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a b s t r a c t

A set A of integers is weakly sum-free if it contains no three distinct elements x, y, z such
that x + y = z. Given k ≥ 1, let WS(k) denote the largest integer n for which {1, . . . , n}
admits a partition into kweakly sum-free subsets. In 1952, G.W. Walker claimed the value
WS(5) = 196, without proof. Here we show WS(5) ≥ 196, by constructing a partition
of {1, . . . , 196} of the required type. It remains as an open problem to prove the equality.
With an analogous construction for k = 6, we obtainWS(6) ≥ 572. Our approach involves
translating the construction problem into a Boolean satisfiability problem, which can then
be handled by a SAT solver.

1. Introduction

A set A of integers is called sum-free if it contains no elements x, y, z ∈ A satisfying x + y = z. It is called weakly sum-
free [1] if it contains no pairwise distinct elements x, y, z ∈ A satisfying x+y = z. Clearly, sum-free implies weakly sum-free;
the converse is false, as shown by A = {1, 2}.

This paper is concerned with partitions of the set [1, n] = {1, 2, . . . , n} into k sum-free, or kweakly sum-free parts, with
k fixed and n as large as possible with respect to k.

1.1. Schur numbers

A theorem of Schur states that, given k ≥ 1, there is indeed a largest integer n for which [1, n] admits a partition into k
sum-free sets [2]. This largest n is called the k-th Schur number and is denoted by S(k).

For instance, one has S(1) = 1 and S(2) = 4. For k = 2, a partition of [1, 4] into 2 sum-free sets is provided by

{1, 2, 3, 4} = {1, 4} ⊔ {2, 3},

and it is easy to check that there is no such partition for [1, 5]. Only two more exact values of S(k) are known so far, namely

S(3) = 13, S(4) = 44.

The currently available bounds for S(5) are

160 ≤ S(5) ≤ 305, (1)
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and it is conjectured in [3] that the lower bound 160, settled in [4], is perhaps sharp. For the upper bound 305, see [5,6].
While the value S(3) = 13 can still be settled by hand, the value S(4) = 44 relies on an exhaustive computer search [7,8].
Also note the bounds S(6) ≥ 536 and S(7) ≥ 1680 established in [3]. For general k ≥ 1, Schur proved the following lower
and upper bounds [2]:

(3k
− 1)/2 ≤ S(k) ≤ ⌊k!e⌋ − 1.

1.2. Weak Schur numbers

As for partitions of [1, n] intoweakly sum-free sets, a result analogous to Schur’s holds, due to Rado [9]. See also [10,1,11].
Let us denote byWS(k) the largest integer n for which [1, n] can be partitioned into kweakly sum-free parts. We call WS(k)
the k-th weak Schur number. Note that some authors prefer to speak of Nk = WS(k) + 1, the smallest integer n′ for which
every k-coloring of [1, n′

] contains a monochromatic triple {a, b, a + b} with a ≠ b.
The current state of knowledge concerning WS(k) is quite confused. The problem seems to have been first considered

in [12], which is Walker’s solution to Problem E 985 proposed a year earlier, in 1951, by Leo Moser1. Subsequent mentions
appear in [13,1,14,10,11,6], in the chronological order. The values WS(1) = 2 and WS(2) = 8 are easy to check. It is
established in [10], by exhaustive computer search, that

WS(3) = 23,
WS(4) = 66,
WS(5) ≥ 189.

However, the authors of [10] seem to have been unaware of Walker’s note [12]. Indeed, that note contains amazing claims
that go beyond [10]. Not only does it give the exact values for WS(3) and WS(4), it further claims the equality

WS(5) = 196.

Unfortunately, Walker only discusses the case k = 3, by giving a suitable partition of [1, 23] and explaining why 23
is optimal. He gives no details for k = 4 and 5, not even suitable partitions which would establish WS(4) ≥ 66 and
WS(5) ≥ 196. Nobody today seems to know how Walker managed to make these amazing claims back in 1952, when
computers were not generally available. The situation is somewhat reminiscent of Fermat’s claimed Last Theorem which,
incidentally, was the main motivation behind Schur’s discovery of his numbers S(k) in [2].

