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A machine-learning hybrid-classification method for
stratification of multidecadal beach dynamics

V�ıctor Rodriguez-Galiano , Emilia Guisado-Pintado, Antonio Prieto-Campos
and Jose Ojeda-Zujar

Departamento de Geograf�ıa F�ısica y An�alisis Geogr�afico Regional, Universidad de Sevilla,
Sevilla, Spain

ABSTRACT
Coastal areas are one of the most threatened natural systems in
the world. Environmental beach indicators, such as erosion and
deposition rates of exposed beaches in Andalusia (640 km), were
calculated using the upper limit of the active beach profile and
detailed orthophotos (1:2500) for the periods 1956–1977,
1977–2001 and 2001–2011. A hybrid classification method, both
supervised and unsupervised, based on machine-learning (ML)
techniques was then applied to model beach response and
dynamics for this 55-year period. The use of a K-means technique
allowed stratification into four beach groups that have responded
similarly in terms of coastline mobility and erosion/deposition pat-
terns. Furthermore, the application of a classification and regres-
sion tree (CART) based on the K-means results helped to identify
the threshold values for erosional and depositional rates and the
period that characterises each cluster or stratum, enabling correct
classification of 1415 out of 1509 beaches (93.77%).
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1. Introduction

Coastlines all around the world are exposed to anthropogenic and natural pressures with
various consequences, such as erosion, flooding, socio-economic losses, and safety and
health issues affecting coastal communities. Monitoring beaches provides extremely rele-
vant information about the status of coastal systems and the sea-land interaction that ena-
bles us to adapt to, mitigate or prevent said consequences. This information is also used
as input data for calculating statistical descriptors and for numerical models used to simu-
late coastal behaviour (wave, atmospheric, sediment-transport models, etc.). The analysis
of beach profiles and the associated fluctuations in shorelines have been and continue to
be one of the most commonly used methods in coastal sciences (Emery 1961, Jackson
et al. 2016, Benavente et al. 2014, Splinter et al. 2018, Turner et al. 2016, Guisado-Pintado
and Jackson 2020). In fact, there are several and diverse approaches to monitor beaches,
ranging from the use of in situ studies techniques such as profile/shoreline extraction
using GPS (Guisado-Pintado and Jackson 2018, Darwin et al. 2014, Klemas 2015,
Guisado-Pintado and Jackson 2019, Guisado-Pintado et al. 2019), employing drones and
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photogrammetry to extract volumetric and altimetry data (Guisado-Pintado et al. 2019,
Casella et al. 2016, Zhou et al. 2017), the digitalisation of shorelines using orthophotos
(Anders and Byrnes 1991, Crowell et al. 1991, Fernandez-Nunez et al. 2015), to the use of
satellite imaging for studying long time series or extensive coastal regions (Ford 2013,
Luijendijk et al. 2018, Vos et al. 2019, Dai et al. 2019, Pardo-Pascual et al. 2014, S�anchez-
Garc�ıa et al. 2015). The development of new technologies for beach monitoring have
changed both the type and quantity of information that can be obtained for the analysis
of coastal systems.

An increased availability of coastal data on a finer scale with greater spatial coverage
and an improved acquisition frequency, has highlighted the need for adequate statistical/
computational techniques that allow the effective analysis of this data (e.g. Luijendijk
et al. 2018, Monta~no et al. 2020). As noted by Goldstein et al. (2019), this new wave of
data in both coastal sciences and other fields has led to increased interest in empirical
research known as ‘data-driven’ science. Here, machine-learning (ML) techniques play a
central role in data analysis and the optimisation of results. To date, several ML methods
have been used in coastal sciences, and, more specifically, in studies related to monitoring
and predicting shoreline-related indicators. Some works have used Artificial Neural
Networks (ANN), such as Hashemi et al. (2010) for predict beach profiles using wind and
wave data; Rigos et al. (2016) investigated multiple coastline positions based on hydro-
dynamic inputs and the work from Tsekouras et al. (2015) which trained an ANN model
to predict erosion as a function of bathymetry and storm variables. Others, like Carrero
et al. (2014), tested the applicability of ANN in simulating past changes in coastal land
use and to create future land-use scenarios based on changes in different climatic scen-
arios. Grimes et al. (2015) is an example of a work that used Genetic Algorithms (GA) in
the analysis of coastline time series to examine the roles played by both internal dynamic
agents (beach-face geometry) and external dynamic agents (wave forcing). However,
Bayesian networks (BN) remain the most extensively used approach to date in predicting
shoreline erosion rates and morphodynamic changes (Gutierrez et al. 2011, Gutierrez
et al. 2015, Plant et al. 2016, Bulteau et al. 2015). For instance, Yates and Le Cozannet
(2012) used a BN model to analyse the probability of how European coastlines would
evolve in future (erosion, accretion, stabilisation) by combining dynamic variables (mean
tidal range, rate of sea level rise and mean significant wave height) and physical variables
(geology, geomorphology). Some other works of note in this area include: predicting
coastal erosion related to storm events (Beuzen et al. (2018), Wilson et al. (2015), Hapke
and Plant (2010), Beuzen et al. (2019), Beuzen et al. (2017)), or testing the relationship
between erosion and sand nourishments (Giardino et al. 2019). Other studies that used
Bayesian-based decision support systems include: Ferreira et al. (2019), which reported
measures aimed at reducing risks associated with the occurrence of extreme events in
southern Portugal; Pearson et al. (2017), which assessed wave-driven flooding hazards;
Wright and Short (1984), which statistically determined beach state classification and
Loureiro et al. (2013), which was based on sedimentological and hydrodynamic data from
the Portuguese and Irish coastlines.

As stated above, in the past decade there has been an increase in the use of ML techni-
ques to analyse and predict shoreline and beach response (erosion/deposition rates).
Special mention requires de work from Burningham and French (2017) that used a com-
bined shoreline trend and cluster-based segmentation analysis to understand mesoscale
shoreline behaviour in eastern England. This study, to our knowledge, is the only one to
date that has implemented a clustering approach (hierarchical clustering) to stratify shore-
line behaviour at regional level. Despite this increase in the use of ML techniques, to the
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best of our knowledge there are no examples of using regression trees (RT) to classify and
stratify coastline behaviour. The main benefit of using a tree structure to perform classifi-
cation/regression is that the tree structure can be viewed as a ;white box,’ which is easier
to interpret to understand the relationships between dependent and independent variables
compared to other machine learning techniques (Villarin and Rodriguez-Galiano 2019,
Coimbra et al. 2014).

This paper presents a new approach to understand mesoscale shoreline behaviour com-
bining conventional shoreline change metrics with a hybrid classification method (both
supervised and unsupervised) which combines the performance of K-means and a
Classification Tree (CT) (Km-CART). The main objective of this work is to provide an
integrated regional overview of medium- and long-term trends in erosion/deposition
processes along different parts of the coast in Andalusia between 1956 and 2011. A spe-
cific objective is to propose a highly interpretable methodology to obtain an unbiased
stratification of beaches according to their erosional/depositional dynamics, showing sim-
ple rules based on cut-off values of three different periods. The paper is structured as fol-
lows: section 1 an introduction and background of ML techniques and shoreline
monitoring is presented, section 2 presented the study area and the methodological
approach and section 3 results from shoreline dynamics and stratification with Km-CART
are presented. Finally, section 4 is dedicated to the discussion the implications of using
these techniques to classify multidecadal coastal dynamics in terms of erosion/accretion
patterns and their performance is presented and discussed and in section 5 the main con-
clusions are outlined.

