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ON THE n-COLOR RADO NUMBER FOR THE EQUATION

x1 + x2 + · · ·+ xk + c = xk+1

S. D. ADHIKARI, L. BOZA, S. ELIAHOU, J. M. MARÍN, M. P. REVUELTA,
AND M. I. SANZ

Abstract. For integers k, n, c with k, n ≥ 1, the n-color Rado numberRk(n, c)
is defined to be the least integer N , if it exists or ∞ otherwise, such that for
every n-coloring of the set {1, 2, . . . , N}, there exists a monochromatic solution
in that set to the equation

x1 + x2 + · · ·+ xk + c = xk+1.

In this paper, we mostly restrict to the case c ≥ 0, and consider two main
issues regarding Rk(n, c): is it finite or infinite, and when finite, what is its
value? Very few results are known so far on either one.

On the first issue, we formulate a general conjecture, namely that Rk(n, c)
should be finite if and only if every divisor d ≤ n of k − 1 also divides c. The
“only if” part of the conjecture is shown to hold, as well as the “if” part in
the cases where either k − 1 divides c, or n ≥ k − 1, or k ≤ 7, except for two
instances to be published separately.

On the second issue, we obtain new bounds on Rk(n, c) and determine
exact formulae in several new cases, including R3(3, c) and R4(3, c). As for
the case R2(3, c), first settled by Schaal in 1995, we provide a new shorter
proof.

Finally, the problem is reformulated as a Boolean satisfiability problem,
allowing the use of a SAT solver to treat some instances.

1. Introduction

Throughout the paper, we shall denote by Z,N and N+ the set of integers,
nonnegative integers and positive integers, respectively. Let n ∈ N+. An n-coloring
of a set A is a function

Δ : A −→ C,

where C is some finite set of cardinality |C| = n. Here, we shall mostly deal with
n-colorings of integer intervals [1, N ], where

[a, b] = {a, a+ 1, . . . , b}
for integers a ≤ b.

Given an n-coloring Δ of [1, N ] and a linear equation L in k + 1 variables with
integer coefficients, a solution (x1, . . . , xk, xk+1) to L is said to be monochromatic
if Δ(x1) = Δ(x2) = · · · = Δ(xk+1).
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1.1. Some earlier results. In 1916, Schur [22] proved that for every n ≥ 1, there
exists a least integer S2(n) = N , such that for every n-coloring of [1, N ], there
exists a monochromatic solution to the equation x1 + x2 = x3.

The integers S2(n) are called the Schur numbers and are currently known only
for n ≤ 4, namely: S2(1) = 2, S2(2) = 5, S2(3) = 14 and S2(4) = 45. While these
stated values for n ≤ 3 can easily be settled by hand, the one for n = 4 relies on
an exhaustive computer search [2]. For n = 5, the currently available bounds for
S2(5) are 161 ≤ S2(5) ≤ 306, and it is conjectured in [8] that the lower bound 161,
established in [7], is perhaps sharp. For the upper bound 306, see [18]. For general
n ≥ 1, Schur [22] obtained the following bounds:

(3n + 1)/2 + 1 ≤ S2(n) ≤ �n!e�+ 1.

Slightly improved upper bounds were subsequently provided by Whitehead [23] and
Honghui Wan [10], whereas for lower bounds, the inequalities

S2(m+ n) ≥ 2S2(m)S2(n)− S(m)− S(n) + 1

of Abbott and Hanson [1], and S2(5) ≥ 161 of Fredricksen and Sweet [8], together
yield the sharpening S2(n) ≥ c 322n/5 ≥ c 3.17n for n ≥ 6, where c is some absolute
positive constant.

In 1933, Rado [13] generalized the work of Schur to arbitrary systems of linear
equations. Given n ≥ 1 and a system of linear equations L, the least integer N (if
it exists) such that for every n-coloring of the set [1, N ], there is a monochromatic
solution to the system L, is called the n-color Rado number for L. If no such integer
N exists, then this Rado number is defined to be infinite.

Given a linear system L as above, and n ≥ 1, there are two main issues regarding
its corresponding n-color Rado number: is it finite or infinite? When it is finite,
what is its exact value?

In particular, for the equation x1 + x2 + · · · + xk = xk+1 where k ≥ 2, Rado’s
results imply that for all n ≥ 1, the corresponding n-color Rado number is actually
finite, i.e., there exists a least integer Sk(n) = N such that for every n-coloring of
[1, N ], there is a monochromatic solution of that equation [13].

In 1982, Beutelspacher and Brestovansky [5] showed that Sk(2) = k2 + k − 1
for k ≥ 2. More than twenty years later, Sanz [18] established the value S3(3) = 43
with an exhaustive computer search.

Burr and Loo [3] were able to determine the 2-color Rado numbers for the equa-
tions x1 + x2 + c = x3 and x1 + x2 = kx3 for every integer c and for every positive
integer k. There are several results due to Schaal and other authors, about 2-color
and 3-color Rado numbers for particular equations; see [11, 12, 15, 21].

1.2. The main conjecture. Let n, k, c be integers with n, k ≥ 1 and c ≥ 0. In
this paper, we shall be concerned with the above-mentioned equation

(1) x1 + x2 + · · ·+ xk + c = xk+1.

Notation 1.1. We shall denote by Rk(n, c) the n-color Rado number corresponding
to equation (1), i.e., the smallest positive integer N , if it exists, such that every
n-coloring of [1, N ] admits a monochromatic solution to it.

For what values of the parameters n, k, c is Rk(n, c) finite? By Rado’s result,
recalled above, it holds that Rk(n, 0) = Sk(n) is always finite. Now, for n = 2,
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Schaal [19] showed that Rk(2, c) is finite if and only if k or c is even, in which case

Rk(2, c) = (k + 1)2 + (c− 1)(k + 2).

Later on, he further showed that the 3-color Rado number R2(3, c) is always finite
[20], and obtained the exact value R2(3, c) = 13c+ 14 for all c ≥ 0.

In this paper, we provide further instances of n, k, c for which Rk(n, c) is shown
to be finite or infinite, respectively. These results, as well as those of Schaal on
Rk(2, c) and R2(3, c), fit into one single conjecture.

