ON THE n-COLOR RADO NUMBER FOR THE EQUATION

$$
x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1}
$$

S. D. ADHIKARI, L. BOZA, S. ELIAHOU, J. M. MARÍN, M. P. REVUELTA, AND M. I. SANZ

Abstract. For integers k, n, c with $k, n \geq 1$, the n-color Rado number $R_{k}(n, c)$ is defined to be the least integer N, if it exists or ∞ otherwise, such that for every n-coloring of the set $\{1,2, \ldots, N\}$, there exists a monochromatic solution in that set to the equation

$$
x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1}
$$

In this paper, we mostly restrict to the case $c \geq 0$, and consider two main issues regarding $R_{k}(n, c)$: is it finite or infinite, and when finite, what is its value? Very few results are known so far on either one.

On the first issue, we formulate a general conjecture, namely that $R_{k}(n, c)$ should be finite if and only if every divisor $d \leq n$ of $k-1$ also divides c. The "only if" part of the conjecture is shown to hold, as well as the "if" part in the cases where either $k-1$ divides c, or $n \geq k-1$, or $k \leq 7$, except for two instances to be published separately.

On the second issue, we obtain new bounds on $R_{k}(n, c)$ and determine exact formulae in several new cases, including $R_{3}(3, c)$ and $R_{4}(3, c)$. As for the case $R_{2}(3, c)$, first settled by Schaal in 1995, we provide a new shorter proof.

Finally, the problem is reformulated as a Boolean satisfiability problem, allowing the use of a SAT solver to treat some instances.

1. Introduction

Throughout the paper, we shall denote by \mathbb{Z}, \mathbb{N} and \mathbb{N}_{+}the set of integers, nonnegative integers and positive integers, respectively. Let $n \in \mathbb{N}_{+}$. An n-coloring of a set A is a function

$$
\Delta: A \longrightarrow C
$$

where C is some finite set of cardinality $|C|=n$. Here, we shall mostly deal with n-colorings of integer intervals $[1, N]$, where

$$
[a, b]=\{a, a+1, \ldots, b\}
$$

for integers $a \leq b$.
Given an n-coloring Δ of $[1, N]$ and a linear equation L in $k+1$ variables with integer coefficients, a solution $\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)$ to L is said to be monochromatic if $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\cdots=\Delta\left(x_{k+1}\right)$.

[^0]1.1. Some earlier results. In 1916, Schur [22] proved that for every $n \geq 1$, there exists a least integer $S_{2}(n)=N$, such that for every n-coloring of $[1, N]$, there exists a monochromatic solution to the equation $x_{1}+x_{2}=x_{3}$.

The integers $S_{2}(n)$ are called the Schur numbers and are currently known only for $n \leq 4$, namely: $S_{2}(1)=2, S_{2}(2)=5, S_{2}(3)=14$ and $S_{2}(4)=45$. While these stated values for $n \leq 3$ can easily be settled by hand, the one for $n=4$ relies on an exhaustive computer search [2]. For $n=5$, the currently available bounds for $S_{2}(5)$ are $161 \leq S_{2}(5) \leq 306$, and it is conjectured in [8] that the lower bound 161, established in [7], is perhaps sharp. For the upper bound 306, see [18]. For general $n \geq 1$, Schur [22] obtained the following bounds:

$$
\left(3^{n}+1\right) / 2+1 \leq S_{2}(n) \leq\lfloor n!e\rfloor+1 .
$$

Slightly improved upper bounds were subsequently provided by Whitehead [23] and Honghui Wan [10, whereas for lower bounds, the inequalities

$$
S_{2}(m+n) \geq 2 S_{2}(m) S_{2}(n)-S(m)-S(n)+1
$$

of Abbott and Hanson [1], and $S_{2}(5) \geq 161$ of Fredricksen and Sweet [8], together yield the sharpening $S_{2}(n) \geq c 322^{n / 5} \geq c 3.17^{n}$ for $n \geq 6$, where c is some absolute positive constant.

In 1933, Rado [13] generalized the work of Schur to arbitrary systems of linear equations. Given $n \geq 1$ and a system of linear equations L, the least integer N (if it exists) such that for every n-coloring of the set $[1, N]$, there is a monochromatic solution to the system L, is called the n-color Rado number for L. If no such integer N exists, then this Rado number is defined to be infinite.

Given a linear system L as above, and $n \geq 1$, there are two main issues regarding its corresponding n-color Rado number: is it finite or infinite? When it is finite, what is its exact value?

In particular, for the equation $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$ where $k \geq 2$, Rado's results imply that for all $n \geq 1$, the corresponding n-color Rado number is actually finite, i.e., there exists a least integer $S_{k}(n)=N$ such that for every n-coloring of $[1, N]$, there is a monochromatic solution of that equation [13].

In 1982, Beutelspacher and Brestovansky [5] showed that $S_{k}(2)=k^{2}+k-1$ for $k \geq 2$. More than twenty years later, Sanz [18] established the value $S_{3}(3)=43$ with an exhaustive computer search.

Burr and Loo [3] were able to determine the 2-color Rado numbers for the equations $x_{1}+x_{2}+c=x_{3}$ and $x_{1}+x_{2}=k x_{3}$ for every integer c and for every positive integer k. There are several results due to Schaal and other authors, about 2-color and 3 -color Rado numbers for particular equations; see [11, 12, 15, 21].
1.2. The main conjecture. Let n, k, c be integers with $n, k \geq 1$ and $c \geq 0$. In this paper, we shall be concerned with the above-mentioned equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1} . \tag{1}
\end{equation*}
$$

Notation 1.1. We shall denote by $R_{k}(n, c)$ the n-color Rado number corresponding to equation (1), i.e., the smallest positive integer N, if it exists, such that every n-coloring of $[1, N]$ admits a monochromatic solution to it.

For what values of the parameters n, k, c is $R_{k}(n, c)$ finite? By Rado's result, recalled above, it holds that $R_{k}(n, 0)=S_{k}(n)$ is always finite. Now, for $n=2$,

Schaal [19] showed that $R_{k}(2, c)$ is finite if and only if k or c is even, in which case

$$
R_{k}(2, c)=(k+1)^{2}+(c-1)(k+2) .
$$

Later on, he further showed that the 3-color Rado number $R_{2}(3, c)$ is always finite [20], and obtained the exact value $R_{2}(3, c)=13 c+14$ for all $c \geq 0$.

In this paper, we provide further instances of n, k, c for which $R_{k}(n, c)$ is shown to be finite or infinite, respectively. These results, as well as those of Schaal on $R_{k}(2, c)$ and $R_{2}(3, c)$, fit into one single conjecture.

Conjecture 1.2. For integers k, n, c with $k \geq 2, n \geq 1$ and $c \geq 0$, the n-color Rado number $R_{k}(n, c)$ is finite if and only if every divisor $d \leq n$ of $k-1$ also divides c.

In the sequel, we settle this conjecture if either $k-1$ divides c, or $n \geq k-1$, or $k \leq 7$, except for two special cases which need a completely different approach and will be presented elsewhere.
1.3. Contents. In Section 2 we settle the "only if" part of Conjecture 1.2 by giving a sufficient condition on n, k, c ensuring that $R_{k}(n, c)$ is infinite. In Section 3, we study how $R_{k}(n, c)$ behaves under changes on n and c, and then exploit the results to settle Conjecture 1.2 in cases $n \geq k-1$ and $k \leq 7$. In Section 4 we introduce new numbers $S_{k}^{*}(n)$, smaller and easier to study than $S_{k}(n)$, and show how they help bounding $R_{k}(n, c)$ from below. This is then exploited in Section 5 in conjunction with SAT solvers, to get new formulae for some instances of $R_{k}(n, c)$.