2. Materials and methods

2.1. Study area

The coast of Andalusia in southern Spain is a complex and highly dynamic system that
stretches 917 km and has two basins facing the Atlantic Ocean to the west and the
Mediterranean Sea to the east (Figure 1). It represents 30% of the Spanish coastline. The
coast is highly diverse, with 66.7% comprising sandy beaches, 13% rocky cliffs and head-
lands, and 20% other coastal features such as marshes, estuaries and deltas.

The Atlantic coast is characterised by a relatively flat and gentle continental platform
that extends 30–50 km to the 100-m isobath. Predominant coastal morphologies include
estuaries (associated with the Guadiana, Guadalquivir, Piedras, Odiel and Barbate rivers),
salt marshes and extensive sandy beaches (Guisado-Pintado et al. 2014). Furthermore, the
presence of large rivers and a flat and wide continental shelf allows the development of
aeolian landforms and mobile dunes, such as those found in Do~nana National Park.
Beaches are composed of fine sediments (medium-coarse sand). From a hydrodynamic
perspective, the west coast can be defined as mesotidal and semidiurnal where tidal range
varies from 1m during neap tides to 4m during spring tides. Spatially, the tides vary
from 4.2m at the mouth of the Guadiana River with minimal values reaching 0.8m to
the east near the Strait of Gibraltar. Modal waves have a bidirectional approach from SE
to W-SW. A mean significant wave height (Hs) of 1.90m with a period of 7 s is typical
during the winter season, while in summer waves rarely exceed 1.07m with short wave
periods of 5–6 s (Guisado-Pintado et al. 2014). Winds are persistent and intense, switching
from west to east. South-westerly storms are frequent, with 155 events registered in the
decade between 2000–2010. These conditions result in beaches mostly of a dissipative
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morphodynamic type (Wright and Short 1984) where a spilling breaking mode dominates,
leading to sediment transport in a landward direction (Guisado-Pintado et al. 2014).

The proximity of the various Sierra-mountains along the Mediterranean coast has led
to the presence of a steep and narrow continental platform, thus coastal morphologies
such as coastal cliffs and narrow pocket beaches dominate (Guisado-Pintado et al. 2014).
Other coastal features such as delta systems linked to steep and short rivers can also be
found. Since the tidal range is microtidal (rarely >1m), the primary hydrodynamic influ-
ence on the coast is wave action (Malv�arez et al. 2019). Wave climate is somehow oppos-
ite to the Atlantic-facing basin, with long periods of calm (over 77% per year) in which
significant wave heights rarely exceed 1m in height with short periods (e.g. 4 s). Waves
are typical for sea: short crested, arising from local winds and with limited fetch, given
the proximity of the African coast (Guisado et al. 2013). Easterly and westerly winds alter-
nate almost 50% in all seasons, while high-energy events are characterised by low wave-
approach variability, the majority of which come from the east (Guisado et al. 2013).
However, the effective fetch is limited to 500 km on average and only on rare occasions
do swell waves filter in from the Atlantic Ocean. Unlike the Atlantic coast, the
Mediterranean coast has steep beach profiles adapted to a higher wave frequency, result-
ing in intermediate to reflective beaches associated with plunging breakers (Guisado-
Pintado et al. 2014).

The disparity between the Atlantic and Mediterranean coasts in Andalusia in terms of
geological setting, beach morphological profile (e.g. surf zone) and exposure to different
wave typologies and energy, has an influence on short- and long-term shoreline behaviour
and morphology. However, in addition to the physical factors mentioned above, the coast

Figure 1. Study area along the Andalusian coast in southern Spain showing the primary geographical and topo-
graphic features.
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has been subjected to a profound transformation that started in the 1970s. Human practi-
ces such as the abandonment of agriculture, strong regulation of river basins, and the
development of coastal urbanisation and infrastructure (ports, promenades, breakwaters)
have led to dissimilar effects on the western Atlantic coast and the eastern Mediterranean
coast. Additionally, there is an unequal direct response to these changes along the
Andalusian coast, which ultimately depends on the characteristics of the coastal landforms
(exposure, presence of dunes, estuaries and deltas) and the intensity of human activity
(urbanisation, % of coastal infrastructure, land use etc.)

2.2. Calculation of erosion rates in exposed Andalusian beaches

2.2.1. Coastline photointerpretation and digitalisation
The coastline photointerpretation for shoreline mapping requires the selection of an
adequate feature that can serve as an indicator, this is what is normally called a shoreline
proxy. Therefore, the proxy is a measure or indicator that properly reflects the real shore-
line position and could be repetitively measured for assess shoreline evolution. The elec-
tion of the shoreline proxy has to be driven by the geomorphological characteristics of
the coastal sectors interrogated. Many proxies have been proposed in the literature for
coastal erosion studies ranging from beach toe, wet/dry line, erosion scarp, stable vegeta-
tion line, dune toe, dune crest, cliff toe, cliff top, etc. (Pajak and Leatherman 2002,
Fletcher et al. 2003, Boak and Turner 2005, among others). As stated by Del R�ıo and
Gracia (2013), it has to be considered that each shoreline proxy has its own advantages
and disadvantages and that the final election of one or another should considered all of
them. Further, choosing the correct shoreline proxy to monitor shoreline evolution (ero-
sion/deposition) depends on the goal of the study at hand. In this case, the proxy used is
the contact between the backshore and dune (foredune, infrastructure or cliff), as it has
been proved to be a robust proxy for medium- to long-term studies and, therefore, the
most used proxy in the bibliography (Moore 2000, Del R�ıo and Gracia 2013, Prieto et al.
2018) (Figure 2).

The comparison between the shoreline proxies among different dates, this is the shore-
line position digitised from the available orthophotographies, allows assessing the changes

Figure 2. The proxy used to discriminate the contact between the backshore and the foredune (A), infrastructure (B)
or cliff (C), depending on the coastal section. All examples are from the Andalusian coast.
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in the shoreline position over time. Here, we refer to shoreline erosion when the proxy
(shoreline digitised between the backshore and dune) experiments a landward movement
between two dates (this is interpreted as shoreline retreat or erosion). The opposite situ-
ation, a seaward movement between two shoreline proxies extracted from different dates
is interpreted as shoreline advance or deposition. From a geomorphological point of view,
since the tool calculates horizontal changes in shoreline position, the result is a 2D ana-
lysis on the retreat or advance of the shoreline between years.

The entire study site (917 km) was digitised in the proprietary ArcGIS 10.3 software
(ESRI, Redlands, CA, USA) at a scale of 1:2500 using aerial orthophotography from the
periods 1956–1977, 1977–2001 and 2001–2011 (Table 1). Further, in order to improve the
digitalisation, along cliff beach sectors without associated beaches, the 2005 QuickBird-
Ikonos orthoimage was used to assign geometric continuity to the shorelines. This dataset
given its spatial resolution (0.7m) minimises relief displacement found in traditional
orthophotos in the before mentioned areas.