Conjecture 1.2. For integers k, n, c with k ≥ 2, n ≥ 1 and c ≥ 0, the n-color Rado
number Rk(n, c) is finite if and only if every divisor d ≤ n of k − 1 also divides c.

In the sequel, we settle this conjecture if either k − 1 divides c, or n ≥ k − 1, or
k ≤ 7, except for two special cases which need a completely different approach and
will be presented elsewhere.

1.3. Contents. In Section 2, we settle the “only if” part of Conjecture 1.2 by giving
a sufficient condition on n, k, c ensuring that Rk(n, c) is infinite. In Section 3, we
study how Rk(n, c) behaves under changes on n and c, and then exploit the results
to settle Conjecture 1.2 in cases n ≥ k−1 and k ≤ 7. In Section 4, we introduce new
numbers S∗

k(n), smaller and easier to study than Sk(n), and show how they help
bounding Rk(n, c) from below. This is then exploited in Section 5, in conjunction
with SAT solvers, to get new formulae for some instances of Rk(n, c).

2. An obstacle to finiteness

We start by treating the cases n = 1 or k = 1. For n = 1, the Rado number
Rk(n, c) is given by the formula

(2) Rk(1, c) = k + c

for all k ≥ 1 and c ≥ 0, as readily verified. The case k = 1 is also easy to determine.
Indeed, for c = 0 we have

R1(n, 0) = 1

for all n ≥ 2, whereas the following holds for c ≥ 1.

Proposition 2.1. For all n ≥ 2 and c ≥ 1, we have R1(n, c) = +∞.

Proof. The statement follows from the following 2-coloring of N+:

Δ: N+ −→ {0, 1},
x 	−→ the class of 
x/c� mod 2.

Since 
(x+ c)/c� = 
x/c�+ 1, implying Δ(x+ c) ≡ Δ(x) + 1 mod 2, there are no
monochromatic solution to the equation x1 + c = x2, thereby implying R1(n, c) =
+∞ as stated. �

Therefore, from now on, we shall assume k, n ≥ 2. Here is an obstacle to the
finiteness of Rk(n, c), which settles the “only if” part of Conjecture 1.2.

Proposition 2.2. If there exists a divisor d ≤ n of k − 1 which does not divide c,
then Rk(n, c) = +∞.
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Proof. Color each integer by its class mod d, taken in the set {0, 1, . . . , d − 1}.
This yields a d-coloring of N+. Let x1, . . . , xk+1 ∈ N+ be monochromatic for this
coloring, say all of the same color class r mod d. Then

x1 + · · ·+ xk − xk+1 ≡ (k − 1)r ≡ 0 mod d,

where the second congruence follows from the hypothesis that d divides k−1. Now
since c ≡ 0 mod d by hypothesis, it follows that (x1, . . . , xk+1) cannot satisfy the
equation

x1 + · · ·+ xk − xk+1 = −c.

Therefore this equation does not admit any monochromatic solution. It follows
that Rk(d, c) = +∞, whence also Rk(n, c) = +∞, as claimed. �

In fact, the above condition is the only general one we are aware of which implies
Rk(n, c) = ∞. This is what led us to formulate Conjecture 1.2.

3. Varying n and c

In this section, we shall vary the parameters n and c and show how this affects
the value of Rk(n, c). This study will ultimately allow us to settle Conjecture 1.2
in the cases where either k − 1 divides c, or n ≥ k − 1, or k ≤ 7, except for two
key instances which need a different approach and will be published separately.

3.1. Reducing n. Our first result is a relation between n-color and (n− 1)-color
Rado numbers. Trivially, one has Rk(n, c) ≥ Rk(n− 1, c), but a sharper inequality
holds.

Lemma 3.1. Let k, n, c ∈ N+. Then Rk(n, c) ≥ (k + 1)Rk(n− 1, c) + c− 1.

Proof. To ease notation, set M = Rk(n− 1, c) and N = kM + c. Thus

(k + 1)Rk(n− 1, c) + c− 1 = N +M − 1,

and our aim is to show that Rk(n, c) ≥ N+M−1. In order to do that, it suffices to
construct an n-coloring of the integer interval [1, N +M −2] for which that interval
contains no monochromatic xi’s satisfying the equation

(3) x1 + · · ·+ xk + c = xk+1.

The minimality property of Rk(n, c) will then imply the desired inequality.
By definition of M , there exists an (n− 1)-coloring

(4) Δ: [1,M − 1] −→ [1, n− 1]

such that [1,M − 1] contains no Δ-monochromatic xi’s satisfying equation (3). We
now extend (4) to an n-coloring

Δ′ : [1, N +M − 2] −→ [1, n]

as follows:

Δ′(x) =

⎧⎨
⎩

Δ(x) if x ∈ [1,M − 1],
n if x ∈ [M,N − 1],

Δ(x− (N − 1)) if x ∈ [N,N +M − 2].

It remains to show that [1, N +M − 2] is free of a Δ′-monochromatic solution to
(3). Assuming the contrary, let x1, . . . , xk+1 ∈ [1, N +M − 2] satisfy (3) and be of
the same Δ′-color in [1, n].
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First, that common color cannot be n, for otherwise all xi’s would belong to
[M,N − 1], thereby yielding

xk+1 = x1 + · · ·+ xk + c ≥ kM + c = N,

a contradiction.
Therefore, that common color of x1, . . . , xk+1 belongs to [1, n− 1]. Hence, some

xi’s belong to [1,M − 1] and the rest to [N,N +M − 2]. How do they distribute
among these two intervals? First, we may assume that

x1 ≤ · · · ≤ xk.

Note further that xk < xk+1, since

xk+1 = x1 + · · ·+ xk + c ≥ k + c ≥ 2

by hypothesis on c.
Clearly, the xi’s cannot all belong to [1,M − 1] by our hypothesis on (4). It

follows that the largest one, namely xk+1, belongs to [N,N + M − 2]. We claim
that

x1, . . . , xk−1 ∈ [1,M − 1] and xk ∈ [N,N +M − 2].