Finally, let us mention the following upper bound, improving an earlier one by Irving [1] and due to Bornsztein [14]:

WS(k) ≤ ⌊k! k e⌋.

1.3. Comparing S(k) andWS(k)

It is clear from the definitions that

S(k) ≤ WS(k) (2)

for all k ≥ 1. Indeed, the set [1, S(k)] admits a partition into k sum-free, and hence weakly sum-free, subsets. This inequality
is important, as it provides a natural upper bound for the Schur numbers S(k). In particular, Walker’s claim onWS(5) yields
a major potential improvement, apparently not mentioned before, of the best known upper bound on S(5):

S(5) ≤ WS(5) ?
= 196,

as compared to S(5) ≤ 305 in (1). This certainly provides a strong call to definitively settle the exact value of WS(5).
There is a long time interval, from [1] in 1973 to [14] in 2002, during which Walker’s note seems to have fallen into

oblivion. One possible reason is that yet another claim ofWalker’s, namelyWS(k+1) ≤ 3WS(k)+1 for k ≥ 3, was pointed
out by Irving [1] as being incompatible with the following bound of Abbott and Hanson [15] on the ordinary Schur numbers:

S(k) ≥ c 89k/4

for all k ≥ 4, where c = 44/89.

1.4. Links with multicolor Ramsey numbers

The classical and weak Schur numbers are related to some multicolor Ramsey numbers, as we now recall. For integers
k,m ≥ 1, denote by Rk(m) the smallest integer n ≥ 1 such that, for every k-coloring of the edges of the complete graph Kn

1 In fact, Moser’s informal challenge was about S(3); Walker considered WS(3) instead.



on n vertices, there is a subgraph Km, all of whose edges are colored the same. A short argument (see e.g. [16, p. 69]) yields
the bound

S(k) ≤ Rk(3) − 2;

the idea is to transport a k-coloring of [1, n − 1] to a k-coloring of the edges of Kn by assigning to any edge {x, y} the color
of |x − y|. As for weak Schur numbers, suitable adaptations of this idea yield two different bounds, namely

WS(k) ≤ Rk(4) − 2

and

WS(k) ≤ R2k(3) − 2.

See [10, p. 2] for the first bound, and [11, p. 303] for the second one.

1.5. Contents

In this paper, we do give a proof of the inequalityWS(5) ≥ 196, by providing an actual partition of [1, 196] into 5 weakly
sum-free sets. Our efforts to do the same with [1, 197] completely failed. It remains as a challenge to prove, by theory or by
machine, that 196 is the exact value of WS(5).

Our construction showing WS(5) ≥ 196 is given in Section 2, together with reasons pointing to the probable sharpness
of this bound. In Section 3, we treat the case of 6-partitions and obtain WS(6) ≥ 572, apparently the first known realistic
lower bound on WS(6). Our method is described in Section 4. It involves translating the problem of constructing partitions
of the desired type into a Boolean satisfiability problem, to be handled by a SAT solver. The actual computations are briefly
commented in Section 5.

2. Is it true that WS(5) = 196?

There are no details in [12] substantiating the claimWS(5) = 196, not even an actual partition of [1, 196] into 5 weakly
sum-free subsets which would establish WS(5) ≥ 196. Surely Walker knew such partitions, but we do not know how he
proceeded, and these are probably lost forever. Here we fill this literature gap by providing one such partition, constructed
using the methods of Section 4 and the SAT solver march [17].

As amatter of notation, we shall abbreviate runs of consecutive integers as intervals. For instance, [8, 9] 12 [14, 17] stands
for the set {8, 9, 12, 14, 15, 16, 17}.

Theorem 2.1. WS(5) ≥ 196.