The ETRS80 spatial reference system was used with a UTM zone 30N projection, in
accordance with Spanish Royal Degree 1071/2007. Once the coastlines had been digitised,
they underwent a topographical quality-control process to confirm both their integrity
and spatial continuity. The digitisation process was supplemented by relevant thematic
data related to each segment of the coastline in line with a previously defined data model.
This data model, which was based on an entity-relationship model, was used by the
regional Administration to manage coastal areas and has been presented in several articles
(Fernandez-Nunez et al. 2015, Prieto et al. 2018).

2.2.2. Error assessment
The digitalisation process, manual photo-interpretation of shorelines, can be affected by
different variables that need to be considered when estimating the cumulative uncertainty
in shoreline position (error). Following previous works (Del R�ıo and Gracia 2013;
Fletcher et al. 2003), we assume that the cumulative uncertainty in shoreline position digi-
tised on an aerial photograph is the result of three simultaneous factors: the resolution,
the scale and the photo-interpretation criterion (Table 2).

The resolution error (Errorresolution) is represented by the image resolution. The size of
the minimum information unit, known as pixel, determines the resolution: the larger the
pixels, the larger the uncertainty in interpreting shoreline position on the photograph.
The scale error (Errorscale) is closely associated with the resolution of the screen set when
digitising the shoreline (1680� 1050). In this work, a 1:2500 scale was chosen to digitise
the shorelines from the aerial photographs, as a result a mean 1.5m continual error was
obtained. The third component is called the photo-interpretation criterion (Errorcriteria)
and it’s based on the mean distance obtained when different shorelines are digitalised by
different photo-interpreters. Although the 90% of the digitalisation was carried out by a
single photo-interpreter, two others helped in the process. The mean error obtained from
this process was 1.25m for photographs with sub-metric resolutions and 3m for the
period 1956-1957 (Table 2).

Table 1. Data sources.

Data source Date Pan/colour Spatial resolution Scale

American flight 1956–1957 Panchromatic 1 m 1:32.000
Inter-ministerial (IRYDA) flight 1977–1983 Panchromatic 0.5 m 1:18.000
Andalusian photogrammetric analogical flight 2001–2003 Panchromatic 0.5 m 1:40.000
QuickBird-Ikonos satellite orthoimage 2005 ColourþNear Infrared (NIR) 0.7 m –
Andalusian photogrammetric flight in colour 2010–2011 ColourþNIR 0.5 m 1:40.000
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Once the three components of error are calculated, the total uncertainty in shoreline
position on a certain photograph (Ep) is calculated as the quadratic sum of each compo-
nent (e.g. Ruggiero and List 2009, Coyne et al. 1999, Del R�ıo and Gracia 2013) according
to Eq. 1.

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error2resolution þ Error2Scale þ Error2Criteria

q
(1)

The errors calculated by means of Eq. 1 correspond to each individual period consid-
ered (that is the photographs of a given period), so since the tool compares two shoreline
positions extracted from two separate photographs (e.g. P1 and P2), the error has to be
cumulative (Anders and Byrnes 1991). Therefore, the total uncertainty of each rate calcu-
lated between two periods (two shoreline positions) needs to calculated by considering
the individual errors, as well as the time in years (T) between the two given photographs
(Moore 2000, Fletcher et al. 2003, Del R�ıo and Gracia 2013, Prieto et al. 2018) as stated
in Eq. 2.

Erate ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error2P1 þ Error2P2

p
T

(2)

The calculated error of each rate (Erate) is used as an input in the DSAS tool (Table 3)
and incorporated in the calculations of the different indicators (see Thieler et al. 2009).
The shoreline uncertainty (Ep) is then incorporated into the calculations for the standard
error, correlation coefficient, and confidence intervals, which are provided for the simple
and weighted linear regression methods.

2.2.3. Computation of coastline erosion rates
Rate calculation was performed using the Digital Shoreline Analysis System (DSAS) tool,
which was developed by the United States Geological Survey (USGS) (Thieler et al. 2009).
In order to determine erosion rates, a baseline was created and used to delineate orthog-
onal transects along the coast. The baseline was digitalised onshore, parallel to the shore-
line, and was used to automatically generate 15,069 transects with equidistant spatial
sampling at 50m. Of these transects, 30% were manually modified to ensure that they
remained orthogonal to the shoreline. Starting at the baseline, each transect intersects the
various shorelines that were extracted using the orthophotos, thus allowing us to calculate
the distance between them throughout the time period studied. The following beach
response indicators were obtained (Figure 3): (i) Shoreline Change Envelope (SCE), dis-
tance (m) between the shoreline closest to and furthest from the baseline; (ii) Net
Shoreline Movement (NSM), distance (m) between the oldest and newest shoreline; and
(iii) End Point Rate (EPR), which is the NSM distance divided between the shoreline
dates, thus obtaining the annual change rate (m/year). Finally, for the classification and
regression tree, only the EPR indicator was used as it’s indicative of a rate and therefore
allows better comparison between dates.

Table 2. Calculation of each error per orthophotography period (m).

Orthophotography period Error resolution (m) Error scale (m) Error criteria (m) Error period (Ep) (m)

Period 1 1956–1957 1 1.5 3 3.5
Period 2 1977–1983 0.5 1.5 1.25 2
Period 3 2001–2003 0.5 1.5 1.25 2
Period 4 2010–2011 0.5 1.5 1.25 2
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2.3. Machine-learning techniques for stratifying beach response indicators

Machine learning is a field of research that falls under artificial intelligence and consists
of the use of data to learn patterns and build models that enable us to infer the value of a
target variable (i.e. erosion etc.). It therefore involves empirical models that are built
based on information contained within the data, identifying relationships between the tar-
get variable and a series of variables that explain its behaviour. Unlike traditional statis-
tical methods, machine-learning techniques allow us to identify complex, nonlinear
relationships and forego previous assumptions about the statistical distribution of varia-
bles (i.e. normality). There are two types of issues that can be dealt with using machine
learning, depending on whether the target variable is continuous or categorical. These
allude to a regression process and a classification process, respectively. Classification
methods, in turn, are subdivided into supervised and unsupervised, depending on whether
or not the learning examples used during the training contain the class labels for said
examples, and when these values are not present, the system seeks to group the examples
into similar clusters (Sammut and Webb 2017).

Beach erosion rates, despite being continuous variables by definition, are susceptible to
stratification into groups with similar magnitudes (m/year) or specific behaviours over
time. Thus, an erosion rate with a lower value over a specific period that then presents a
greater value in a subsequent period may be indicative of a change in soil use, impact
from coastal engineering and/or a change in sedimentary input within the system. On the
other hand, a rate that does not change over periods may indicate stabilisation of the
coastline due to anthropogenic measures (e.g. construction of seafront promenades or
breakwaters) that prevent or inhibit coastline erosion. This stratification can be complex,
especially when studying large swaths of coastline that exhibit a large number of patterns

Table 3. Error value per period considered (Ep) and for each rate (Erate).

Time period Ep (m) Erate (m/year)

1956–1977 4.03 0.20
1977–2001 2.83 0.12
2001–2011 2.83 0.33

Figure 3. Diagram of the DSAS approach showing the orthogonal transects (in white) used to calculate beach
response indicators such as SCE, NSE, EPR (inset image). Shorelines from 2001 (yellow) and 1977 (blue) are used in
this example.
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controlled by various drivers, overwhelming experts’ ability to establish a criterion. Rather
than relying on expertise, unsupervised machine-learning classification methods can use
standardised values for erosion rates as coordinates to locate each beach transect within a
multidimensional space. The number of dimensions of said space is equal to the number
of time periods for which the rates were measured. Therefore, two beaches with similar
erosion rates across all time periods will appear very close to one another in this new fea-
ture space, which quantitatively expresses similarities in coastline behaviour in terms of
their relative position (Hargrove and Hoffman 1999).