Indeed, by (3) and the fact that xk+1 ∈ [N,N + M − 2], at most one among
{x1, . . . , xk} may belong to [N,N +M − 2], since

2N > N +M − 2

as readily verified. Similarly, at least one among {x1, . . . , xk} must belong to
[N,N +M − 2], for otherwise xk ≤ M − 1, and by (3) we would have

xk+1 ≤ k(M − 1) + c < N,

a contradiction. Subtracting N − 1 from xk and xk+1, it follows that

x1, . . . , xk−1, xk − (N − 1), xk+1 − (N − 1)

are Δ-monochromatic, belong to [1,M−1], and satisfy (3), a contradiction. There-
fore, the interval [1, N +M −2] contains no Δ′-monochromatic solution to (3), and
the proof is finished. �

Applying the above result inductively, we obtain the following absolute lower
bound.

Theorem 3.2. Let k, n, c ∈ N+. Then Rk(n, c) ≥ (k+1)n−1
k (k + c− 1) + 1.

Proof. The inequality holds for n = 1, since Rk(1, c) = k + c by (2). For general
n ≥ 2, we apply induction and Lemma 3.1. �

3.2. Reducing c. We now vary the parameter c and show how Rk(n, c) is affected.
Several consequences will then be presented in subsequent sections.

Lemma 3.3. Let α, β ∈ Z such that α ≥ 1 and β ≥ 1 − α. Then for all integers
k, n, c with k, n ≥ 2 and c ≥ 0, we have

Rk(n, αc− β(k − 1)) ≤ αRk(n, c) + β.
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Proof. Let I be the integer interval

I = [1, αRk(n, c) + β]

and let Δ: I → [1, n] be any n-coloring of I. We must show that there exist
x1, . . . , xk+1 ∈ I which are monochromatic under Δ and which satisfy the equation

x1 + · · ·+ xk + (αc− β(k − 1)) = xk+1.

By the defining minimality property of Rk(n, (αc − β(k − 1))), this will suffice to
establish the stated inequality.

Let J = [1, Rk(n, c)]. We affinely embed J in I as follows:

h : J −→ I

z 	−→ αz + β.

Note that our hypotheses on α, β ensure that if z ≥ 1, then αz + β ≥ 1 and,
more generally, that h(J) ⊆ I. By composing Δ with h, we obtain an n-coloring
Δ′ = Δ ◦ h on J , namely the map Δ′ : J → [1, n] defined by

Δ′(z) = Δ(αz + β)

for all z ∈ J . Now, by definition of the upper bound Rk(n, c) of J , there exists a
Δ′-monochromatic solution

z1 + · · ·+ zk + c = zk+1

with zi ∈ J for all i. Multiplying by α and adding β’s, we get

(αz1 + β) + · · ·+ (αzk + β) + (αc− β(k − 1)) = (αzk+1 + β).

Now (αzi + β) ∈ I for all i, and since the zi are Δ′-monochromatic, it follows that
the (αzi + β) are Δ-monochromatic. This concludes the proof of the lemma. �

3.3. The case n ≥ k−1. A first consequence of the above lemma is the verification
of Conjecture 1.2 in the cases where either c ≡ 0 mod k − 1 (Proposition 3.4) or
n ≥ k − 1 (Theorem 3.5).

Proposition 3.4. If c is a multiple of k−1, then Rk(n, c) is finite. More precisely,
if c = q(k − 1) for some integer q ≥ 1, then

Rk(n, c) ≤ (q + 1)Sk(n)− q.

Proof. It follows from Lemma 3.3, with values β = −q, α = q+1 (so that α+β ≥ 1
as required), and c = 0 (the c in that lemma, not the present one), that

Rk(n, q(k − 1)) ≤ (q + 1)Rk(n, 0)− q

= (q + 1)Sk(n)− q. �

We may now settle Conjecture 1.2 in the case n ≥ k − 1.

Theorem 3.5. Assume n ≥ k− 1 and c ≥ 0. Then Rk(n, c) is finite if and only if
c is a multiple of k − 1.

Proof. If c is a multiple of k− 1, the statement follows from the above proposition.
On the other hand, if c is not a multiple of k−1, then Proposition 2.2, with divisor
d = k − 1, implies Rk(n, c) = +∞. �
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3.4. Further consequences. Our next consequence of Lemma 3.3 is a bound on
Rk(n, c) in terms of Rk(n, 1).

Proposition 3.6. For all c ≥ 1, we have Rk(n, c) ≤ cRk(n, 1). In particular, if
Rk(n, 1) is finite, then Rk(n, c) is finite for all c ≥ 0.

Proof. Applying Lemma 3.3 with c = 1 (the c in that lemma again, not the current
one) yields

Rk(n, α− β(k − 1)) ≤ αRk(n, 1) + β

for all integer α ≥ 1 and β ≥ 1−α. Now, setting α = c (the current one) and β = 0
in the above relation yields the stated inequality. �

Finally, we find that if c ≥ k − 1, then Rk(n, c) may be bounded below by
Rk(n, c)− q, where c is the class of c mod k − 1 and q is the floor of c/(k − 1).

Proposition 3.7. Assume c ≥ k − 1, and let c = q(k − 1) + c be the Euclidean
division of c by k − 1, with q ≥ 0 and 0 ≤ c ≤ k − 2. Then

Rk(n, c) ≤ Rk(n, c) + q.

Proof. It follows from Lemma 3.3, with values α = 1 and β = q, that

Rk(n, c) = Rk(n, c− (k − 1)q) ≤ Rk(n, c) + q. �
3.5. The case k ≤ 7. We now verify Conjecture 1.2 in case k ≤ 7, except for the
instances R5(3, 2) and R6(4, 1) which require completely different methods and will
be presented elsewhere.

Only the “if” part of the conjecture remains open. It states that if every divisor
d ≤ n of k − 1 also divides c, then Rk(n, c) should be finite. This is known to be
true in the following cases:

• if c = 0, in which case Rk(n, 0) is finite by Rado’s results [13].
• if n = 2, by Schaal’s results recalled in [19, Section 1.2].
• if c ≡ 0 mod k − 1, in which case Rk(n, c) is finite by Proposition 3.4.
• if n ≥ k − 1, by Theorem 3.5.