Proof. Consider the following partition A1 ⊔ A2 ⊔ A3 ⊔ A4 ⊔ A5 of [1, 196]:

A1: 1 2 4 8 11 22 25 50 63 69 135 140 150 155 178 183 193
A2: 3 [5, 7] 19 21 23 [51, 53] [64, 66] [137, 139] [151, 153] [180, 182] [194, 196]
A3: [9, 10] [12, 18] 20 [54, 62] [141, 149] [184, 192]
A4: 24 [26, 49] 154 [156, 177] 179
A5: [67, 68] [70, 134] 136.

It is straightforward to check that each Ai is weakly sum-free. This finishes the proof. �

Is this lower bound onWS(5) sharp? If not, therewould exist a partition of [1, 197] into 5weakly sum-free sets. In order to
try and find one, we applied the samemethods as above. But these attempts completely failed, as no conclusion of existence
or non-existence was reached after several weeks of running time. This strongly supports Walker’s claim. Yet it remains as
an open problem to prove or disprove the inequality WS(5) ≤ 196.

2.1. Fixing the 5th part

Here are twomore computational results in support ofWalker’s claim. Fixing the 5th part of a tentative partition of [1, n]
into 5weakly sum-free sets reduces the number of Boolean variables involved in ourmethod from3n to 2n. The reason,made
clear in Section 4, is that ⌈log2(5)⌉ = 3 whereas ⌈log2(4)⌉ = 2. This reduction allows march to terminate its computations
and reach definitive conclusions, even for n = 197. The following results were obtained in this way.

The first statement concludes an attempt to improve Theorem 2.1 by constructing a partition of [1, 197] into 5 weakly
sum-free sets, while keeping the same 5th part A5. Not surprisingly, the conclusion is negative.

Computational Theorem 2.2. There is no partition of [1, 197] into 5weakly sum-free parts with A5 = [67, 68] ∪ [70, 134] ∪

{136} as one part.



Our second statement deals with the following question: to what extent is it possible to replace A5 in Theorem 2.1 by a
single interval?More precisely,we looked for the largest possible n forwhich [1, n] admits a partition into 5weakly sum-free
sets B1, . . . , B5 such that:

• B1, B2, B3, B4 is a partition of [1, 66],
• B5 is a single interval.

Observe that the first requirement is satisfied by A1, A2, A3, A4 in Theorem2.1, and recall that 66 = WS(4). Consequently,
B5 must contain 67 and cannot be strictly larger than [67, 134]. Thus, without loss of generality, we may and will assume
B5 = [67, 134]. Quite surprisingly, the largest admissible n turns out to be n = 194 only.

Computational Theorem 2.3. The largest n for which [1, n] admits a partition into 5 weakly sum-free parts, with [67, 134] as
one part, is n = 194.

For the record, here is such a partition of [1, 194].

B1: 1 2 4 8 11 22 25 50 66 138 148 153 176 181 194
B2: 3 [5, 7] 19 21 23 [51, 53] [63, 65] [135, 137] [149, 151] [178, 180] [191, 193]
B3: [9, 10] [12, 18] 20 [54, 62] [139, 147] [182, 190]
B4: 24 [26, 49] 152 [154, 175] 177
B5: [67, 134].

These two results were reached in about 17 and 18 h, respectively, on a 3.33 GHz Intel i7 processor PCwith the SAT solver
march.

3. A lower bound onWS(6)

We obtain here the lower bound WS(6) ≥ 572, by exhibiting a suitable partition of [1, 572] into 6 weakly sum-free
subsets. Instructed by a fair amount of experimentation, we think that this bound is quite realistic, with a margin of error
possibly less than 10. In the partition below, we keep the same notational convention with intervals as in the preceding
section.

Theorem 3.1. WS(6) ≥ 572.