2. An obstacle to finiteness

We start by treating the cases $n=1$ or $k=1$. For $n=1$, the Rado number $R_{k}(n, c)$ is given by the formula

$$
\begin{equation*}
R_{k}(1, c)=k+c \tag{2}
\end{equation*}
$$

for all $k \geq 1$ and $c \geq 0$, as readily verified. The case $k=1$ is also easy to determine. Indeed, for $c=0$ we have

$$
R_{1}(n, 0)=1
$$

for all $n \geq 2$, whereas the following holds for $c \geq 1$.
Proposition 2.1. For all $n \geq 2$ and $c \geq 1$, we have $R_{1}(n, c)=+\infty$.
Proof. The statement follows from the following 2-coloring of \mathbb{N}_{+}:

$$
\begin{aligned}
\Delta: \mathbb{N}_{+} & \longrightarrow\{0,1\} \\
x & \longmapsto \text { the class of }\lceil x / c\rceil \bmod 2 .
\end{aligned}
$$

Since $\lceil(x+c) / c\rceil=\lceil x / c\rceil+1$, implying $\Delta(x+c) \equiv \Delta(x)+1 \bmod 2$, there are no monochromatic solution to the equation $x_{1}+c=x_{2}$, thereby implying $R_{1}(n, c)=$ $+\infty$ as stated.

Therefore, from now on, we shall assume $k, n \geq 2$. Here is an obstacle to the finiteness of $R_{k}(n, c)$, which settles the "only if" part of Conjecture 1.2

Proposition 2.2. If there exists a divisor $d \leq n$ of $k-1$ which does not divide c, then $R_{k}(n, c)=+\infty$.

Proof. Color each integer by its class mod d, taken in the set $\{0,1, \ldots, d-1\}$. This yields a d-coloring of \mathbb{N}_{+}. Let $x_{1}, \ldots, x_{k+1} \in \mathbb{N}_{+}$be monochromatic for this coloring, say all of the same color class $r \bmod d$. Then

$$
x_{1}+\cdots+x_{k}-x_{k+1} \equiv(k-1) r \equiv 0 \bmod d,
$$

where the second congruence follows from the hypothesis that d divides $k-1$. Now since $c \not \equiv 0 \bmod d$ by hypothesis, it follows that $\left(x_{1}, \ldots, x_{k+1}\right)$ cannot satisfy the equation

$$
x_{1}+\cdots+x_{k}-x_{k+1}=-c .
$$

Therefore this equation does not admit any monochromatic solution. It follows that $R_{k}(d, c)=+\infty$, whence also $R_{k}(n, c)=+\infty$, as claimed.

In fact, the above condition is the only general one we are aware of which implies $R_{k}(n, c)=\infty$. This is what led us to formulate Conjecture 1.2,

3. VARYing n and c

In this section, we shall vary the parameters n and c and show how this affects the value of $R_{k}(n, c)$. This study will ultimately allow us to settle Conjecture 1.2 in the cases where either $k-1$ divides c, or $n \geq k-1$, or $k \leq 7$, except for two key instances which need a different approach and will be published separately.
3.1. Reducing n. Our first result is a relation between n-color and $(n-1)$-color Rado numbers. Trivially, one has $R_{k}(n, c) \geq R_{k}(n-1, c)$, but a sharper inequality holds.

Lemma 3.1. Let $k, n, c \in \mathbb{N}_{+}$. Then $R_{k}(n, c) \geq(k+1) R_{k}(n-1, c)+c-1$.
Proof. To ease notation, set $M=R_{k}(n-1, c)$ and $N=k M+c$. Thus

$$
(k+1) R_{k}(n-1, c)+c-1=N+M-1,
$$

and our aim is to show that $R_{k}(n, c) \geq N+M-1$. In order to do that, it suffices to construct an n-coloring of the integer interval [$1, N+M-2$] for which that interval contains no monochromatic x_{i} 's satisfying the equation

$$
\begin{equation*}
x_{1}+\cdots+x_{k}+c=x_{k+1} . \tag{3}
\end{equation*}
$$

The minimality property of $R_{k}(n, c)$ will then imply the desired inequality.
By definition of M, there exists an $(n-1)$-coloring

$$
\begin{equation*}
\Delta:[1, M-1] \longrightarrow[1, n-1] \tag{4}
\end{equation*}
$$

such that $[1, M-1]$ contains no Δ-monochromatic x_{i} 's satisfying equation (3). We now extend (4) to an n-coloring

$$
\Delta^{\prime}:[1, N+M-2] \longrightarrow[1, n]
$$

as follows:

$$
\Delta^{\prime}(x)=\left\{\begin{array}{cl}
\Delta(x) & \text { if } x \in[1, M-1], \\
n & \text { if } x \in[M, N-1] \\
\Delta(x-(N-1)) & \text { if } x \in[N, N+M-2] .
\end{array}\right.
$$

It remains to show that $[1, N+M-2]$ is free of a Δ^{\prime}-monochromatic solution to (33). Assuming the contrary, let $x_{1}, \ldots, x_{k+1} \in[1, N+M-2]$ satisfy (3) and be of the same Δ^{\prime}-color in $[1, n]$.

First, that common color cannot be n, for otherwise all x_{i} 's would belong to [$M, N-1$], thereby yielding

$$
x_{k+1}=x_{1}+\cdots+x_{k}+c \geq k M+c=N
$$

a contradiction.
Therefore, that common color of x_{1}, \ldots, x_{k+1} belongs to [$\left.1, n-1\right]$. Hence, some x_{i} 's belong to $[1, M-1]$ and the rest to $[N, N+M-2]$. How do they distribute among these two intervals? First, we may assume that

$$
x_{1} \leq \cdots \leq x_{k}
$$

Note further that $x_{k}<x_{k+1}$, since

$$
x_{k+1}=x_{1}+\cdots+x_{k}+c \geq k+c \geq 2
$$

by hypothesis on c.
Clearly, the x_{i} 's cannot all belong to $[1, M-1]$ by our hypothesis on (4). It follows that the largest one, namely x_{k+1}, belongs to $[N, N+M-2]$. We claim that

$$
x_{1}, \ldots, x_{k-1} \in[1, M-1] \text { and } x_{k} \in[N, N+M-2] .
$$

Indeed, by (3) and the fact that $x_{k+1} \in[N, N+M-2]$, at most one among $\left\{x_{1}, \ldots, x_{k}\right\}$ may belong to $[N, N+M-2]$, since

$$
2 N>N+M-2
$$

as readily verified. Similarly, at least one among $\left\{x_{1}, \ldots, x_{k}\right\}$ must belong to [$N, N+M-2]$, for otherwise $x_{k} \leq M-1$, and by (3) we would have

$$
x_{k+1} \leq k(M-1)+c<N,
$$

a contradiction. Subtracting $N-1$ from x_{k} and x_{k+1}, it follows that

$$
x_{1}, \ldots, x_{k-1}, x_{k}-(N-1), x_{k+1}-(N-1)
$$

are Δ-monochromatic, belong to $[1, M-1]$, and satisfy (3), a contradiction. Therefore, the interval $[1, N+M-2]$ contains no Δ^{\prime}-monochromatic solution to (3), and the proof is finished.

Applying the above result inductively, we obtain the following absolute lower bound.

Theorem 3.2. Let $k, n, c \in \mathbb{N}_{+}$. Then $R_{k}(n, c) \geq \frac{(k+1)^{n}-1}{k}(k+c-1)+1$.
Proof. The inequality holds for $n=1$, since $R_{k}(1, c)=k+c$ by (2). For general $n \geq 2$, we apply induction and Lemma 3.1.
3.2. Reducing c. We now vary the parameter c and show how $R_{k}(n, c)$ is affected. Several consequences will then be presented in subsequent sections.