Consequently, for k ≤ 7, it remains to verify the “if” part of the conjecture only
for n ∈ [3, k − 2]. In particular, Conjecture 1.2 holds for k ≤ 4.

The case k = 5. It remains to discuss the case n = 3 and c ≡ 0 mod 4.

• For c odd, there is a divisor d ≤ n of k − 1 = 4 not dividing c, namely
d = 2. Therefore R5(3, c) = ∞ in that case, by the “only if” part of the
conjecture, i.e., by Proposition 2.2.

• For c ≡ 2 mod 4: according to the conjecture, we must show that R5(3, c)
is finite in this case. Now Lemma 3.3 reduces that statement to the sole
finiteness of R5(3, 2). Indeed, it implies R5(3, 2α) ≤ αR5(3, 2) for all α ≥ 1,
by setting β = 0 and c = 2 there. Finally, it turns out that R5(3, 2) is indeed
finite, as will be proved elsewhere.

We conclude that the conjecture holds for k = 5.

The case k = 6. We may assume n ∈ [3, 4] and c ≡ 0 mod 5. The only divisor
d ≤ n of k−1 = 5 is 1, which divides any c. Therefore, according to the conjecture,
we must show that R6(n, c) is finite for n ∈ [3, 4] and all c ≥ 1. Proposition 3.6 and
the obvious bound Rk(3, c) ≤ Rk(4, c) reduce that statement to the sole finiteness
of R6(4, 1). Again, R6(4, 1) turns out to be finite, with a proof similar to that for
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R5(3, 2) and to appear in the same paper. We conclude that the conjecture also
holds for k = 6.

The case k = 7. We may assume n ∈ [3, 5] and c ≡ 0 mod 6. The only divisors
d ≤ n of k−1 = 6 are 1, 2 and 3. If either 2 or 3 does not divide c, then R7(n, c) = ∞
in these cases, by the “only if” part of the conjecture, i.e., by Proposition 2.2. Now,
if both 2 and 3 divide c, then c ≡ 0 mod 6, an already settled case. Therefore, the
conjecture holds for k = 7, with a proof entirely contained in the present paper in
contrast to the cases k = 5 and 6.

The conjecture remains open for k ≥ 8. However, in order to settle the smallest
open case k = 8, it would suffice, by using the same reduction tools as above, to
show that R8(6, 1) is finite.

3.6. Yet another case of the conjecture. Here is yet another case where Con-
jecture 1.2 is shown to hold. Its interest lies in the fact that n is smaller than k−1,
in contrast with the situation in Section 3.3.

Proposition 3.8. Let n be an integer such that gcd(n, 6) = 1 and n ≥ 5. Let
k = 6n+ 1. The following statements are equivalent.

(1) Rk(n, c) is finite.
(2) Every divisor d ≤ n of k − 1 also divides c.
(3) k − 1 divides c.

Proof. That (1) implies (2) directly follows from Proposition 2.2. Now assume (2).
Applying this to d = 2, d = 3 and d = n, it follows that 2 ·3 ·n divides c, since these
numbers are pairwise coprime. That is, k − 1 divides c, as stated in (3). Finally,
that (3) implies (1) directly follows from Proposition 3.4. �

Needless to say, the same proof tools yield the same equivalences under this set
of hypotheses: gcd(n, 30) = 1, n ≥ 5 and k = 30n + 1; or, for that matter, under
the set of hypotheses gcd(n, 210) = 1, n ≥ 7 and k = 210n+ 1; and so on.

4. Bounds and exact values

In this section, we define new numbers S∗
k(n) which are smaller and easier to

determine than Sk(n). We then show how they provide a lower bound to Rk(n, c),
and we give an estimate for them. Finally, we use them to obtain a new shorter
proof for Schaal’s formula on R2(3, c), exact formulae for R3(3, c) and R4(3, c), and
sharper bounds in some other cases.

4.1. The numbers S∗
k(n). Before defining the S∗

k(n) proper, we introduce and
generalize some terminology from additive number theory.

Given nonempty sets A1, A2 of integers, their sumset A1 +A2 is defined as

A1 +A2 = {x1 + x2 | x1 ∈ A1, x2 ∈ A2}.
In particular, if A2 = {c} is a singleton, then A1 + A2 = {x + c | x ∈ A1}; it is
the translate of A1 by c, and will be denoted by A1 + c instead of A1 + {c}. If
A1 = A2 = A, then we denote 2A = A + A, and more generally, for any integer
k ≥ 1, we denote by kA the k-fold sumset of A with itself, i.e.,

kA = A+ · · ·+A︸ ︷︷ ︸
k

= {x1 + · · ·+ xk | xi ∈ A for all 1 ≤ i ≤ k}.
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A set A of integers is said to be sum-free if A ∩ 2A = ∅. As a generalization
well-suited to our purposes here, and with k, c integers with k ≥ 1, we shall say
that A is (kX + c)-free if

(kA+ c) ∩A = ∅.
More generally, given a set C of integers, we shall say that A is (kX +C)-free if it
is (kX + c)-free for all c ∈ C, or equivalently, if

(kA+ C) ∩ A = ∅.

Clearly, for c ∈ Z, the set A is (kX+ c)-free if and only if it contains no solution
to the equation

(5) x1 + · · ·+ xk + c = xk+1

with x1, . . . , xk+1 ∈ A.
Thus, the n-color Rado number Rk(n, c) may equivalently be described as the

smallest integer N , if it exists, or ∞ if not, such that for every n-coloring of [1, N ],
at least one of the color classes A in [1, N ] fails to be (kX + c)-free.

We are now in a position to define the S∗
k(n).

Definition 4.1. Let n, k be positive integers with k ≥ 2. Denote by S∗
k(n) the least

integer N such that, for every n-coloring of [1, N ], there exists a monochromatic
solution (x1, . . . , xk+1) to the equation

(6) x1 + · · ·+ xk + s = xk+1

for some s ∈ [−k + 2, 1].