2.3.1. K-means algorithm
The K-means algorithm (Hartigan and Wong 1979) allowed us to establish separate
groups of beaches that responded similarly over time in terms of coastline mobility and
erosion/deposition patterns. The K-means algorithm is initially based on the number of
groups specified by the user (k). An example is selected for each of these groups to serve
as a reference, referred to as a seed. The seeds in our case are beach transects with ero-
sion rates located on the extreme ends of the multidimensional feature space. Therefore,
these initial seeds will correspond to beach transects with very high or very low variabil-
ity. Once all beach transects have been examined sequentially and the seeds have been
identified, each beach transect is assigned to a group represented by the closest seed using
the Euclidean distance. Then, new coordinates are calculated for each cluster, calculating
the mean for all erosion rates of the beach transects within each group. This allows us to
regroup the transects based on their proximity to the reference beach transects. Thus, the
references will progressively move towards the centre of each cluster. These processes are
repeated iteratively until the number of beaches that change between assigned groups
from one iteration to the next is very low, which means that the result is stable and that
the transects within each group have a similar behaviour.

2.3.2. Classification and regression tree algorithm
Unsupervised machine-learning classification, such as K-means, enables us to group
examples into homogeneous groups based on distances within the feature space.
However, this grouping is based on centrality and not on identifying rules to establish
separation boundaries between classes. Applying it to coastline studies allows us to estab-
lish groups, in this case coastal transects, with similar behaviour in response to the ero-
sion/accretion variable within a time period. This method enables us to integrate large
data volumes, which is becoming increasingly more common and necessary for effective
coastline management, as well as to recognise behaviour patterns that can be used to cre-
ate informed management policies and strategies on an intermediate (regional) scale.

Furthermore, a classification and regression tree (CART) model (Breiman et al. 1984)
was built based on the K-means results to identify the erosional and depositional rate
threshold values and the period that characterises each cluster or stratum. The categories
obtained by the K-means algorithm and the erosion rates were combined into a set of
input feature vectors to grow a CART model. A CART model comprises many different
nodes. The primary node, known as the root, contains the data for all beach transects
together with its group label. The interior nodes, collectively referred to as nonterminal
nodes, are linked to decision stages to split the beach transects into more homogeneous
nodes according to a rule. Finally, the terminal nodes (leaves) represent the final classes.
Therefore, a CART represents a set of rules organised hierarchically into levels, which are
successively applied down the tree from the root to a leaf.
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2.3.3. Application of the Km-CART method
This study has combined the K-means and CART classification methods to create a
hybrid method (supervised classification from automatic clusters) referred to from this
point onwards as Km-CART, and models beach dynamics for three periods of interest
(see Section 3.2.1 and 3.2.2). The Km-CART method learnt from the erosion and depos-
ition rates of 1509 beach transects. All analyses were carried out in R software, using the
‘stats’ and ‘rpart’ packages. These beach transects were initially clustered using a K-means
algorithm based on Euclidian distances in a 3D temporal feature space and corresponding
to three EPR of the periods of interest (1956–1977, 1977–2001 and 2001–2011). Different
models were built for different combinations of K-means outputs and CART model com-
plexities. The K-means algorithm was built considering a number of clusters between 2
and 15. Figure 4 shows the sum of the square differences when considering different
numbers of k clusters. One can see that the error begins to converge slowly starting at 3
or 4 groups. The CART models were built using the outputs of the K-means algorithm
(1509 beach transects) considering 3, 4, 5 and 6 classes, and validated using a 10-fold
cross validation. With the goal of obtaining robust and generalisable models, we built all
possible decision trees at a depth level of 2 and with a minimum number of observations
per node between 10 and 50. A Km-CART model with 5K-mean classes and a CART
tree with 2 levels and 10 observations per node outperformed the rest (overall accuracy:
94.04%). This model was therefore selected for further analyses.

3. Results

3.1. Coastal evolution rates

Results are presented for the three time periods for which orthophotos were available (see
Table 1): 1957–1977, 1977–2001 and 2001–2011. In the first time period (1957–1977), we
observed that erosion was present in 42% of transects analysed (average of
�1.43 ± 0.20m/y) and deposition was only observed in 25% of transects (Figure 5) with

Figure 4. Sum of squared distances for different number of groups (k) in the K-means algorithm. The total within-
groups sum of square (similarity between groups or classes) decreases dramatically when k is greater than 4. Models
of increased complexity with more than 4 classes lead to more similar beach groups/classes.
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an average value of þ3.21 ± 0.20m/y, reaching 30 ± 0.20m/y in some sections of the
Atlantic region. The second period (1977–2001) was characterised by an increased num-
ber of transects showing deposition (50%) and a small decrease in those showing erosion.
However, the average accumulation rates were approximately þ3.45 ± 0.12m/y, while ero-
sion rates increased slightly compared to the previous period at approximately
�1.55 ± 0.12m/y, with a maximum rate of �19 ± 0.12m/y on the C�adiz coastal sector.
Lastly, the third period (2001–2011) saw a significant decline in the number of transects
displaying both accretion (9%) and erosion (19%). This gave rise to a major increase in
stable sectors of up to 72% (i.e. behaviour in these sectors did not change compared to
the previous period). This change in dynamics may be due to the stabilisation of the
proxy used as a result of the increased presence of coastal infrastructures. Another finding
for this period was an increase in the mean erosion rate up to values of around
�1.96 ± 0.23m/y, located mainly on the Mediterranean coast.

In general, over the entire 55-year period studied, we observed an almost widespread
pattern of erosive behaviour along the coast, accompanied by significant stabilisation of
coastline sections over time (represented by blank spaces), this being primarily evident
and significant in the last period studied (Figure 5). Average erosion and accumulation
rates for the entire period studied were �1.17m/y and 2.72m/y, respectively. Sections
with significant erosion prevailed in the first period, although at lower rates, while in the
second period the number of transects showing erosion were almost equal to those show-
ing accumulation, reaching particularly high erosion levels along the coasts of C�adiz and
Huelva (> �10 ± 0.12m/y). Lastly, during the third period (2001–2011), most of the
Mediterranean coast remained stable, with some sections displaying erosion along the
coasts of Malaga and Granada, and some areas of accumulation along the coastline in
Huelva and in certain Mediterranean deltas. For a full description of the results, see
Prieto et al. (2018). This results are pretty much in line with those from Molina et al.
(2019) that showed a negative net balance of 29,738.4m2/year corresponding to the loss
of 1784.30 km2 of beach surface in the 1956–2016 period.

Figure 5. Beach response indicators (erosion and accretion rates, calculated as EPR) for the three periods studied
(1956–1977, 1977–2001 and 2001–2011). The size of the circles (blue for deposition/accretion and red for erosion)
represents the value of the rate (meters/year) and blank spaces represent stabilisation.
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Figure 6. Km-CART model showing the different categories based on the erosion/accretion behaviour of all 1509
beach transects. Note that the second period (1977–2001) appears as the main driver of long-term beach behaviour.
The model identified four classes which are colour coded.