Lemma 3.3. Let $\alpha, \beta \in \mathbb{Z}$ such that $\alpha \geq 1$ and $\beta \geq 1-\alpha$. Then for all integers k, n, c with $k, n \geq 2$ and $c \geq 0$, we have

$$
R_{k}(n, \alpha c-\beta(k-1)) \leq \alpha R_{k}(n, c)+\beta
$$

Proof. Let I be the integer interval

$$
I=\left[1, \alpha R_{k}(n, c)+\beta\right]
$$

and let $\Delta: I \rightarrow[1, n]$ be any n-coloring of I. We must show that there exist $x_{1}, \ldots, x_{k+1} \in I$ which are monochromatic under Δ and which satisfy the equation

$$
x_{1}+\cdots+x_{k}+(\alpha c-\beta(k-1))=x_{k+1} .
$$

By the defining minimality property of $R_{k}(n,(\alpha c-\beta(k-1)))$, this will suffice to establish the stated inequality.

Let $J=\left[1, R_{k}(n, c)\right]$. We affinely embed J in I as follows:

$$
\begin{aligned}
h: J & \longrightarrow I \\
\quad z & \longmapsto \alpha z+\beta .
\end{aligned}
$$

Note that our hypotheses on α, β ensure that if $z \geq 1$, then $\alpha z+\beta \geq 1$ and, more generally, that $h(J) \subseteq I$. By composing Δ with h, we obtain an n-coloring $\Delta^{\prime}=\Delta \circ h$ on J, namely the map $\Delta^{\prime}: J \rightarrow[1, n]$ defined by

$$
\Delta^{\prime}(z)=\Delta(\alpha z+\beta)
$$

for all $z \in J$. Now, by definition of the upper bound $R_{k}(n, c)$ of J, there exists a Δ^{\prime}-monochromatic solution

$$
z_{1}+\cdots+z_{k}+c=z_{k+1}
$$

with $z_{i} \in J$ for all i. Multiplying by α and adding β 's, we get

$$
\left(\alpha z_{1}+\beta\right)+\cdots+\left(\alpha z_{k}+\beta\right)+(\alpha c-\beta(k-1))=\left(\alpha z_{k+1}+\beta\right) .
$$

Now $\left(\alpha z_{i}+\beta\right) \in I$ for all i, and since the z_{i} are Δ^{\prime}-monochromatic, it follows that the $\left(\alpha z_{i}+\beta\right)$ are Δ-monochromatic. This concludes the proof of the lemma.
3.3. The case $n \geq k-1$. A first consequence of the above lemma is the verification of Conjecture 1.2 in the cases where either $c \equiv 0 \bmod k-1$ (Proposition 3.4) or $n \geq k-1$ (Theorem 3.5).

Proposition 3.4. If c is a multiple of $k-1$, then $R_{k}(n, c)$ is finite. More precisely, if $c=q(k-1)$ for some integer $q \geq 1$, then

$$
R_{k}(n, c) \leq(q+1) S_{k}(n)-q .
$$

Proof. It follows from Lemma 3.3, with values $\beta=-q, \alpha=q+1$ (so that $\alpha+\beta \geq 1$ as required), and $c=0$ (the c in that lemma, not the present one), that

$$
\begin{aligned}
R_{k}(n, q(k-1)) & \leq(q+1) R_{k}(n, 0)-q \\
& =(q+1) S_{k}(n)-q
\end{aligned}
$$

We may now settle Conjecture 1.2 in the case $n \geq k-1$.
Theorem 3.5. Assume $n \geq k-1$ and $c \geq 0$. Then $R_{k}(n, c)$ is finite if and only if c is a multiple of $k-1$.

Proof. If c is a multiple of $k-1$, the statement follows from the above proposition. On the other hand, if c is not a multiple of $k-1$, then Proposition 2.2, with divisor $d=k-1$, implies $R_{k}(n, c)=+\infty$.
3.4. Further consequences. Our next consequence of Lemma 3.3 is a bound on $R_{k}(n, c)$ in terms of $R_{k}(n, 1)$.
Proposition 3.6. For all $c \geq 1$, we have $R_{k}(n, c) \leq c R_{k}(n, 1)$. In particular, if $R_{k}(n, 1)$ is finite, then $R_{k}(n, c)$ is finite for all $c \geq 0$.

Proof. Applying Lemma 3.3 with $c=1$ (the c in that lemma again, not the current one) yields

$$
R_{k}(n, \alpha-\beta(k-1)) \leq \alpha R_{k}(n, 1)+\beta
$$

for all integer $\alpha \geq 1$ and $\beta \geq 1-\alpha$. Now, setting $\alpha=c$ (the current one) and $\beta=0$ in the above relation yields the stated inequality.

Finally, we find that if $c \geq k-1$, then $R_{k}(n, c)$ may be bounded below by $R_{k}(n, \bar{c})-q$, where \bar{c} is the class of $c \bmod k-1$ and q is the floor of $c /(k-1)$.
Proposition 3.7. Assume $c \geq k-1$, and let $c=q(k-1)+\bar{c}$ be the Euclidean division of c by $k-1$, with $q \geq 0$ and $0 \leq \bar{c} \leq k-2$. Then

$$
R_{k}(n, \bar{c}) \leq R_{k}(n, c)+q
$$

Proof. It follows from Lemma 3.3, with values $\alpha=1$ and $\beta=q$, that

$$
R_{k}(n, \bar{c})=R_{k}(n, c-(k-1) q) \leq R_{k}(n, c)+q .
$$

3.5. The case $k \leq 7$. We now verify Conjecture 1.2 in case $k \leq 7$, except for the instances $R_{5}(3,2)$ and $R_{6}(4,1)$ which require completely different methods and will be presented elsewhere.

Only the "if" part of the conjecture remains open. It states that if every divisor $d \leq n$ of $k-1$ also divides c, then $R_{k}(n, c)$ should be finite. This is known to be true in the following cases:

- if $c=0$, in which case $R_{k}(n, 0)$ is finite by Rado's results [13].
- if $n=2$, by Schaal's results recalled in [19, Section 1.2).
- if $c \equiv 0 \bmod k-1$, in which case $R_{k}(n, c)$ is finite by Proposition 3.4.
- if $n \geq k-1$, by Theorem 3.5.

Consequently, for $k \leq 7$, it remains to verify the "if" part of the conjecture only for $n \in[3, k-2]$. In particular, Conjecture 1.2 holds for $k \leq 4$.

The case $k=5$. It remains to discuss the case $n=3$ and $c \not \equiv 0 \bmod 4$.

- For c odd, there is a divisor $d \leq n$ of $k-1=4$ not dividing c, namely $d=2$. Therefore $R_{5}(3, c)=\infty$ in that case, by the "only if" part of the conjecture, i.e., by Proposition 2.2,
- For $c \equiv 2 \bmod 4:$ according to the conjecture, we must show that $R_{5}(3, c)$ is finite in this case. Now Lemma 3.3 reduces that statement to the sole finiteness of $R_{5}(3,2)$. Indeed, it implies $R_{5}(3,2 \alpha) \leq \alpha R_{5}(3,2)$ for all $\alpha \geq 1$, by setting $\beta=0$ and $c=2$ there. Finally, it turns out that $R_{5}(3,2)$ is indeed finite, as will be proved elsewhere.
We conclude that the conjecture holds for $k=5$.
The case $k=6$. We may assume $n \in[3,4]$ and $c \not \equiv 0 \bmod 5$. The only divisor $d \leq n$ of $k-1=5$ is 1 , which divides any c. Therefore, according to the conjecture, we must show that $R_{6}(n, c)$ is finite for $n \in[3,4]$ and all $c \geq 1$. Proposition 3.6 and the obvious bound $R_{k}(3, c) \leq R_{k}(4, c)$ reduce that statement to the sole finiteness of $R_{6}(4,1)$. Again, $R_{6}(4,1)$ turns out to be finite, with a proof similar to that for
$R_{5}(3,2)$ and to appear in the same paper. We conclude that the conjecture also holds for $k=6$.