Equivalently, let I = [−k+2, 1]. Then S∗
k(n) is the least integer N such that, for

every n-coloring of [1, N ], at least one of its color classes fails to be (kX + I)-free.
Indeed, a set A is (kX + I)-free if and only if it is (kX + s)-free for all s ∈ I, or

equivalently if, for all s ∈ I, it contains no solution to equation (6).
It directly follows from the definitions that

S∗
k(n) ≤ min

c∈[−k+2,1]
Rk(n, c).

In particular, at c = 0, we have S∗
k(n) ≤ Sk(n).

4.2. Bounding Rk(n, c) with S∗
k(n). Our first result constructs a (kX + c)-free

set A from a (kX + I)-free set B, where I = [−k + 2, 1]. This will then be used to
bound Rk(n, c) in terms of S∗

k(n).

Notation 4.2. For a subset B ⊆ Z and a positive integer λ, we denote

λ ·B = {λy | y ∈ B}.

The dot here is important since it helps distinguish λ ·B from the λ-fold sumset
λB = B + · · ·+B.

Lemma 4.3. Let k, c be integers such that k ≥ 2 and c ≥ 0. Let B ⊆ Z be a
(kX + I)-free subset, where I = [−k + 2, 1]. Let

A = (c+ k − 1) ·B + [−(c+ k − 2), 0].

Then A is (kX + c)-free.
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Proof. Assume that A is not (kX+ c)-free. Then there exist x1, . . . , xk+1 ∈ A such
that

(7) x1 + · · ·+ xk + c = xk+1.

By construction, each xi decomposes as

xi = (c+ k − 1)yi + ri

for some yi ∈ B and ri ∈ [−(c+ k − 2), 0]. Equation (7) then yields

(c+ k − 1)(y1 + · · ·+ yk − yk+1) + (r1 + · · ·+ rk − rk+1 + c) = 0.

It follows that (c+ k − 1) divides (r1 + · · ·+ rk − rk+1 + c), and that

(8)
(r1 + · · ·+ rk − rk+1 + c)

(c+ k − 1)
= −(y1 + · · ·+ yk − yk+1).

Now, since ri ∈ [−(c+ k − 2), 0] for all i ∈ [1, k + 1], we have

−(c+ k − 2)k ≤ r1 + · · ·+ rk ≤ 0,
0 ≤ −rk+1 ≤ (c+ k − 2),

from which it follows that

−(c+ k − 2)k + c ≤ (r1 + · · ·+ rk − rk+1 + c) ≤ (c+ k − 2) + c.

Dividing by (c+ k − 1) and using (8), we get

(9)
−(c+ k − 2)k + c

(c+ k − 1)
≤ −(y1 + · · ·+ yk − yk+1) ≤ (c+ k − 2) + c

(c+ k − 1)
.

Since the middle term is an integer, inequalities (9) remain valid if we replace the
leftmost term by its ceiling 
 � and the rightmost one by its floor � �.

The numerator −(c + k − 2)k + c in the leftmost term may be written as
−(c+ k − 1)k + (c+ k − 1) + 1, so that

−(c+ k − 2)k + c

(c+ k − 1)
= −k + 1 +

1

(c+ k − 1)
,

whose ceiling equals −k + 2.
In turn, the numerator of the rightmost term of (9) may be written as (c+ k −

1) + (c− 1), so that

(c+ k − 2) + c

(c+ k − 1)
= 1 +

(c− 1)

(c+ k − 1)
,

whose floor equals 0 if c = 0, or 1 if c ≥ 1. In either case, (9) yields

−k + 2 ≤ −(y1 + · · ·+ yk − yk+1) ≤ 1.

Thus, setting s = −(y1 + · · ·+ yk − yk+1), we have s ∈ [−k+2, 1], and the equality

y1 + · · ·+ yk + s = yk+1

implies that B is not (kX + s)-free, contrary to the assumption. �

This implies the following lower bound on Rk(n, c) in terms of S∗
k(n).

Proposition 4.4. Let k, n ≥ 2. Then Rk(n, c) ≥ (c+ k − 1)(S∗
k(n)− 1) + 1.
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Proof. Set M = S∗
k(n) and N = (c+k−1)(M−1)+1. By the minimality property

of S∗
k(n), there exists a special n-coloring Δ of [1,M − 1] all of whose color classes

B are (kX + I)-free, where I = [−k + 2, 1]. Let

π : [1, N − 1] −→ [1,M − 1]

be the map defined by

π(x) =

⌈
x

(c+ k − 1)

⌉

for all x ∈ [1, N − 1], and let Δ′ be the n-coloring of [1, N − 1] defined by

Δ′(x) = Δ (π(x))

for all x ∈ [1, N − 1]. Clearly, for all y ∈ [1,M − 1] and all r ∈ [−(c+ k− 2), 0], one
has

π ((c+ k − 1)y + r) = y,

i.e., the map π is constant on the subinterval (c + k − 1)y + [−(c + k − 2), 0]. It
follows that each color class A in [1, N − 1] under Δ′ is of the form

(10) A = (c+ k − 1) ·B + [−(c+ k − 2), 0]

for some color class B in [1,M − 1] under Δ. Now, since each such B is (kX + I)-
free, it follows from (10) and Lemma 4.3 that A is (kX+c)-free. By the minimality
property of Rk(n, c), it follows that

N − 1 ≤ Rk(n, c)− 1,

as claimed. �

Remark 4.5. Proposition 4.4 provides a lower bound on Rk(n, c) involving S∗
k(n),

whereas Proposition 3.4 provides, if c is a nonnegative multiple of k − 1, an upper
bound on Rk(n, c) involving Sk(n). Thus, combining both bounds for c = q(k − 1)
with q ∈ Z+, we get

(q + 1)(k − 1)(S∗
k(n)− 1) + 1 ≤ Rk(n, c) ≤ (q + 1)(Sk(n)− 1) + 1.

Remarkably, it turns out that these two bounds sometimes coincide and hence
yield the exact value of Rk(n, c), as will be seen later on in some instances. At any
rate, we get the following corollary.