Proof. Consider the following partition A1 ⊔ A2 ⊔ A3 ⊔ A4 ⊔ A5 ⊔ A6 of [1, 572]:

A1: 1 2 4 8 11 22 25 50 63 69 135 140 150 155 178 183 193 395 412 516 526 531 554 559 572
A2: 3[5, 7] 19 21 23 [51, 53] [64, 66] [137, 139] [151, 153] [180, 182] [194, 196] [396, 398] [408, 410] 435 [513, 515] [527,

529] [556, 558] [569, 571]
A3: [9, 10] [12, 18] 20 [54, 62] [141, 149] [184, 192] [399, 407] [437, 445] [517, 525] [560, 568]
A4: 24 [26, 49] 154 [156, 177] 179 411 [413, 434] 436 530 [532, 553] 555
A5: [67, 68] [70, 134] 136 [446, 512]
A6: [197, 394].

Again, it is straightforward to check that each Ai is weakly sum-free. �

The only previously available firm lower bound onWS(6)was 536,which is the lower bound for S(6) given in [3]. Another
lower bound could be obtained from the claimed inequality

WS(k) ≥ 3(3k
+ 2k − 1)/4 − 1,

which gives 554 at k = 6. However, this inequality does not seem to be backed up by any available proof. It is attributed to
Braun in [12]. Note that it is sharp for k = 1, 2, 3, and gives 65 = WS(4) − 1 at k = 4.

4. Reformulation as a SAT problem

Our idea for constructing the above partitions is to express the corresponding combinatorial constraints as Boolean
satisfiability problems, to be then fed to a SAT solver. See [18–21] for earlier successful uses of SAT solvers in combinatorial
number theory.

Recall that a logical formula over Boolean variables x1, . . . , xn is said to be satisfiable if there is an assignment of the xi’s
to True or False in such a way that the formula evaluates to True.

Let n, k ≥ 2. Let T1, . . . , Tr be a family of subsets of [1, n]. Assume that we are seeking k-colorings of [1, n] for which no
Tj is monochromatic. Such k-colorings correspond of course to k-partitions of [1, n] for which no Tj is contained in a single
part. We shall translate this existence problem into one asking whether some associated logical formula is satisfiable or not.
In the applications in Section 5, the subsets Tj will be all possible triples in [1, n] of the form {a, b, a + b} with a ≠ b.



It is sometimes convenient to express logical formulas in conjunctive normal form, or CNF for short. That is, as conjunctions

t
l=1

Cl (3)

of clauses C1, . . . , Cl, a clause being a disjunction of the form

xi1 ∨ · · · ∨ xis ∨ ¬xj1 ∨ · · · ∨ ¬xjt .

Here, as usual, the symbols ∧, ∨ and ¬ denote the logical operations AND, OR and NOT, respectively. Most formulas below
are in CNF.

From now on, we shall write 1 for True and 0 for False. In particular, we have ¬1 = 0 and ¬0 = 1.

4.1. The case k = 2

We start with two colors. Let x1, . . . , xn be n Boolean variables. There is a bijective correspondence between {0, 1}-
assignments of the xi’s and 2-colorings of [1, n]. For a subset T ⊂ [1, n], define the CNF formula

cl2(T , (x1, . . . , xn)) =


i∈T

xi


∧


i∈T

¬xi


. (4)

Lemma 4.1. Let T ⊂ [1, n]. The 2-colorings of [1, n] for which T is non-monochromatic correspond to the {0, 1}-assignments
xi = ϵi(i = 1, . . . , n) for which cl2(T , (ϵ1, . . . , ϵn)) = 1.

Proof. By construction, cl2(T , (ϵ1, . . . , ϵn)) = 1 if andonly if there are indices i, j ∈ T such that ϵi = ¬ϵj = 1, or equivalently
ϵi = 1 and ϵj = 0; this happens if and only if T is non-monochromatic for the corresponding 2-coloring of [1, n]. �

When several subsets of [1, n] are required to be simultaneously non-monochromatic, it suffices to satisfy the
conjunction of the corresponding formulas. This yields the following equivalence.