The case $k=7$. We may assume $n \in[3,5]$ and $c \not \equiv 0 \bmod 6$. The only divisors $d \leq n$ of $k-1=6$ are 1,2 and 3 . If either 2 or 3 does not divide c, then $R_{7}(n, c)=\infty$ in these cases, by the "only if" part of the conjecture, i.e., by Proposition 2.2, Now, if both 2 and 3 divide c, then $c \equiv 0 \bmod 6$, an already settled case. Therefore, the conjecture holds for $k=7$, with a proof entirely contained in the present paper in contrast to the cases $k=5$ and 6 .

The conjecture remains open for $k \geq 8$. However, in order to settle the smallest open case $k=8$, it would suffice, by using the same reduction tools as above, to show that $R_{8}(6,1)$ is finite.
3.6. Yet another case of the conjecture. Here is yet another case where Conjecture 1.2 is shown to hold. Its interest lies in the fact that n is smaller than $k-1$, in contrast with the situation in Section 3.3

Proposition 3.8. Let n be an integer such that $\operatorname{gcd}(n, 6)=1$ and $n \geq 5$. Let $k=6 n+1$. The following statements are equivalent.
(1) $R_{k}(n, c)$ is finite.
(2) Every divisor $d \leq n$ of $k-1$ also divides c.
(3) $k-1$ divides c.

Proof. That (1) implies (2) directly follows from Proposition 2.2. Now assume (2). Applying this to $d=2, d=3$ and $d=n$, it follows that $2 \cdot 3 \cdot n$ divides c, since these numbers are pairwise coprime. That is, $k-1$ divides c, as stated in (3). Finally, that (3) implies (1) directly follows from Proposition 3.4

Needless to say, the same proof tools yield the same equivalences under this set of hypotheses: $\operatorname{gcd}(n, 30)=1, n \geq 5$ and $k=30 n+1$; or, for that matter, under the set of hypotheses $\operatorname{gcd}(n, 210)=1, n \geq 7$ and $k=210 n+1$; and so on.

4. Bounds and exact values

In this section, we define new numbers $S_{k}^{*}(n)$ which are smaller and easier to determine than $S_{k}(n)$. We then show how they provide a lower bound to $R_{k}(n, c)$, and we give an estimate for them. Finally, we use them to obtain a new shorter proof for Schaal's formula on $R_{2}(3, c)$, exact formulae for $R_{3}(3, c)$ and $R_{4}(3, c)$, and sharper bounds in some other cases.
4.1. The numbers $S_{k}^{*}(n)$. Before defining the $S_{k}^{*}(n)$ proper, we introduce and generalize some terminology from additive number theory.

Given nonempty sets A_{1}, A_{2} of integers, their sumset $A_{1}+A_{2}$ is defined as

$$
A_{1}+A_{2}=\left\{x_{1}+x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\} .
$$

In particular, if $A_{2}=\{c\}$ is a singleton, then $A_{1}+A_{2}=\left\{x+c \mid x \in A_{1}\right\}$; it is the translate of A_{1} by c, and will be denoted by $A_{1}+c$ instead of $A_{1}+\{c\}$. If $A_{1}=A_{2}=A$, then we denote $2 A=A+A$, and more generally, for any integer $k \geq 1$, we denote by $k A$ the k-fold sumset of A with itself, i.e.,

$$
k A=\underbrace{A+\cdots+A}_{k}=\left\{x_{1}+\cdots+x_{k} \mid x_{i} \in A \text { for all } 1 \leq i \leq k\right\} .
$$

A set A of integers is said to be sum-free if $A \cap 2 A=\emptyset$. As a generalization well-suited to our purposes here, and with k, c integers with $k \geq 1$, we shall say that A is $(k X+c)$-free if

$$
(k A+c) \cap A=\emptyset .
$$

More generally, given a set C of integers, we shall say that A is $(k X+C)$-free if it is ($k X+c$)-free for all $c \in C$, or equivalently, if

$$
(k A+C) \cap A=\emptyset .
$$

Clearly, for $c \in \mathbb{Z}$, the set A is $(k X+c)$-free if and only if it contains no solution to the equation

$$
\begin{equation*}
x_{1}+\cdots+x_{k}+c=x_{k+1} \tag{5}
\end{equation*}
$$

with $x_{1}, \ldots, x_{k+1} \in A$.
Thus, the n-color Rado number $R_{k}(n, c)$ may equivalently be described as the smallest integer N, if it exists, or ∞ if not, such that for every n-coloring of $[1, N]$, at least one of the color classes A in $[1, N]$ fails to be $(k X+c)$-free.

We are now in a position to define the $S_{k}^{*}(n)$.
Definition 4.1. Let n, k be positive integers with $k \geq 2$. Denote by $S_{k}^{*}(n)$ the least integer N such that, for every n-coloring of $[1, N]$, there exists a monochromatic solution $\left(x_{1}, \ldots, x_{k+1}\right)$ to the equation

$$
\begin{equation*}
x_{1}+\cdots+x_{k}+s=x_{k+1} \tag{6}
\end{equation*}
$$

for some $s \in[-k+2,1]$.
Equivalently, let $I=[-k+2,1]$. Then $S_{k}^{*}(n)$ is the least integer N such that, for every n-coloring of $[1, N]$, at least one of its color classes fails to be $(k X+I)$-free.

Indeed, a set A is $(k X+I)$-free if and only if it is $(k X+s)$-free for all $s \in I$, or equivalently if, for all $s \in I$, it contains no solution to equation (6).

It directly follows from the definitions that

$$
S_{k}^{*}(n) \leq \min _{c \in[-k+2,1]} R_{k}(n, c) .
$$

In particular, at $c=0$, we have $S_{k}^{*}(n) \leq S_{k}(n)$.
4.2. Bounding $R_{k}(n, c)$ with $S_{k}^{*}(n)$. Our first result constructs a $(k X+c)$-free set A from a $(k X+I)$-free set B, where $I=[-k+2,1]$. This will then be used to bound $R_{k}(n, c)$ in terms of $S_{k}^{*}(n)$.

Notation 4.2. For a subset $B \subseteq \mathbb{Z}$ and a positive integer λ, we denote

$$
\lambda \cdot B=\{\lambda y \mid y \in B\} .
$$

The dot here is important since it helps distinguish $\lambda \cdot B$ from the λ-fold sumset $\lambda B=B+\cdots+B$.

Lemma 4.3. Let k, c be integers such that $k \geq 2$ and $c \geq 0$. Let $B \subseteq \mathbb{Z}$ be a $(k X+I)$-free subset, where $I=[-k+2,1]$. Let

$$
A=(c+k-1) \cdot B+[-(c+k-2), 0] .
$$

Then A is $(k X+c)$-free.