Figure 7. Spatial representation of beach response categories. Coloured shapes represent the different classes identi-
fied using the Km-CART model. Insets labelled as 1, 2A, 2B, 3, 4A, 4B, 4C_a and 4C_b are representative examples of
each category.

12 V. RODRÍGUEZ-GALIANO ET AL.



3.2. Results from stratification of beach response indicators

The four categories resulting from the Km-CART model are presented in a decision tree
diagram with two levels (Figure 6), which has also been geographically spatialised as a
map (Figure 7). Both the diagram and the map are colour coded based on the clusters
identified by the model. Also, the cluster centroids used to separate classes based on the
K-means algorithm are shown in Table 4. Of the seven leaf nodes in the model, it can be
observed that several belong to the same class. This occurred in Class 2 (patterns A and
B) and Class 4 (patterns A, B and C), and is the result of the subclasses or patterns being
defined by different rules, thus being conditioned by different drivers in some of the peri-
ods that were studied.

The classification tree was able to correctly classify 1415 of 1509 beach transects
(93.77%) into the four classes identified by the K-means algorithm. Table 5 shows the
confusion matrix obtained from the cross-validation that was performed during Km-
CART model training. Commission and omission errors were low in general, except in
classes 1 and 2. Class 1 was overestimated by 32.04% due to the inclusion of 34 beach
transects that corresponded to Class 4. On the other hand, Class 2 was underestimated by
27.45% due to 39 beach transects that corresponded to Class 2 being included under
Class 4. It was possible to observe how erroneous transitions between classes occurred
primarily with Class 4 as it was the predominant class (Table 5).

The overall results showed that the period between 1977–2001 appears to be the main
driver of long-term beach behaviour and discriminates between erosive and depositional
shorelines for the whole dataset (1509 beach transects). Although all categories are clearly
represented along the coast, 79.5% of beach transects fell under Class 4 C, which is indeed
found on both the Atlantic and Mediterranean coasts (Figures 6 and 7). The first level of
the Km-CART model grouped beaches based on their behaviour in the second period
(1977–2001), discriminating between those with an accretion rate greater than or equal to
3.16± 0.12m/y (9.3% of beach transects) or less (90.7% of beach transects). The second
level classified beach transects for the third period (2001–2011) with an erosion rate
greater than or less than �4.275 ± 0.23m/y (Figure 6). The third level discriminated
between beach transects with an accretion rate greater than or equal to 4.21 ± 0.20m/y for
the first period (1956–1977) (classes 2B and 4C) and beach transects that experienced
erosion (EPR<-0.18 ± 0.12m/y) for the second period (1977–2001), labelled as 1 and 4B.
At the second level on the opposite side of the tree, beach transects in the second period
(1977–2001) are discriminated based on whether they showed an accretion rate
>18.23 ± 0.12m/y (Class 3) and those with EPR < 18.23 ± 0.12m/y and that displayed an
erosion rate in the first period �-0.535 ± 0.12m/y (Class 2 A) or <-0.535 (Class 4A)
(Figure 6).

Class 1, which represents 4.7% of beach transects (n¼ 72), is comprised of systems
that displayed erosion rates ranging between �0.22 and �17 ± 0.12m/y in the second

Table 4. Cluster centroids extracted using a K-means algorithm for the three classes and periods studied.

Class EPR 1956–1977 ± 0.20 (m/y) EPR 1977–2001 ± 0.12 (m/y) EPR 2001–2011 ± 0.23 (m/y) Size Error

1 �0.78 �5.04 �6.12 103 4383.838
2 5.55 5.68 2.85 129 13199.077
3 9.13 25.02 6.60 51 7003.972
4 �0.32 �0.01 �0.36 1226 12254.806

The mean EPR value (negative erosion and positive accretion) is shown for each class. Size refers to the number of
beach transects in that class. The sum of squares within the cluster is computed as the summatory of the distance
of the observation to their assigned cluster centres. A low value of sum of squares means homogeneity within
the class.
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period (1977–2001) and >-4.33 ± 0.23m/y in the third period (2001–2011). The balance
for all periods (1977–2011) was therefore negative with regard to erosion rates, with val-
ues ranging between EPR=-0.36 ± 0.12m/y and �8.69 ± 0.12m/y. It primarily comprised
Mediterranean deltas and beaches with a clear erosional trend over the past 55 years. This
pattern, however, is intensified over the last decade for most of the beach transects in this
category. The presence of coastal infrastructures (ports, seawalls and breakwaters) may
have led to a disruption of the natural longshore drift resulting in highly erosive areas.
An example shown in Figure 7 (inset 1) is the V�elez River Delta located on the
Mediterranean coast between the Almayate and Torre del Mar beaches in Malaga
Province. Other examples include the Guadalfeo River (Motril) and beaches associated
with the Punta Entinas-Sabinar system (Almeria Province on the east Mediterranean
coast, see Figure 1). The cluster centroids based on the K-means algorithm (see Table 4)
increased towards the third period (2001–2011), reaching EPR=-6.12 ± 0.23m/y.

For beach transects that had an accumulation rate in the second period (1977–2001)
greater than 3.16 ± 0.12m/y, the second level of the Km-CART model discriminated
between beach transects with an accretion rate of less than 18.3 ± 0.12m/y for the same
period: Class 2A (4.77% of beach transects) and Class 4A (1.25% of beaches). Class 2A is
associated with the large depositional systems along the western coast of Andalusia (EPR
> 19 ± 0.12m/y). The availability of sediments, both of a natural and anthropic origin,
along with an intense longshore drift (W–SE) may have led to the existence and develop-
ment of these coastal systems. A good example is Punta Malandar (Figure 7, 2A) at the
mouth of the Guadiana River, where the longshore drift drives sediment transport, influ-
encing the dynamicity of these shorelines located on the Atlantic margin. Class 4A,
located on the opposite side of the tree at this same level, is where the model classified
beach transects that experienced erosion rates of less than �0.535 ± 0.20m/y during the
first period (1956–1977). This class is observed downstream of the littoral drift direction
of the main Atlantic rivers (i.e. Tinto, Carreras, Odiel), where the presence of man-made
dykes upstream may have led to sediment accumulation along these coastal sections after
1977. It also comprises beach transects with significant inter-annual fluctuations in shore-
line position due to their proximity to large Atlantic estuaries in Huelva Province, such as
the Guadiana and Guadalquivir rivers and, to a lesser extent, the Piedras River (see
Figures 1 and 7, 4A).

The other pattern within this class was found in Class 2B (5.36%, n¼ 81), which corre-
sponded to historically depositional and currently erosional beaches apparently due to
artificial interruption (e.g. dams) of sediment input from estuaries. The majority corre-
sponded to Atlantic estuarine systems that were traditionally responsible for sedimentary
input, but which are currently experiencing a sediment deficit (EPR >-4.275 ± 0.23m/y).
A typical example of this class is Isla Canela, located in the mouth of the Guadiana River

Table 5. Confusion matrix for the Km-CART model.

