 2 4 −10 −6 −8 −6
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