Proof. Assume that A is not $(k X+c)$-free. Then there exist $x_{1}, \ldots, x_{k+1} \in A$ such that

$$
\begin{equation*}
x_{1}+\cdots+x_{k}+c=x_{k+1} . \tag{7}
\end{equation*}
$$

By construction, each x_{i} decomposes as

$$
x_{i}=(c+k-1) y_{i}+r_{i}
$$

for some $y_{i} \in B$ and $r_{i} \in[-(c+k-2), 0]$. Equation (7) then yields

$$
(c+k-1)\left(y_{1}+\cdots+y_{k}-y_{k+1}\right)+\left(r_{1}+\cdots+r_{k}-r_{k+1}+c\right)=0 .
$$

It follows that $(c+k-1)$ divides $\left(r_{1}+\cdots+r_{k}-r_{k+1}+c\right)$, and that

$$
\begin{equation*}
\frac{\left(r_{1}+\cdots+r_{k}-r_{k+1}+c\right)}{(c+k-1)}=-\left(y_{1}+\cdots+y_{k}-y_{k+1}\right) \tag{8}
\end{equation*}
$$

Now, since $r_{i} \in[-(c+k-2), 0]$ for all $i \in[1, k+1]$, we have

$$
\begin{array}{rll}
-(c+k-2) k & \leq r_{1}+\cdots+r_{k} & \leq 0 \\
0 & \leq & -r_{k+1}
\end{array} \leq(c+k-2), ~ l
$$

from which it follows that

$$
-(c+k-2) k+c \leq\left(r_{1}+\cdots+r_{k}-r_{k+1}+c\right) \leq(c+k-2)+c .
$$

Dividing by $(c+k-1)$ and using (8), we get

$$
\begin{equation*}
\frac{-(c+k-2) k+c}{(c+k-1)} \leq-\left(y_{1}+\cdots+y_{k}-y_{k+1}\right) \leq \frac{(c+k-2)+c}{(c+k-1)} \tag{9}
\end{equation*}
$$

Since the middle term is an integer, inequalities (9) remain valid if we replace the leftmost term by its ceiling \rceil and the rightmost one by its floor \rfloor.

The numerator $-(c+k-2) k+c$ in the leftmost term may be written as $-(c+k-1) k+(c+k-1)+1$, so that

$$
\frac{-(c+k-2) k+c}{(c+k-1)}=-k+1+\frac{1}{(c+k-1)},
$$

whose ceiling equals $-k+2$.
In turn, the numerator of the rightmost term of (9) may be written as $(c+k-$ 1) $+(c-1)$, so that

$$
\frac{(c+k-2)+c}{(c+k-1)}=1+\frac{(c-1)}{(c+k-1)},
$$

whose floor equals 0 if $c=0$, or 1 if $c \geq 1$. In either case, (9) yields

$$
-k+2 \leq-\left(y_{1}+\cdots+y_{k}-y_{k+1}\right) \leq 1 .
$$

Thus, setting $s=-\left(y_{1}+\cdots+y_{k}-y_{k+1}\right)$, we have $s \in[-k+2,1]$, and the equality

$$
y_{1}+\cdots+y_{k}+s=y_{k+1}
$$

implies that B is not $(k X+s)$-free, contrary to the assumption.
This implies the following lower bound on $R_{k}(n, c)$ in terms of $S_{k}^{*}(n)$.
Proposition 4.4. Let $k, n \geq 2$. Then $R_{k}(n, c) \geq(c+k-1)\left(S_{k}^{*}(n)-1\right)+1$.

Proof. Set $M=S_{k}^{*}(n)$ and $N=(c+k-1)(M-1)+1$. By the minimality property of $S_{k}^{*}(n)$, there exists a special n-coloring Δ of $[1, M-1]$ all of whose color classes B are $(k X+I)$-free, where $I=[-k+2,1]$. Let

$$
\pi:[1, N-1] \longrightarrow[1, M-1]
$$

be the map defined by

$$
\pi(x)=\left\lceil\frac{x}{(c+k-1)}\right\rceil
$$

for all $x \in[1, N-1]$, and let Δ^{\prime} be the n-coloring of $[1, N-1]$ defined by

$$
\Delta^{\prime}(x)=\Delta(\pi(x))
$$

for all $x \in[1, N-1]$. Clearly, for all $y \in[1, M-1]$ and all $r \in[-(c+k-2), 0]$, one has

$$
\pi((c+k-1) y+r)=y
$$

i.e., the map π is constant on the subinterval $(c+k-1) y+[-(c+k-2), 0]$. It follows that each color class A in $[1, N-1]$ under Δ^{\prime} is of the form

$$
\begin{equation*}
A=(c+k-1) \cdot B+[-(c+k-2), 0] \tag{10}
\end{equation*}
$$

for some color class B in $[1, M-1]$ under Δ. Now, since each such B is $(k X+I)$ free, it follows from (10) and Lemma 4.3 that A is $(k X+c)$-free. By the minimality property of $R_{k}(n, c)$, it follows that

$$
N-1 \leq R_{k}(n, c)-1
$$

as claimed.
Remark 4.5. Proposition 4.4 provides a lower bound on $R_{k}(n, c)$ involving $S_{k}^{*}(n)$, whereas Proposition 3.4 provides, if c is a nonnegative multiple of $k-1$, an upper bound on $R_{k}(n, c)$ involving $S_{k}(n)$. Thus, combining both bounds for $c=q(k-1)$ with $q \in \mathbb{Z}_{+}$, we get

$$
(q+1)(k-1)\left(S_{k}^{*}(n)-1\right)+1 \leq R_{k}(n, c) \leq(q+1)\left(S_{k}(n)-1\right)+1
$$

Remarkably, it turns out that these two bounds sometimes coincide and hence yield the exact value of $R_{k}(n, c)$, as will be seen later on in some instances. At any rate, we get the following corollary.

Corollary 4.6. If $S_{k}(n)-1=(k-1)\left(S_{k}^{*}(n)-1\right)$, then for all $c=q(k-1)$ with $q \in \mathbb{N}$, we have $R_{k}(n, c)=(q+1)\left(S_{k}(n)-1\right)+1$.

Proof. This directly follows from the above remark.
4.3. A lower bound on $S_{k}^{*}(n)$. We first relate $S_{k}^{*}(n)$ to $S_{k}^{*}(n-1)$, and then derive an absolute lower bound on it.

Proposition 4.7. Let $k, n \geq 2$. Then $S_{k}^{*}(n) \geq(k+1) S_{k}^{*}(n-1)-k+1$.
Proof. Set $M=S_{k}^{*}(n-1)$ and $N=(k+1) M-k+1$. By the minimality property of $S_{k}^{*}(n-1)$, there exists a special $(n-1)$-coloring Δ of $[1, M-1]$ under which each color class $B \subseteq[1, M-1]$ is $(k X+s)$-free for all $s \in[-k+2,1]$.

Let us now extend Δ to the n-coloring

$$
\Delta^{\prime}:[1, N-1] \longrightarrow[1, n],
$$

defined as follows, for $x \in[1, N-1]$:

$$
\Delta^{\prime}(x)=\left\{\begin{array}{cl}
\Delta(x) & \text { if } x \in[1, M-1], \tag{11}\\
n & \text { if } x \in[M, k M-k+1], \\
\Delta(x-(N-1)) & \text { if } x \in[k M-k+2, N-1] .
\end{array}\right.
$$

Note, for later use, that the third interval above is just a translate of the first one, namely:

$$
\begin{equation*}
[k M-k+2, N-1]=[1, M-1]+(k M-k+1) \tag{12}
\end{equation*}
$$

It remains to show that each color class in $[1, N-1]$ under Δ^{\prime} is $(k X+s)$-free. The minimality property of $S_{k}^{*}(n)$ will then imply $N-1 \leq S_{k}^{*}(n)-1$, as desired.

Now, each color class A under Δ^{\prime} is either equal to $[M, k M-k+1]$, or else it is of the form

$$
\begin{equation*}
A=B+\{0, k M-k+1\}=B+(k M-k+1) \cdot[0,1] \tag{13}
\end{equation*}
$$

for some color class $B \subseteq[1, M-1]$ under Δ. This follows from (11) and (12).
So, let $A \subseteq[1, N-1]$ be a color class under Δ^{\prime}, and let $s \in[-k+2,1]$. We now show that A is $(k X+s)$-free.