C1 C2 C3 C4 TOTAL E. COMISI�ON

C1 70 1 0 32 103 32.04
C2 0 111 0 18 129 13.95
C3 0 2 49 0 51 3.92
C4 2 39 0 1185 1226 3.34
TOTAL 72 153 49 1235 1509
E. OMISI�ON 2.78 27.45 0 4.05

References appear in columns (test), while the predicted beach transect classes (map) appear in rows. Agreements
between the reference and the map appear across the main diagonal, while the remaining cells are interpreted as
errors. Commission errors report the percentage of beach transects that are misclassified on the map and omission
errors report the percentage of beach transects that are missed on the map according to the test.
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(Figure 7, 2B). Despite this class being found primarily along the Atlantic coast (associ-
ated with large estuaries), it was also found in some areas along Andalusia’s
Mediterranean coast, as these areas show fluctuations that may be result of the construc-
tion of leisure ports and fishing marinas, or the stabilisation of deltas for agricultural pur-
poses. The cluster centroid for this class changed from 5.55 ± 0.20m/y in the first period,
to 5.68 ± 0.12m/y in the second period and down to approximately 2.85 ± 0.23m/y
towards 2001–2011.

Class 3 (1977–2001 EPR > 18.23 ± 0.12m/y) was not well represented along the coast
(3.24%). This class only occurred on the Atlantic side and was associated with significant
sedimentary systems such estuaries, but with a very localised scope (i.e. the Carreras estu-
ary, Rompido spit and the mouth of the Odiel-Tinto River, as shown in Figure7, 3). This
class also displayed deposition across all periods, with the second period (1977–2001)
being particularly relevant, with EPR values of around 25 ± 0.12m/y. This class presented
a positive cluster centroid value for all periods, with values of 25.02 ± 0.12m/y in the
second period (1977–2001) where these systems underwent maximum accretion.

Class 4B, a subclass of Class 4, represented 1% (n¼ 16) of the beach transects in this
study. These systems are historically depositional (between 1957–2001) as they fall within
the area of influence of Mediterranean deltas, however in the third period (2001–2011)
they showed intense erosion on the order of �4.35 ± 0.23m/y and �10.7 ± 0.23m/y
(-0.18> 1977–2001< 3.16 and 2001–2011<-4.275). Examples of this class are the
Guadalhorce River in Malaga (Figure 1), Torre del Mar (connected to the mouth of the
V�elez River) and some sections (beach transects) in Roquetas de Mar in Almer�ıa (Figure
7, 4B). The erosion/deposition balance for these beaches is negative between 1956–2011.

Lastly, 4 C (79.5%, n¼ 1200), the predominant subclass of Class 4, contains those sys-
tems that displayed deposition rates greater or equals to 4.21 ± 0.12m/y for the first period
and erosion rates less than �4.275 ± 0.23m/y in the third period (2001–2011), and that
also demonstrated different behaviour to the other periods (Figure 7). Most beach trans-
ects (n¼ 550, 45.8%) were traditionally stable or depositional given their orientation with
respect to longshore drift. However, more recently (from 1977 onwards or from
2001–2011) these show severe erosion and a reduction in sediment input that may be the
result of changes in soil use and intense urbanisation along the coast. The EPR for these
beach transects reached values above �4.275 ± 0.23m/y during the last period. Although
these beach transects are broadly distributed throughout the Andalusian coast, urban
beaches such as Valdelagrana (C�adiz) and Salobre~na (Granada) stand out as some good
examples (Figure 7, 4C_a,b). In fact, under the 4C subclass there were a large number of
beach transects that demonstrated a slight variance in patterns: those that showed an ero-
sive pattern since the first period (331); a subset that were traditionally depositional, but
had displayed erosion rates in the last two periods (138); and those that were positive
(depositional) in all three periods, but with very low rates that were borderline stable
(120). On the other hand, this subset also included erosive beaches (with minimal range)
that, over recent decades, had become depositional or stabilised (299). Class 4 displayed a
negative centroid across all periods, but with very low values, especially in the second
period (1977–2001) where the cluster centroid was almost zero (-0.01 ± 0.12m/y), thus
demonstrating the variance of the class and its subclasses, as well as the stability of
some systems.

Given the great amount of beach transects classified under the class 4 C, a new model
was built for this class only with the aim of better understand their behaviour during the
three periods. Results of this sub-model are presented in the Supplementary section.
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4. Discussion

Coastal monitoring frequently involves the understanding of shoreline change through the
calculation of conventional shoreline metrics over a specific time frame. The new advan-
ces in technologies have allowed to extend the analysis of changes in shoreline position to
a broader scale (with higher temporal as well as spatial resolutions), which in turn could
help to identifying trends and magnitudes of relative shoreline change over time
(Burningham and French 2017). Notwithstanding, beyond the quantification of the rate of
change (erosion/deposition vs advance or retreat of a given portion of coast) (Banks et al.
2017, Dai et al. 2019), understanding regional drivers, non-linear coastal changes or
broader regional dynamics (Hapke et al. 2016) often require more sophisti-
cated approaches.

In this study, the application of a new hybrid methodology that combines automatic
K-means clustering and a supervised CART system to stratify beach behaviour (beach
shoreline metrics) is applied to the coast of Andalusian. Results from shoreline dynamics
indicators (analysed for three consecutive periods: 1957–1977, 1977–2001 and 2001–2011)
obtained through the use of a proxy (contact between the backshore and dunes, fore-
dunes, infrastructure or cliffs) enabled us to analyse the evolution of different sections of
coastline over the past 55 years (Figure 7).

4.1. 55-years of shoreline change: the influence of anthropogenic activities

As demonstrated by many authors (e.g. Manno et al. 2016, Molina et al. 2019, Villar
Lama and Ojeda 2007), the Andalusian coast has been influenced by accentuated regional
land-use changes (agricultural-use land converted into urban areas and the proliferation
of greenhouse agriculture on the Mediterranean deltas), massive coastal urbanisation
beginning in the 1960s and with a peak during the 1970s (and the resulting construction
of coastal infrastructure, such as ports, dikes, wharfs) as well as the artificial stabilisation
of large sections of coastline (e.g. construction of seafront promenades and sand
nourishment).