Corollary 4.6. If Sk(n)− 1 = (k − 1)(S∗
k(n)− 1), then for all c = q(k − 1) with

q ∈ N, we have Rk(n, c) = (q + 1)(Sk(n)− 1) + 1.

Proof. This directly follows from the above remark. �

4.3. A lower bound on S∗
k(n). We first relate S∗

k(n) to S∗
k(n−1), and then derive

an absolute lower bound on it.

Proposition 4.7. Let k, n ≥ 2. Then S∗
k(n) ≥ (k + 1)S∗

k(n− 1)− k + 1.

Proof. Set M = S∗
k(n− 1) and N = (k+1)M − k+1. By the minimality property

of S∗
k(n−1), there exists a special (n−1)-coloring Δ of [1,M −1] under which each

color class B ⊆ [1,M − 1] is (kX + s)-free for all s ∈ [−k + 2, 1].
Let us now extend Δ to the n-coloring

Δ′ : [1, N − 1] −→ [1, n],
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defined as follows, for x ∈ [1, N − 1]:

(11) Δ′(x) =

⎧⎨
⎩

Δ(x) if x ∈ [1,M − 1],
n if x ∈ [M,kM − k + 1],

Δ(x− (N − 1)) if x ∈ [kM − k + 2, N − 1].

Note, for later use, that the third interval above is just a translate of the first one,
namely:

(12) [kM − k + 2, N − 1] = [1,M − 1] + (kM − k + 1).

It remains to show that each color class in [1, N −1] under Δ′ is (kX+s)-free. The
minimality property of S∗

k(n) will then imply N − 1 ≤ S∗
k(n)− 1, as desired.

Now, each color class A under Δ′ is either equal to [M,kM − k+1], or else it is
of the form

(13) A = B + {0, kM − k + 1} = B + (kM − k + 1) · [0, 1]

for some color class B ⊆ [1,M − 1] under Δ. This follows from (11) and (12).
So, let A ⊆ [1, N − 1] be a color class under Δ′, and let s ∈ [−k+ 2, 1]. We now

show that A is (kX + s)-free.

Case 1. A = [M,kM − k + 1]. We then have

min(kA+ s) = kM + s ≥ kM − k + 2 = max(A) + 1.

It follows that (kA+ s) ∩ A = ∅, as claimed.

Case 2. A = B+(kM −k+1) · [0, 1] for some color class B ⊆ [1,M − 1], as stated
in (13). Assume, for a contradiction, that (kA+ s) ∩A is not empty. Since

kA+ s = kB + s+ (kM − k + 1) · [0, k],

there exist b1, . . . , bk+1 ∈ B, and integers u ∈ [0, k], v ∈ [0, 1] such that

b1 + · · ·+ bk + s+ (kM − k + 1)u = bk+1 + (kM − k + 1)v.

It follows that b1 + · · · + bk − bk+1 + s is a multiple of (kM − k + 1). Now, since
bi ∈ [1,M − 1] for all i and since s ∈ [−k + 2, 1], we have

−M + 3 ≤ b1 + · · ·+ bk − bk+1 + s ≤ kM − k.

But the only multiple of (kM − k + 1) within this range is 0. Therefore,

b1 + · · ·+ bk − bk+1 + s = 0,

i.e., b1 + · · · + bk + s = bk+1 and hence belongs to (kB + s) ∩ B. This contradicts
the fact that the color class B is (kX + s)-free. �

Corollary 4.8. Let k, n ≥ 2. Then S∗
k(n) ≥

(k+1)n−1
k + 1.

Proof. Since S∗
k(1) = 2, as easily seen, the inequality is satisfied for n = 1. For

general n ≥ 2, we apply induction and Proposition 4.7. �
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4.4. Revisiting R2(3, c). An exact formula for R2(3, c) has been provided by
Schaal [20]. We now provide a shorter proof for it, which exploits the above prop-
erties of the S∗

k(n) and thereby avoids the case-by-case analysis of [20].

Proposition 4.9. We have S∗
2(3) = 14.

Proof. Since S2(3) = 14 and S∗
2 (3) ≤ S2(3), we have S∗

2 (3) ≤ 14. The reverse
inequality directly follows from Corollary 4.8. Alternatively, it suffices to exhibit a
3-coloring of [1, 13] with all three color classes being (2X + I)-free where I = [0, 1]
as seen below:

A1 = {1, 4, 10, 13},
A2 = {2, 3, 11, 12},
A3 = [5, 9].

Each Ai satisfies (2Ai + I) ∩ Ai = ∅, as readily checked and as required. �

Corollary 4.10 (Schaal, [20]). We have R2(3, c) = 13c+ 14 for all c ≥ 0.

Proof. We have S∗
2 (3) = S2(3) = 14. The first equality is an instance where the

hypothesis

Sk(n) = (k − 1)(S∗
k(n)− 1) + 1

of Corollary 4.6 is satisfied, here with k = 2. That corollary then implies

R2(3, c) = (c+ 1)(S2(3)− 1) + 1,

i.e., R2(3, c) = 13(c+ 1) + 1 = 13c+ 14. �

Using the same method of proof, it is easy to establish the corresponding formula
for R2(2, c), namely:

R2(2, c) = 4c+ 5

for all c ≥ 0.

4.5. A formula for S∗
k(2). We end this section by deriving a formula for S∗

k(2).

Proposition 4.11. Let k ≥ 2. Then S∗
k(2) = k + 3.

Proof. The bound S∗
k(2) ≥ k+ 3 directly follows from Corollary 4.8. To prove the

reverse inequality, it suffices to show that for every 2-coloring of [1, k + 3], one of
the two color classes fails to be (kX + I)-free, where as usual I = [−k + 2, 1].

Given a 2-coloring of [1, k+3], let A1, A2 be its two color classes. We may freely
assume that 1 ∈ A1. Since

k{1}+ I = {k}+ [−k + 2, 1] = [2, k + 1],

it follows that if A1∩ [2, k+1] failed to be empty, then A1 would fail to be (kX+I)-
free and we would be done.