Case 1. $A=[M, k M-k+1]$. We then have

$$
\min (k A+s)=k M+s \geq k M-k+2=\max (A)+1
$$

It follows that $(k A+s) \cap A=\emptyset$, as claimed.
Case 2. $A=B+(k M-k+1) \cdot[0,1]$ for some color class $B \subseteq[1, M-1]$, as stated in (13). Assume, for a contradiction, that $(k A+s) \cap A$ is not empty. Since

$$
k A+s=k B+s+(k M-k+1) \cdot[0, k]
$$

there exist $b_{1}, \ldots, b_{k+1} \in B$, and integers $u \in[0, k], v \in[0,1]$ such that

$$
b_{1}+\cdots+b_{k}+s+(k M-k+1) u=b_{k+1}+(k M-k+1) v
$$

It follows that $b_{1}+\cdots+b_{k}-b_{k+1}+s$ is a multiple of $(k M-k+1)$. Now, since $b_{i} \in[1, M-1]$ for all i and since $s \in[-k+2,1]$, we have

$$
-M+3 \leq b_{1}+\cdots+b_{k}-b_{k+1}+s \leq k M-k .
$$

But the only multiple of $(k M-k+1)$ within this range is 0 . Therefore,

$$
b_{1}+\cdots+b_{k}-b_{k+1}+s=0
$$

i.e., $b_{1}+\cdots+b_{k}+s=b_{k+1}$ and hence belongs to $(k B+s) \cap B$. This contradicts the fact that the color class B is $(k X+s)$-free.

Corollary 4.8. Let $k, n \geq 2$. Then $S_{k}^{*}(n) \geq \frac{(k+1)^{n}-1}{k}+1$.
Proof. Since $S_{k}^{*}(1)=2$, as easily seen, the inequality is satisfied for $n=1$. For general $n \geq 2$, we apply induction and Proposition 4.7.
4.4. Revisiting $R_{2}(3, c)$. An exact formula for $R_{2}(3, c)$ has been provided by Schaal [20]. We now provide a shorter proof for it, which exploits the above properties of the $S_{k}^{*}(n)$ and thereby avoids the case-by-case analysis of [20.

Proposition 4.9. We have $S_{2}^{*}(3)=14$.
Proof. Since $S_{2}(3)=14$ and $S_{2}^{*}(3) \leq S_{2}(3)$, we have $S_{2}^{*}(3) \leq 14$. The reverse inequality directly follows from Corollary 4.8. Alternatively, it suffices to exhibit a 3 -coloring of $[1,13]$ with all three color classes being $(2 X+I)$-free where $I=[0,1]$ as seen below:

$$
\begin{aligned}
& A_{1}=\{1,4,10,13\} \\
& A_{2}=\{2,3,11,12\} \\
& A_{3}=[5,9] .
\end{aligned}
$$

Each A_{i} satisfies $\left(2 A_{i}+I\right) \cap A_{i}=\emptyset$, as readily checked and as required.
Corollary 4.10 (Schaal, [20]). We have $R_{2}(3, c)=13 c+14$ for all $c \geq 0$.
Proof. We have $S_{2}^{*}(3)=S_{2}(3)=14$. The first equality is an instance where the hypothesis

$$
S_{k}(n)=(k-1)\left(S_{k}^{*}(n)-1\right)+1
$$

of Corollary 4.6 is satisfied, here with $k=2$. That corollary then implies

$$
R_{2}(3, c)=(c+1)\left(S_{2}(3)-1\right)+1,
$$

i.e., $R_{2}(3, c)=13(c+1)+1=13 c+14$.

Using the same method of proof, it is easy to establish the corresponding formula for $R_{2}(2, c)$, namely:

$$
R_{2}(2, c)=4 c+5
$$

for all $c \geq 0$.
4.5. A formula for $S_{k}^{*}(2)$. We end this section by deriving a formula for $S_{k}^{*}(2)$.

Proposition 4.11. Let $k \geq 2$. Then $S_{k}^{*}(2)=k+3$.
Proof. The bound $S_{k}^{*}(2) \geq k+3$ directly follows from Corollary 4.8. To prove the reverse inequality, it suffices to show that for every 2-coloring of $[1, k+3]$, one of the two color classes fails to be $(k X+I)$-free, where as usual $I=[-k+2,1]$.

Given a 2 -coloring of $[1, k+3]$, let A_{1}, A_{2} be its two color classes. We may freely assume that $1 \in A_{1}$. Since

$$
k\{1\}+I=\{k\}+[-k+2,1]=[2, k+1],
$$

it follows that if $A_{1} \cap[2, k+1]$ failed to be empty, then A_{1} would fail to be $(k X+I)$ free and we would be done.

Therefore, we may assume $A_{1} \cap[2, k+1]=\emptyset$, i.e., $[2, k+1] \subseteq A_{2}$. Since

$$
k[2, k+1]+I=\left[2 k, k^{2}+k\right]+[-k+2,1]=\left[k+2, k^{2}+k+1\right],
$$

which contains $\{k+2, k+3\}$, we may assume that none of $k+2, k+3$ belongs to A_{2}, for otherwise A_{2} would fail to be ($k X+I$)-free and we would again be done.

Therefore, we may assume $\{1, k+2, k+3\} \subseteq A_{1}$. But then, A_{1} fails to be $(k X+I)$-free, since setting

$$
x_{1}=\cdots=x_{k-1}=1, \quad x_{k}=k+2, \quad x_{k+1}=k+3, \quad s=-k+2,
$$

we have $x_{i} \in A_{1}$ for all $i, s \in I$, and

$$
x_{1}+\cdots+x_{k}+s=x_{k+1} .
$$

5. Computer-aided results

The problem of computing $S_{k}^{*}(n)$ or $R_{k}(n, c)$ can be translated as a Boolean satisfiability problem, as detailed in Section 5.3 for the computation of $R_{2}(4, c)$. The resulting Boolean translation, for given instances, may then be fed to a computer running a suitable SAT solver. All results in this section have been obtained by combining such computations with the theory developed above. The specific SAT solver we have used is March RW [9, the gold medal winner of the 2011 International SAT Competition.

Proposition 5.1. The following values of $S_{k}^{*}(n)$, for $n=3$ and $2 \leq k \leq 6$, and for $n=4$ and $2 \leq k \leq 3$, hold:
(1) $S_{2}^{*}(3)=14, S_{3}^{*}(3)=22, S_{4}^{*}(3)=32, S_{5}^{*}(3)=44, S_{6}^{*}(3)=58$.
(2) $S_{2}^{*}(4)=41, S_{3}^{*}(4)=86$.

Proof. The formula for $S_{2}^{*}(3)$ has been established in Proposition 4.9, All others have been obtained by running a SAT solver on the corresponding Boolean translations.

The numbers $S_{k}(n)$ are larger and more difficult to compute than the $S_{k}^{*}(n)$'s. However, in a few instances where we have been able to compute them, the hypothesis of Corollary 4.6. namely

$$
S_{k}(n)-1=(k-1)\left(S_{k}^{*}(n)-1\right),
$$

turned out to be satisfied, thereby allowing an exact formula for the corresponding $R_{k}(n, c)$'s.
5.1. Exact formulas for $R_{3}(3, c)$ and $R_{4}(3, c)$. We now establish previously unknown formulas for $R_{3}(3, c)$ and $R_{4}(3, c)$, as new applications of Corollary 4.6,
5.1.1. The case $R_{3}(3, c)$. We first need the value of $S_{3}(3)$, recently obtained in 18.

Theorem 5.2. We have $S_{3}(3)=43$.
Proof. The inequality $S_{3}(3) \leq 43$ is obtained by computer using the SAT solver March [9. Indeed, the solver established that the Boolean constraints derived from assuming the existence of a 3 -coloring of $[1,43]$ with $(3 X+0)$-free color classes cannot be satisfied.