Proposition 4.2. Let n ≥ 1 and let T1, . . . , Tr be subsets of [1, n]. Let x1, . . . , xn be Boolean variables. There exists a 2-coloring
of [1, n] such that no Tj is monochromatic if and only if the formula

r
j=1

cl2(Tj, (x1, . . . , xn))

is satisfiable. �

4.2. The case k = 2t

We first extend the above considerations to k = 2t for any integer t ≥ 1. Our set of 2t colors is taken to be the Cartesian
product {0, 1}t . Let

(xi,l)

(1 ≤ i ≤ n, 1 ≤ l ≤ t) be a collection of nt Boolean variables. The unknown color of any i ∈ [1, n] may and will be
represented by the t-tuple

(xi,1, . . . , xi,t).

Let T ⊂ [1, n]. The 2t-colorings of [1, n] for which T is non-monochromatic correspond to those {0, 1}-assignments (ϵi,l) of
(xi,l) for which there are indices l ∈ [1, t] and i, j ∈ T such that

ϵi,l ≠ ϵj,l.

By the case of two colors, this condition is equivalent to the Boolean one

cl2(T , (ϵ1,l, . . . , ϵn,l)) = 1.

Since indices l where a difference occurs may be arbitrary, one needs to take the disjunction over all l ∈ [1, t] of the above
formula. Moreover, when several subsets of [1, n] are involved, the conjunction of the corresponding formulas must be
satisfied. This yields the following generalization of Proposition 4.2.



Proposition 4.3. Let n, t ≥ 1 and let T1, . . . , Tr be subsets of [1, n]. Let (xi,l)(1 ≤ i ≤ n, 1 ≤ l ≤ t) be nt Boolean variables.
There exists a 2t-coloring of [1, n] such that no Tj is monochromatic if and only if the formula

r
j=1


t

l=1

cl2(Tj, (x1,l, . . . , xn,l))


is satisfiable. �

This formula is not in CNF, but this can be fixed using the distributivity of ∨ over ∧. To wit, an equivalent CNF formula is
given by

r
j=1

 
U⊔V=[1,t]


i∈Tj


u∈U

xi,u

 ∨


i∈Tj


v∈V

¬xi,v

 ,

where ⊔ denotes a disjoint union.

4.3. The general case

We now treat any number k ≥ 2 of colors. Let t ≥ 1 be the unique integer such that

2t−1
+ 1 ≤ k ≤ 2t .

That is, t = ⌈log2(k)⌉. Within the set {0, 1}t of 2t colors, we forbid some 2t
− k ones. The remaining k colors then constitute

our final palette of colors.
It remains to translate the requirement that some colors are forbidden into the satisfiability of appropriate Boolean

formulas. For this, it suffices to consider a single forbidden color; the case of several ones follows by taking the conjunction
of the corresponding formulas.

First observe that, for x, y ∈ {0, 1}, the condition x ≠ y is equivalent to the logical formula

(x ∨ y) ∧ (¬x ∨ ¬y) = 1.

Now, let µ = (µ1, . . . , µt) ∈ {0, 1}t be a fixed color. Given t Boolean variables z1, . . . , zt , define

fµ(z1, . . . , zt) =

t
l=1

(zl ∨ µl) ∧ (¬zl ∨ ¬µl).

It then follows from the above observation that, for all ϵ = (ϵ1, . . . , ϵt) ∈ {0, 1}t , we have

ϵ ≠ µ ⇔ fµ(ϵ) = 1.

Thus, forbidding color µ may be achieved using formula fµ. This yields the following result.

Theorem 4.4. Let n, k, t be integers with k, n ≥ 2 and 2t−1
+ 1 ≤ k ≤ 2t . Let T1, . . . , Tr be subsets of [1, n]. The existence of

k-colorings of [1, n] for which no Tj is monochromatic is equivalent to the satisfiability of the formula

r
j=1


t

l=1

cl2(Tj, (x1,l, . . . , xn,l))


∧

n
i=1

2t−k
s=1

fµs(xi,1, . . . , xi,t),

where µ1, . . . , µ2t−k is any choice of 2t
− k distinct elements in {0, 1}t .