Therefore, we may assume A1 ∩ [2, k + 1] = ∅, i.e., [2, k + 1] ⊆ A2. Since

k[2, k + 1] + I = [2k, k2 + k] + [−k + 2, 1] = [k + 2, k2 + k + 1],

which contains {k + 2, k + 3}, we may assume that none of k + 2, k + 3 belongs to
A2, for otherwise A2 would fail to be (kX + I)-free and we would again be done.
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Therefore, we may assume {1, k + 2, k + 3} ⊆ A1. But then, A1 fails to be
(kX + I)-free, since setting

x1 = · · · = xk−1 = 1, xk = k + 2, xk+1 = k + 3, s = −k + 2,

we have xi ∈ A1 for all i, s ∈ I, and

x1 + · · ·+ xk + s = xk+1. �

5. Computer-aided results

The problem of computing S∗
k(n) or Rk(n, c) can be translated as a Boolean

satisfiability problem, as detailed in Section 5.3 for the computation of R2(4, c).
The resulting Boolean translation, for given instances, may then be fed to a com-
puter running a suitable SAT solver. All results in this section have been obtained
by combining such computations with the theory developed above. The specific
SAT solver we have used is March RW [9], the gold medal winner of the 2011
International SAT Competition.

Proposition 5.1. The following values of S∗
k(n), for n = 3 and 2 ≤ k ≤ 6, and

for n = 4 and 2 ≤ k ≤ 3, hold:

(1) S∗
2 (3) = 14, S∗

3(3) = 22, S∗
4 (3) = 32, S∗

5 (3) = 44, S∗
6(3) = 58.

(2) S∗
2 (4) = 41, S∗

3(4) = 86.

Proof. The formula for S∗
2 (3) has been established in Proposition 4.9. All others

have been obtained by running a SAT solver on the corresponding Boolean trans-
lations. �

The numbers Sk(n) are larger and more difficult to compute than the S∗
k(n)’s.

However, in a few instances where we have been able to compute them, the hy-
pothesis of Corollary 4.6, namely

Sk(n)− 1 = (k − 1)(S∗
k(n)− 1),

turned out to be satisfied, thereby allowing an exact formula for the corresponding
Rk(n, c)’s.

5.1. Exact formulas for R3(3, c) and R4(3, c). We now establish previously un-
known formulas for R3(3, c) and R4(3, c), as new applications of Corollary 4.6.

5.1.1. The case R3(3, c). We first need the value of S3(3), recently obtained in [18].

Theorem 5.2. We have S3(3) = 43.

Proof. The inequality S3(3) ≤ 43 is obtained by computer using the SAT solver
March [9]. Indeed, the solver established that the Boolean constraints derived from
assuming the existence of a 3-coloring of [1,43] with (3X + 0)-free color classes
cannot be satisfied.

The reverse inequality follows from a result of Znam [24] which, for k = n = 3,
yields the bound

S3(3) ≥
2

3
(43 − 1) + 1 = 43. �

Theorem 5.3. For every integer c ≥ 0, we have

R3(3, c) =

{ ∞ if c odd,

21c+ 43 if c even.
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Proof. For c odd, we have R3(3, c) = +∞ by Proposition 2.2. Now assume c = 2q
with q ∈ N. Since S∗

3 (3) = 22 by Proposition 5.1, and since S3(3) = 43 as stated
above, we see that the hypothesis

Sk(n)− 1 = (k − 1)(S∗
k(n)− 1)

of Corollary 4.6 is again satisfied in this instance. Therefore, that corollary yields
the formula

R3(3, 2q) = (q + 1)(S3(3)− 1) + 1,

that is, for c = 2q: R3(3, c) = 42(q + 1) + 1 = 21c+ 43, as claimed. �

5.1.2. The case R4(3, c). In view of applying Corollary 4.6 again, we now need the
value of S4(3).

Theorem 5.4. We have S4(3) = 94.

Proof. Follows from a three-hour computation with the SAT solver March, using
our Boolean translation of the problem along the lines of Section 5.3. �

Theorem 5.5. For every integer c ≥ 0, we have

R4(3, c) =

{ ∞ if c ∈ 3N,

31c+ 94 if c ∈ 3N.

Proof. For c not divisible by 3, we have R4(3, c) = +∞ by Proposition 2.2. Assume
now c = 3q with q ∈ N. Since S∗

4 (3) = 32 by Proposition 5.1, and since S4(3) = 94
as stated above, we see that the hypothesis

Sk(n)− 1 = (k − 1)(S∗
k(n)− 1)

of Corollary 4.6 is again satisfied in this instance. Therefore, that corollary yields
the formula

R4(3, 3q) = (q + 1)(S4(3)− 1) + 1;

that is, for c = 3q: R4(3, c) = 93(q + 1) + 1 = 31c+ 94, as claimed. �

5.2. Some new bounds. Short of exact formulae, Remark 4.5 also enables us to
obtain new bounds on suitable instances of Rk(n, c).

Corollary 5.6. Let c ∈ N. Then 40c+ 41 ≤ R2(4, c) ≤ 44c+ 45.

Proof. The lower bound on R2(4, c) follows from Proposition 4.4 and the value
S∗
2(4) = 41 stated in Proposition 5.1, whereas the upper bound follows from Propo-

sition 3.4 and the known value S2(4) = 45. �

Corollary 5.7. Let c ∈ N. Then 121c+ 122 ≤ R2(5, c) ≤ 305c+ 306.

Proof. It is known that S2(5) ≤ 316; see [14, 17]. Moreover, Radziszowski showed
in [14] that r5(3) ≤ 307, where r5(3) = r(3, 3, 3, 3, 3) denotes the 5-color Ram-
sey number for unavoidable monochromatic triangles in any edge-colored complete
graph of that order. Applying the relationship between Schur numbers and Ramsey
numbers given by Roberston [16], one obtains S2(5) ≤ r5(3)− 1 ≤ 306.

Propositions 3.4 and 4.4 then yield, for k = 2 and n = 5, the stated bounds on
R2(5, c). �
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5.3. Seeking R2(4, c) by computer. Having fixed c ≥ 0, we seek successive
integers M such that [1,M ] admits a 4-coloring all of whose color classes are
(2X + c)-free; or equivalently, such that no triplet of the form {i, j, i + j + c},
with 1 ≤ i ≤ M − c and i ≤ j ≤ M − i − c, is monochromatic. When the largest
possible such M is found, we are done: R2(4, c) = M + 1.