The reverse inequality follows from a result of Znam [24] which, for $k=n=3$, yields the bound

$$
S_{3}(3) \geq \frac{2}{3}\left(4^{3}-1\right)+1=43
$$

Theorem 5.3. For every integer $c \geq 0$, we have

$$
R_{3}(3, c)= \begin{cases}\infty & \text { if c odd } \\ 21 c+43 & \text { if c even }\end{cases}
$$

Proof. For c odd, we have $R_{3}(3, c)=+\infty$ by Proposition 2.2. Now assume $c=2 q$ with $q \in \mathbb{N}$. Since $S_{3}^{*}(3)=22$ by Proposition 5.1, and since $S_{3}(3)=43$ as stated above, we see that the hypothesis

$$
S_{k}(n)-1=(k-1)\left(S_{k}^{*}(n)-1\right)
$$

of Corollary 4.6 is again satisfied in this instance. Therefore, that corollary yields the formula

$$
R_{3}(3,2 q)=(q+1)\left(S_{3}(3)-1\right)+1
$$

that is, for $c=2 q: R_{3}(3, c)=42(q+1)+1=21 c+43$, as claimed.
5.1.2. The case $R_{4}(3, c)$. In view of applying Corollary 4.6 again, we now need the value of $S_{4}(3)$.
Theorem 5.4. We have $S_{4}(3)=94$.
Proof. Follows from a three-hour computation with the SAT solver March, using our Boolean translation of the problem along the lines of Section 5.3.

Theorem 5.5. For every integer $c \geq 0$, we have

$$
R_{4}(3, c)= \begin{cases}\infty & \text { if } c \notin 3 \mathbb{N} \\ 31 c+94 & \text { if } c \in 3 \mathbb{N}\end{cases}
$$

Proof. For c not divisible by 3 , we have $R_{4}(3, c)=+\infty$ by Proposition 2.2, Assume now $c=3 q$ with $q \in \mathbb{N}$. Since $S_{4}^{*}(3)=32$ by Proposition 5.1 and since $S_{4}(3)=94$ as stated above, we see that the hypothesis

$$
S_{k}(n)-1=(k-1)\left(S_{k}^{*}(n)-1\right)
$$

of Corollary 4.6 is again satisfied in this instance. Therefore, that corollary yields the formula

$$
R_{4}(3,3 q)=(q+1)\left(S_{4}(3)-1\right)+1
$$

that is, for $c=3 q: R_{4}(3, c)=93(q+1)+1=31 c+94$, as claimed.
5.2. Some new bounds. Short of exact formulae, Remark 4.5 also enables us to obtain new bounds on suitable instances of $R_{k}(n, c)$.

Corollary 5.6. Let $c \in \mathbb{N}$. Then $40 c+41 \leq R_{2}(4, c) \leq 44 c+45$.
Proof. The lower bound on $R_{2}(4, c)$ follows from Proposition 4.4 and the value $S_{2}^{*}(4)=41$ stated in Proposition 5.1 whereas the upper bound follows from Proposition 3.4 and the known value $S_{2}(4)=45$.

Corollary 5.7. Let $c \in \mathbb{N}$. Then $121 c+122 \leq R_{2}(5, c) \leq 305 c+306$.
Proof. It is known that $S_{2}(5) \leq 316$; see [14, 17]. Moreover, Radziszowski showed in [14] that $r_{5}(3) \leq 307$, where $r_{5}(3)=r(3,3,3,3,3)$ denotes the 5 -color Ramsey number for unavoidable monochromatic triangles in any edge-colored complete graph of that order. Applying the relationship between Schur numbers and Ramsey numbers given by Roberston [16], one obtains $S_{2}(5) \leq r_{5}(3)-1 \leq 306$.

Propositions 3.4 and 4.4 then yield, for $k=2$ and $n=5$, the stated bounds on $R_{2}(5, c)$.
5.3. Seeking $R_{2}(4, c)$ by computer. Having fixed $c \geq 0$, we seek successive integers M such that $[1, M]$ admits a 4 -coloring all of whose color classes are $(2 X+c)$-free; or equivalently, such that no triplet of the form $\{i, j, i+j+c\}$, with $1 \leq i \leq M-c$ and $i \leq j \leq M-i-c$, is monochromatic. When the largest possible such M is found, we are done: $R_{2}(4, c)=M+1$.

We now reformulate this problem as a Boolean satisfiability problem [6]. We proceed as follows.

First, any 4-coloring of $[1, M]$ may be viewed as a function

$$
\Delta:[1, M] \longrightarrow\{0,1\}^{2}
$$

By setting $\Delta(i)=\left(x_{i}, x_{i+M}\right)$ for all $i \in[1, M]$, this 4 -coloring may be represented by $2 M$ binary variables $x_{1}, \ldots, x_{2 M}$ with values in $\{0,1\}$.

We now view 0 and 1 as representing the Boolean values False and True, respectively. This allows us to use the logical operators AND, OR and NOT, denoted respectively by \wedge, \vee and \neg, on the set $\{0,1\}$, with the purpose of translating the nonequality of elements by the validity of some associated logical formula. Indeed, for any $x, y \in\{0,1\}$, we have

$$
\begin{equation*}
x \neq y \Longleftrightarrow(x \vee y) \wedge(\neg x \vee \neg y) \text { is True, } \tag{14}
\end{equation*}
$$

as readily checked. It is easy to similarly translate the non-equality of two given colors in $\{0,1\}^{2}$, since for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\{0,1\}^{2}$, we have

$$
\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1} \neq x_{2} \text { or } y_{1} \neq y_{2}
$$

Let us go back to our generic 4-coloring

$$
\Delta:[1, M] \longrightarrow\{0,1\}^{2}
$$

represented by the Boolean variables $x_{1}, \ldots, x_{2 M}$. Given an arbitrary subset $A \subseteq$ $[1, M]$, we may associate to A, in the way described above, a logical formula $\lambda(A)$ in the variables $x_{1}, \ldots, x_{2 M}$, in such a way that A fails to be monochromatic if and only if $\lambda(A)$ is True. Therefore, given a family of subsets $A_{1}, \ldots, A_{r} \subseteq[1, M]$, prohibiting all of them to be monochromatic admits the following Boolean translation:

$$
\begin{equation*}
\text { no } A_{i} \text { is monochromatic } \Longleftrightarrow \bigwedge_{i=1}^{r} \lambda\left(A_{i}\right) \text { is True. } \tag{15}
\end{equation*}
$$

Now, applying this translation to the above-mentioned set of triplets, namely the subsets $\{i, j, i+j+c\} \subseteq[1, M]$ with $1 \leq i \leq M-c$ and $i \leq j \leq M-i-c$, we obtain by (15) a system of logical formulas that can be simultaneously satisfied if and only if $[1, M]$ admits a 4 -coloring all of whose color classes are $(2 X+c)$-free. Fixing successive values of M, we feed the associated system to a SAT solver, which will then attempt to say whether that system is satisfiable or not. As long as it is, we increase M. When, for some M_{0}, we reach nonsatisfiability as an output, we know we are done: $R_{2}(4, c)=M_{0}$.
5.4. Exact values of $R_{2}(4, c)$ for $c \leq 6$. Applying the above method, we have obtained, by computer, the following exact value of the Rado numbers $R_{2}(4, c)$ for $0 \leq c \leq 6$.
Theorem 5.8. We have

$$
\begin{aligned}
& R_{2}(4,0)=40 \cdot 0+45=45 \\
& R_{2}(4,1)=40 \cdot 1+43=83, \text { and } \\
& R_{2}(4, c)=40 \cdot c+41 \quad \text { for } 2 \leq c \leq 6
\end{aligned}
$$