In this sense, the fact that the first period shows sections that are predominantly ero-
sive (although at a medium/low rate of �1.43 ± 0.20m/y) indicates the significant coastal
transformation that occurred during the ’60s and ’70s when massive urban expansion was
undertaken along the coastline, especially on the Mediterranean side, which was accompa-
nied by the construction of water-regulating infrastructure (e.g. reservoirs) (Del R�ıo and
Malvarez 2017, Malvarez 2012, Garel and Ferreira 2011, Del R�ıo et al. 2020). This fact,
along with land-use changes associated with alterations in the agricultural production
model and the artificialisation of the coastline (Villar Lama and Ojeda 2007), caused
changes to sedimentary dynamics (and longshore drift flows due to the construction of
dikes and wharfs), affecting the natural behaviour of many sections of coastline (Senciales
and Malvarez 2003, Molina et al. 2019). Some examples on the Mediterranean coast
includes the construction of Puerto Ban�us port (1970), groynes and breakwaters in the
eastern coast of Malaga and Granada and the main dock of the port of Almerimar
(Almeria) in 1978, among others (Molina et al. 2019). In fact, as stated by Manno et al.
(2016) in the Mediterranean coast of Andalusia the length of armoured coastal sectors
increased from 42.1 (1956) to 98.2 Km (1977). In 20 years, the numbers of ports doubled
(from 10 in 1956 to 20 in 1977) and the progressive emplacement of groins constituted
1.3 km of armoured coastline in the 50 s an increased to 20.6 km in 1977 (more than 47
groins built in two decades) (Manno et al. 2016).
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In the second period studied (1977–2001), this sedimentary imbalance was evident in
many sections that presented chronic erosion. However, the number of coastal transects
that showed a positive balance (deposition) also increased, in most cases due to the pres-
ence of coastal engineering infrastructure that facilitate short-term beach stabilisation
(Malv�arez et al. 2015, Morales et al. 2004) or associated with the large Atlantic estuarine
systems where accumulation values reached approximately 12 ± 0.12m/y (Morales et al.
2004) (Figure 7). As some authors have demonstrated, the first stabilised areas in these
coastal areas were observed with the appearance of seafront promenades and occupation
of the Maritime Terrestrial Public Domain (DPMT) (G�orgolas 2019, Malvarez 2012,
Manno et al. 2016, Molina et al. 2019). In the Mediterranean during the 80 s-90s the arm-
oured coastline increased to 182.3 km, which included new ports, enlargement of existing
ones and emplacement of 97 new infrastructures (88 groins and 9 breakwaters) (Manno
et al. 2016). During this period, it’s also relevant to highlight the construction of several
dams, such as the case of V�elez River where since 1988, several dams were emplaced in
the basin of the river that significantly reduced fluvial sedimentary load, or the Benimar
Dam (1988) in the Adra River (Almer�ıa coast), or the Guadalfeo mouth that lead to the
emplacement of about 100 small groins along the eastern side of the delta (Prieto et al.
2012). This placement of coastal infrastructures and periodic nourishment works brought
the opposite side of the deltas to show progradation (Molina et al. 2019, Guisado-Pintado
and Malv�arez 2015).

The last period is dominated by a predominance of this ‘artificial’ stabilisation of
beaches that resulted in almost 50% of stable sections, especially along the Mediterranean
coast where most beaches undergo artificial maintenance (i.e. coastal regeneration per-
formed via continuous replenishment of beach sediments). In this period, some coastal
transects still show predominantly erosive behaviour with an average value of
�1.96 ± 0.23m/y, while coastal sections showing accumulation are concentrated around
the large Atlantic sedimentary systems. In terms of coastal infrastructures, in the
Mediterranean coast, according to Manno et al. (2016) this period showed a slightly
increased in the armouring coastlines which reaches 197.3 km with 947 groins/breakwaters
and 39 seawalls and revetments observed in 2010.

The erosion/accumulation rates analysed using the End Point Rate indicator (EPR, m/
y) are those that enabled the model to establish different clusters or classes that use rules
to explain the behaviour of different beaches, grouping these according to a series of
explanatory variables. The fact that the second period (1977–2001) was the determining
period that divided the classes makes sense, as it was during that period when urban
expansion was undertaken along the coastline. This infrastructures had a massive impact
on systems compared to the previous period (construction of seafront promenades, dams,
leisure ports, land-use changes) and caused beach stabilisation in some cases such as the
sector in ‘La Linea de la Concepci�on’ at the eastern Mediterranean side of the Strait of
Gibraltar (see Molina et al. (2019) for further details on the Mediterranean coast). In fact,
the first classification (1977–2001 EPR>¼3.16 ± 0.123m/y) displayed in Figure 6 already
discriminates between systems with an erosive pattern (classes 1, 4B and 4C) and systems
more prone to accumulation (2 A, 2B, 3 and 4A).

In general, there was good agreement between the results of the Km-CART stratifica-
tion into four classes and the general coastline dynamics observed along the Andalusian
coast over the past 55 years, during which time periods of accretion and erosion were
driven by both natural and anthropogenic processes. This is also in line with previous
works developed in the Mediterranean coast of Andalusia (Molina et al. 2019), that
showed that depositional beaches were essentially observed in areas associated with coastal
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infrastructures (up-drift of ports and groins, breakwaters) whereas erosion is associated
with to down-drift areas of ports and groins and along the mouths of largest rivers
and deltas.

4.2. The complexity of shoreline dynamics: past behaviour and trends

The model shows that Class 4 C was the largest, including 79.5% of beach transects
studied in both the Atlantic and Mediterranean margin, with a predominantly erosive pat-
tern over the past 55 years due to intense urbanisation activity and the artificialisation of
the coastline (seafront promenades and breakwaters, see Manno et al. (2016) and
Malvarez (2012) for detailed cases in the Mediterranean), which brings about the loss of
natural elements such as dunes. This is related to what was observed for erosion rates,
where we can see that the pattern of behaviour over past decades shifted towards chronic
erosion, especially in Mediterranean environments. Examples of this category can be
found at the westernmost coast of Malaga province where large number of coastal infra-
structures and ports (e.g. La Duquesa, Estepona, and Puerto Ban�us) have been developed.
Another example is Salobre~na beach (Figure 7_4C_b) where since the construction of a
dam (2005) constant erosion has been recorded despite the lately efforts carried out by
beach nourishment initiatives (F�elix et al. 2012). Similarly, the model classified 8% (2A
and 3) of sectors located at the mouths of large estuaries and adjacent areas as accretional
systems over the past decade. A submodel only accounting for beach transects classified
as 4C (n¼ 1200) was built to better understand the rules that describe these locations
(see Supplementary section).

Classes 1 and 3 appeared as opposites to one another: Class 1 was associated with sys-
tems displaying erosion across all periods studied and principally associated with beaches
in the Mediterranean. These beaches witnessed the expansion of tourism in the 1960s as
well as significant land-use changes, as detailed by Senciales and Malvarez (2003) concern-
ing the V�elez River Delta (Malaga Province), or the example of Adra river basin trans-
formation during the last decades discussed by Molina et al. (2019). Class 3 represents
large Atlantic sedimentary systems where there has been a pattern of accumulation over
the past 50 years, with inter-annual and inter-decadal variations, and whose functioning
appears to respond to the large accretional contribution made by rivers, such as the Odiel
and Guadiana Rivers (Morales et al. 2019). These classes demonstrated very little variation
within the class itself (Table 4), with all beach transects appearing under the same leaf
node and thus sharing the same rules.

Other intermediate classes, subtypes of classes 2 and 4, are represented under 2B and 4
(A and B). Class 2B, which is very similar to Class 3 with cluster centroids showing lower
deposition rates (Table 4), is an example of systems linked to river mouths that have also
seen fluctuations resulting from river management, which is particularly evident starting
in the 1970s. For their part, classes 4A and 4B are opposites. Class 4A demonstrated a
positive change rate from 1956–2011 with an EPR between þ0.76 and þ4.34 ± 0.20m/y
and corresponded to beaches in areas near Atlantic river mouths, while Class 4B was con-
centrated along the Mediterranean coast and showed a deficit for the entire period, which
may be linked to the anthropogenic use of these beaches. Both cases are quite heteroge-
neous internally, as is evident from the error values in Table 4, meaning the beaches in
these classes react to different internal rules. This could be explained by the fluctuations
suffered by these beaches during the past decades and for the wave regime and long-shore
drift. For instance, beach transects only separated few meters can depict opposite behav-
iour, this is those located up-drift could record accretion respect to down-drift areas were
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erosive patterns are dominant (Jonathon et al. 2001). Further, coastal management practi-
ces in erosive areas commonly implies the progressive emplacement of new structures to
prevent or reduce erosion (e.g. Manno et al. 2016, Malvarez 2012). The practice unlike
fixing the problem it usually generates the so called ‘domino’ effect (Cooper et al. 2009)
and normally implies periodic artificial nourishments to maintain this beach which in
turns could be interpreted as progradation or accretion. In any case, and particularly in
these classes, shoreline evolution is rarely uniform (Burningham and French 2017, Molina
et al. 2019, Malv�arez et al. 2015) and some beaches could experiment inversion of trends
(from erosion to accretion) induced by the emplacement of coastal structures and/or arti-
ficial nourishments, e.g. Roquetas de Mar (Figure 7, 4B).