We now reformulate this problem as a Boolean satisfiability problem [6]. We
proceed as follows.

First, any 4-coloring of [1,M ] may be viewed as a function

Δ: [1,M ] −→ {0, 1}2.
By setting Δ(i) = (xi, xi+M ) for all i ∈ [1,M ], this 4-coloring may be represented
by 2M binary variables x1, . . . , x2M with values in {0, 1}.

We now view 0 and 1 as representing the Boolean values False and True, respec-
tively. This allows us to use the logical operators AND, OR and NOT, denoted
respectively by ∧, ∨ and ¬, on the set {0, 1}, with the purpose of translating the
nonequality of elements by the validity of some associated logical formula. Indeed,
for any x, y ∈ {0, 1}, we have

(14) x = y ⇐⇒ (x ∨ y) ∧ (¬x ∨ ¬y) is True,
as readily checked. It is easy to similarly translate the non-equality of two given
colors in {0, 1}2, since for (x1, y1), (x2, y2) ∈ {0, 1}2, we have

(x1, y1) = (x2, y2) ⇐⇒ x1 = x2 or y1 = y2.

Let us go back to our generic 4-coloring

Δ: [1,M ] −→ {0, 1}2

represented by the Boolean variables x1, . . . , x2M . Given an arbitrary subset A ⊆
[1,M ], we may associate to A, in the way described above, a logical formula λ(A)
in the variables x1, . . . , x2M , in such a way that A fails to be monochromatic if and
only if λ(A) is True. Therefore, given a family of subsets A1, . . . , Ar ⊆ [1,M ], pro-
hibiting all of them to be monochromatic admits the following Boolean translation:

(15) no Ai is monochromatic ⇐⇒
r∧

i=1

λ(Ai) is True.

Now, applying this translation to the above-mentioned set of triplets, namely the
subsets {i, j, i + j + c} ⊆ [1,M ] with 1 ≤ i ≤ M − c and i ≤ j ≤ M − i − c, we
obtain by (15) a system of logical formulas that can be simultaneously satisfied if
and only if [1,M ] admits a 4-coloring all of whose color classes are (2X + c)-free.
Fixing successive values of M , we feed the associated system to a SAT solver, which
will then attempt to say whether that system is satisfiable or not. As long as it is,
we increase M . When, for some M0, we reach nonsatisfiability as an output, we
know we are done: R2(4, c) = M0.

5.4. Exact values of R2(4, c) for c ≤ 6. Applying the above method, we have
obtained, by computer, the following exact value of the Rado numbers R2(4, c) for
0 ≤ c ≤ 6.

Theorem 5.8. We have

R2(4, 0) = 40 · 0 + 45 = 45,

R2(4, 1) = 40 · 1 + 43 = 83, and

R2(4, c) = 40 · c+ 41 for 2 ≤ c ≤ 6.
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Proof. The value R2(4, 0) = 45 is due to [2]. A 4-coloring of [1, 82] with (2X+1)-free
color classes, implying R2(4, 1) ≥ 83, is given by the following 4 color classes:

{1, 2, 15, 16, 21, 22, 28, 29, 35, 36, 47, 54, 55, 61, 62, 67, 68, 81, 82},
{3, 4, 5, 6, 17, 18, 19, 20, 33, 34, 49, 50, 63, 64, 65, 66, 77, 78, 79, 80},
{23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 56, 57, 58, 59, 60},
{7, 8, 9, 10, 11, 12, 13, 14, 30, 31, 32, 48, 51, 52, 53, 69, 70, 71, 72, 73, 74, 75, 76},

thereby improving the lower bound R2(4, 1) ≥ 81 given by Proposition 4.4 and the
value S∗

2(4) = 41 of Proposition 5.1. For 2 ≤ c ≤ 6, the lower bound is achieved by
Proposition 4.4, and is revealed to be sharp by computations using the SAT solver
March [9]. The running times on a standard desktop computer were as follows:

Values of c R2(4, c) Time in seconds

c = 1 83 13
c = 2 121 50
c = 3 161 1260
c = 4 201 2810
c = 5 241 9270
c = 6 281 593000

�

5.5. Conclusions and open problems. Combined with a separate forthcoming
paper establishing the finiteness of R5(3, 2) and R6(4, 1), Conjecture 1.2 turns out
to be true for k ≤ 7. It remains to settle it in general. The smallest open case is
R8(6, 1), conjectured to be finite. In addition, in view of the above determination
of R2(4, c) for c ≤ 6, it is natural to conjecture that the formula R2(4, c) = 40c+41
also holds for c ≥ 7. Is it true or not? Along the same line, we are also interested
in determining exact values or sharper bounds for R2(5, c).
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[18] I. Sanz Domı́nguez, Números de Schur y Rado, Ph. Thesis, Universidad de Sevilla, 2010.
[19] D. Schaal, On generalized Schur numbers, Proceedings of the Twenty-fourth Southeastern

International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton,
FL, 1993), Congr. Numer. 98 (1993), 178–187. MR1267352 (95f:05113)

[20] D. Schaal, A family of 3-color Rado numbers, Proceedings of the Twenty-sixth Southeastern
International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL,
1995), Congr. Numer. 111 (1995), 150–160. MR1369349 (96h:05006)

[21] D. Schaal and D. Vestal, Rado numbers for x1 + x2 + · · ·+ xm−1 = 2xm, Proceedings of the
Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and
Computing, Congr. Numer. 191 (2008), 105–116. MR2489815 (2010f:05184)

[22] I. Schur, Uber die Kongruenz xm + ym ≡ zm(mod p), Jahresber. Deutsch. Math.-Verein. 25,
114–117 (1916).

[23] E. G. Whitehead Jr., The Ramsey number N(3, 3, 3, 3; 2), Discrete Math. 4 (1973), 389–396.
MR0314678 (47 #3229)
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