Proof. The value $R_{2}(4,0)=45$ is due to [2]. A 4-coloring of $[1,82]$ with $(2 X+1)$-free color classes, implying $R_{2}(4,1) \geq 83$, is given by the following 4 color classes:

$$
\begin{aligned}
& \{1,2,15,16,21,22,28,29,35,36,47,54,55,61,62,67,68,81,82\}, \\
& \{3,4,5,6,17,18,19,20,33,34,49,50,63,64,65,66,77,78,79,80\} \\
& \{23,24,25,26,27,37,38,39,40,41,42,43,44,45,46,56,57,58,59,60\}, \\
& \{7,8,9,10,11,12,13,14,30,31,32,48,51,52,53,69,70,71,72,73,74,75,76\}
\end{aligned}
$$

thereby improving the lower bound $R_{2}(4,1) \geq 81$ given by Proposition 4.4 and the value $S_{2}^{*}(4)=41$ of Proposition 5.1 For $2 \leq c \leq 6$, the lower bound is achieved by Proposition 4.4, and is revealed to be sharp by computations using the SAT solver March [9. The running times on a standard desktop computer were as follows:

Values of c	$R_{2}(4, c)$	Time in seconds
$c=1$	83	13
$c=2$	121	50
$c=3$	161	1260
$c=4$	201	2810
$c=5$	241	9270
$c=6$	281	593000

5.5. Conclusions and open problems. Combined with a separate forthcoming paper establishing the finiteness of $R_{5}(3,2)$ and $R_{6}(4,1)$, Conjecture 1.2 turns out to be true for $k \leq 7$. It remains to settle it in general. The smallest open case is $R_{8}(6,1)$, conjectured to be finite. In addition, in view of the above determination of $R_{2}(4, c)$ for $c \leq 6$, it is natural to conjecture that the formula $R_{2}(4, c)=40 c+41$ also holds for $c \geq 7$. Is it true or not? Along the same line, we are also interested in determining exact values or sharper bounds for $R_{2}(5, c)$.

References

[1] H. L. Abbott and D. Hanson, A problem of Schur and its generalizations, Acta Arith. 20 (1972), 175-187. MR0319934(47 \#8475)
[2] L. D. Baumert, Sum-free sets, J.P.L. Research Summary 36-10, 16-18, (1961).
[3] S. A. Burr and S. Loo, On Rado number I, Preprint.
[4] S. A. Burr and S. Loo, On Rado number II, Preprint.
[5] A. Beutelspacher and W. Brestovansky, Generalized Schur numbers, Combinatorial Theory (Schloss Rauischholzhausen, 1982), Lecture Notes in Math., vol. 969, Springer, Berlin-New York, 1982, pp. 30-38. MR692232 (84f:10019)
[6] S. Eliahou, J. M. Marín, M. P. Revuelta, and M. I. Sanz, Weak Schur numbers and the search for G. W. Walker's lost partitions, Comput. Math. Appl. 63 (2012), no. 1, 175-182, DOI 10.1016/j.camwa.2011.11.006. MR2863489
[7] G. Exoo, A lower bound for Schur numbers and multicolor Ramsey numbers of K_{3}, Electron. J. Combin. 1 (1994), Research Paper 8 (electronic). MR1293398 (95k:05122)
[8] H. Fredricksen and M. M. Sweet, Symmetric sum-free partitions and lower bounds for Schur numbers, Electron. J. Combin. 7 (2000), Research Paper 32 (electronic). MR. 1763971 (2000m:05228)
[9] M. Heule, http://www.st.ewi.tudelft.nl/sat/, March RW. SAT Competition 2011 (2011).
[10] H. Wan, Upper bounds for Ramsey numbers $R(3,3, \cdots, 3)$ and Schur numbers, J. Graph Theory 26 (1997), no. 3, 119-122, DOI 10.1002/(SICI)1097-0118(199711)26:3〈119::AID-JGT1)3.3.CO;2-1. MR. 1475891 (98f:05114)
[11] S. Jones and D. Schaal, Two-color Rado numbers for $x+y+c=k z$, Discrete Math. 289 (2004), no. 1-3, 63-69, DOI 10.1016/j.disc.2004.06.022. MR2106029|(2005g:05149)
[12] W. Kosek and D. Schaal, Rado numbers for the equation $\sum_{i=1}^{m-1} x_{i}+c=x_{m}$, for negative values of c, Adv. in Appl. Math. 27 (2001), no. 4, 805-815, DOI 10.1006/aama.2001.0762. MR1867934 (2002i:05117)
[13] R. Rado, Studien zur Kombinatorik (German), Math. Z. 36 (1933), no. 1, 424-470, DOI 10.1007/BF01188632. MR 1545354
[14] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. 1 (1994), Dynamic Survey 1, 30 pp . (electronic). MR1670625 (99k:05117)
[15] K. Rendall Truman and D. Schaal, Three-color Rado numbers for $x_{1}+x_{2}+c=x_{3}$ for negative values of c, Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. 183 (2006), 5-10. MR2311465 (2007m:05224)
[16] A. Robertson, Difference Ramsey numbers and Issai numbers, Adv. in Appl. Math. 25 (2000), no. 2, 153-162, DOI 10.1006/aama.2000.0678. MR1780763 (2001f:05098)
[17] A. Sánchez-Flores, An improved upper bound for Ramsey number $N(3,3,3,3 ; 2)$, Discrete Math. 140 (1995), no. 1-3, 281-286, DOI 10.1016/0012-365X(93)E0187-9. MR1333725 (96b:05121)
[18] I. Sanz Domínguez, Números de Schur y Rado, Ph. Thesis, Universidad de Sevilla, 2010.
[19] D. Schaal, On generalized Schur numbers, Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993), Congr. Numer. 98 (1993), 178-187. MR1267352 (95f:05113)
[20] D. Schaal, A family of 3-color Rado numbers, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), Congr. Numer. 111 (1995), 150-160. MR 1369349 (96h:05006)
[21] D. Schaal and D. Vestal, Rado numbers for $x_{1}+x_{2}+\cdots+x_{m-1}=2 x_{m}$, Proceedings of the Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. 191 (2008), 105-116. MR2489815 (2010f:05184)
[22] I. Schur, Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Deutsch. Math.-Verein. 25, 114-117 (1916).
[23] E. G. Whitehead Jr., The Ramsey number $N(3,3,3,3 ; 2)$, Discrete Math. 4 (1973), 389-396. MR0314678(47 \#3229)
[24] Š. Znám, Generalisation of a number-theoretical result, Mat.-Fyz. C̆asopis Sloven. Akad. Vied 16 (1966), 357-361. MR $0209175(35 \# 78)$

Harish-Chandra Research Institute, Chhathnag Road, Jhunsi, Allahabad-211 019, India

E-mail address: adhikari@hri.res.in
Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada
I, Avenida de la Reina Mercedes 2, C.P. 41012 Sevilla, Spain
E-mail address: boza@us.es
UlCO, LMPA J. Liouville, CS 80699 - 62228 Calais Cedex, France - and - CNRS, FR 2956, France

E-mail address: eliahou@lmpa.univ-littoral.fr
Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain

E-mail address: jmarin@us.es
Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain

E-mail address: pastora@us.es
Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain

E-mail address: isanz@us.es

[^0]: Received by the editor June 4, 2014 and, in revised form, December 17, 2014.
 2010 Mathematics Subject Classification. Primary 05A17, 11P83, 05C55, 05D10, 05-04.
 Key words and phrases. Schur numbers, sum-free sets, Rado numbers, Boolean variables, SAT problem, SAT solver.

 The authors acknowledge partial support from the Instituto de Matemáticas; Antonio de Castro Brzezicki de la Universidad de Sevilla during research on this work.