Proof. By Proposition 4.3, satisfying the left-hand subformula gives 2t-colorings of [1, n] with no Tj monochromatic.
Satisfying the right-hand one guarantees that no µs is used in those colorings. �

5. Applications

The above result implies the following SAT characterization of the weak Schur numbers, made explicit for completeness.

Corollary 5.1. Let n, k, t be integers, with k, n ≥ 2 and 2t−1
+ 1 ≤ k ≤ 2t . The following conditions are equivalent.

1. WS(k) ≥ n.
2. The formula

a<b


t

l=1

cl2({a, b, a + b}, (x1,l, . . . , xn,l))


∧

n
i=1

2t−k
j=1

fµj(xi,1, . . . , xi,t)

is satisfiable, where a, b run over all integers satisfying 1 ≤ a < b ≤ n − a − b, and where µ1, . . . , µ2t−k are any 2t
− k

elements in {0, 1}t .



Moreover, every variable assignment for which the above formula is satisfied corresponds to an actual partition of [1, n] into k
weakly sum-free subsets.

Proof. This directly follows from the definition of WS(k) and from Theorem 4.4, specialized to the case where the subsets
Tj of [1, n] are all triples {a, b, a + b} with a < b. �

This SAT reformulation, together with the SAT solver march, allowed us to construct the weakly sum-free partitions of
Sections 2 and 3. Recall that these partitions yield the lower bounds WS(5) ≥ 196 and WS(6) ≥ 572, respectively. Our
Computational Theorems 2.2 and 2.3 were obtained with those same tools.

However, for this attack on WS(5) and WS(6), the corresponding SAT problems are somewhat too large. In order to
reduce the number of variables and clauses, we performed experiments with selected elements of [1, n] pre-located in the
same part of the tentative partitions. For instance, we looked for 5-partitions of [1, 196] into weakly sum-free sets which
would extend chosen 4-partitions of [1, 66], where 66 = WS(4). This removes many variables. Without such reductions,
it seems difficult for a SAT solver to construct from scratch a partition of [1, 196] of the desired type, let alone to conclude
WS(5) < 197.

The case k = 4, in contrast, can be fully handled. We were able to recover the known values WS(4) = 66 and S(4) = 44,
the latter with a SAT characterization of S(k) similar to that of WS(k) above. The corresponding running times are displayed
below.

Output Conclusion Time in
seconds

A suitable 4-partition of [1, 44] S(4) ≥ 44 0
‘‘Unsatisfiable’’ S(4) < 45 60
A suitable 4-partition of [1, 66] WS(4) ≥ 66 917
‘‘Unsatisfiable’’ WS(4) < 67 24,450

We confirmed the equality WS(4) = 66 by running march on two distinct files embodying Corollary 5.1, namely
wschur4_66.txt and wschur4_67.txt. These files are available at [22], for the reader wishing to reproduce these
computations with any SAT solver. They contain, in standard DIMACS format, a list of CNF clauses whose satisfiability or
not is equivalent to the existence or not of a suitable 4-partition of [1, 66] and [1, 67], respectively.

The file wschur4_66.txt contains 4224 clauses on 132 Boolean variables. Its first clause reads 1 2 3 67 68 69 0, with
0 as a closing symbol, and codes for x1 ∨ x2 ∨ x3 ∨ x67 ∨ x68 ∨ x69. Its next clause reads −1 −2 −3 67 68 69 0 and codes
for ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x67 ∨ x68 ∨ x69. Any SAT solver running it should end up displaying an assignment of the variables
that will satisfy all the clauses. As for the file wschur4_67.txt, which contains 4356 clauses on 134 Boolean variables, any SAT
solver running it should conclude that its set of clauses is unsatisfiable.

We endwith a few technical details. The version of march we used was march_hi [17], running on an Intel i7 processor
PC with a CPU clock speed of 3.33 GHz and 16 GB of RAMmemory. As far as we know, themulti-core architecture of the CPU
is not exploited by this implementation of march_hi.
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