4.3. The Km-CART model: limitations and new steps

The classification tree was able to correctly classify 1415 out of 1509 beach transects
(93.77%), which corresponded to the four classes identified by the K-means algorithm,
while erroneous transitions between classes occurred primarily in Class 4, as shown in the
confusion matrix (Table 5). This may be due not only to the fact that the latter class was
the largest (1234 transects), but also that the study periods used for the beach response
indicators had uneven durations (21, 24, and 10 years, respectively), which could be con-
cealing inter- and intra-annual behaviours with more dynamic variability, for example
those corresponding to classes 1 and 3. Furthermore, transects used for the discrimination
of classes are displayed every 50 meters. Therefore, only groups which were composed of
spatially continuous transects with similar patterns were considered to be representative
of a class. Isolated transects within a beach section are not considered as representative of
the behaviour of a beach. Future studies should consider contextual information to char-
acterise beach classes.

The use of ML techniques include added benefits, such as: i) the ability to learn com-
plex patterns, considering the nonlinear relationships between the study variable and aux-
iliary variables; ii) they are capable of providing generalisations, as they can be applied to
new cases of the same problem; iii) they are capable of incorporating different types of
variables into the analysis: continuous, ordinal, categorical; iv) statistical distribution is
independent of the data (normality of variables is not assumed) (Coimbra et al. 2015,
Burningham and French 2017, Goldstein et al. 2019). However, some algorithms, despite
their potential to classify or estimate precise coastal information, can also be complex in
their application or difficult to interpret. In this regard, we have used the Km-CART
method to show a simple way to stratify beaches in terms of their erosive behaviour while
also generating knowledge that can be understood by specialists and coastal managers.
We have converted patterns using natural language, selecting the most important variables
and their cut-off or threshold values. While the model we have developed here only
applies to the Andalusian coastline, the proposed method can be applied to any coastal
area and can be used to stratify erosion, as well as study the behaviour of other types of
issues where no predefined classes exist, but where there are groups with different behav-
iours susceptible to analysis (response to storms, nearshore bar evolution, development
and behaviour of foredunes).

Improvements could be applied to the stratification of beaches according to their ero-
sional/depositional behaviour and the main drivers that affect their dynamics (such as
wave climate). Furthermore, new predictive models could be built from beach stratifica-
tions and using different environmental variables, including land-use changes, storms
magnitude and frequency, climatic indices (e.g. precipitation) etc. This will allow for
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objective and more accurate identification of the main territorial and environmental driv-
ers of coastline changes. Results showed good performance of machine-learning methods,
and, more specifically, of Km-CART, in modelling medium- to long-term shoreline
dynamics. Decision trees are algorithms that offer a great amount of transparency, as they
provide information through the split rules used to separate examples into classes, identi-
fying the most important variables for each class as well as the threshold values used to
divide said variables. However, under certain circumstances this high interpretability can
also be concealed due to increased noise sensitivity, which may negatively impact classifi-
cation performance (Rodriguez-Galiano and Chica-Rivas 2014). There have been new
developments in this regard that, despite being less interpretable, may provide a more
precise stratification, such as Random Forest or Support Vector machines (Rodriguez-
Galiano et al. 2012, Rodriguez-Galiano and Chica-Rivas 2014).

5. Conclusions

� The evolution of the Andalusian coast over time (the past 55 years) has been influ-
enced by the dynamicity of large river systems (Atlantic estuaries), regional land-use
changes (agricultural-use land converted into urban areas and greenhouse agricultural
practices on Mediterranean deltas), massive coastal urbanisation beginning in the
1960s and 1970s (and the resulting construction of coastal infrastructure, such as
ports, dikes, wharfs) as well as the artificial stabilisation of large sections of coastline
(e.g. construction of seafront promenades).

� The complexity of shoreline dynamics (non-linear behaviour, intra-decadal changes)
and the recent availability of datasets highlights the need of combining the quantifica-
tion of shoreline metrics with any short of analysis to extract trends of mesoscale
beach behaviour.

� The proposed Km-CART methodology enables stratification and characterisation of
complex, continuous multivariate transects of decadal beach behaviour into homoge-
neous groups for easier interpretation. Andalusian beaches were separated into four
classes with different erosive behaviours according to the beach dynamic indicator,
End Point Rate (EPR), during three periods: 1956–1977, 1977–2001, 2001–2011.

� Km-CART was able to correctly classify 1415 out of 1509 beach transects (93.77%),
corresponding to the four classes based on the following rules: First, an initial classifi-
cation was performed (1977–2001 EPR>¼3.16 ± 0.12 m/y) to distinguish between sys-
tems with an erosive pattern (classes 1, 4B and 4C) and systems more prone to
accumulation (2A, 2B, 3 and 4A).

� Then, each of the four classes had well-defined rules: Class 1 comprises beach transects
that presented erosion in all periods; Class 2, with two subclasses: 2A for beach trans-
ects with accretion in all periods except for the first, and 2B for beach transects that
are traditionally prograde but erosive in the last period; Class 3 comprises systems dis-
playing significant accretion across all periods; Class 4, with three subclasses: 4A, beach
transects with positive rates; 4B, historically prograde beaches that experienced intense
erosion during the last period; and 4C, beach transects with a high amount of internal
variability but with coastline recession in the last period (See supplementary section).

� The confusion matrix that was obtained based on cross-validation showed that com-
mission and omission errors were low in general, with classes 1 and 2 being the excep-
tion. We observed how erroneous transitions between classes occurred primarily with
Class 4. It is also possible that behaviours in shorter time series for this group of
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beaches may be concealed by the number of beaches that fell into this category as well
as the different durations of the periods studied.
This study is an analysis of the erosive state of the Mediterranean and Atlantic beaches

along the Andalusian coastline, solely taking into account beach response indicators based
on the computation of shoreline erosion rates. Future research areas may benefit from
applying ML methodologies to identify territorial drivers that have contributed to changes
in the erosive state of beaches, such as land-use changes, wave climate, coastal manage-
ment approaches.

Apart from its ease of application and the interpretability of its results, the Km-CART
method has many advantages for stratifying multidecadal erosional and depositional
dynamics of beaches or for use in coastal studies, such as: (i) the ability to handle com-
plex data from different statistical distributions, responding to nonlinear relationships
between variables; and (ii) producing results that are relatively unaffected by redundant
data or outliers.

The methodology presented in this study can be applied to other coastal areas and other
types of issues where no predefined classes exist, but where groups need to be formed
using different meaningful variables, identifying the most important variables in the pro-
cess as well as the cut-off threshold values required to separate these into homoge-
neous groups.

This first stratification and the coherence observed within each of the four classes shows
that regional monitoring programmes could achieve considerable cost savings by stra-
tegically targeting monitoring activity at representative sites within each class, as well as
increasing the availability of high resolution orthophotos in order to better identify
intra-annual shoreline changes.
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