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In this paper we propose a general methodology for the optimal automatic routing of spatial pipelines 

motivated by a recent collaboration with Ghenova, a leading Naval Engineering company. We provide a 

minimum cost multicommodity network flow based model for the problem incorporating all the tech- 

nical requirements for a feasible pipeline routing. A branch-and-cut approach is designed and different 

matheuristic algorithms are derived for solving efficiently the problem. We report the results of a battery 

of computational experiments to assess the problem performance as well as a case study of a real-world 

naval instance provided by our partner company. 

© 2022 Elsevier Ltd. All rights reserved. 

1

t

t

o

o

a

o

d

s

r

a

t

p

G

(

o

o

m

a

t

d

c

n

e

d

t

p

h

0

. Introduction 

The design and construction of ships is a complex procedure 

hat starts with a concept design phase. In the concept design, all 

he necessary ship construction requirements are determined, in 

rder to meet the client needs. Next, in the basic design phase 

f the ship structure, piping and electrical circuits are defined and 

ll the different equipment are adequately selected. In this phase, 

ne of the most difficult tasks is to determine the pipeline route 

esign in which one has to determine the paths of the different 

ervices attending to a series of technical requirements. Pipeline 

outing requires the coordination of different elements of the ship, 

s the routing of electrical circuits, water pipes and optical fiber, 

he prevention of traversing forbidden obstacles, the assuredness 
� Area: Production Management, Scheduling and Logistics. This manuscript was 

rocessed by Associate Editor Leitner. 
∗ Corresponding author at: Dpt. Stats & OR, Universidad de Sevilla, Spain. 

E-mail addresses: vblanco@ugr.es (V. Blanco), emaildegabri@gmail.com (G. 

onzález), yhinojos@us.es (Y. Hinojosa), dponce@us.es (D. Ponce), miguelpozo@us.es 

M.A. Pozo), puerto@us.es (J. Puerto) . 

ttps://doi.org/10.1016/j.omega.2022.102659 

305-0483/© 2022 Elsevier Ltd. All rights reserved. 
f the adequate space for handling the machinery, among many 

thers, all of them having to guarantee the compatibility and the 

anufacturability technical requirements. Although there are some 

vailable tools to help the designers on this task, the difficulty of 

he problem makes that an expert is still necessary to guide the 

esign to a desired final product. Usually, there are some specifi- 

ations regarding the number of main lines, branches to be con- 

ected to the main lines, valves, etcetera that have to be consid- 

red (see, e.g., [5,32] ). Once the initial technical requirements are 

etermined, the pipeline routing problem must be solved following 

hese specifications. The main limitations of the pipeline routing 

roblem on a ship can be classified in three types (see, [1,22,24] ): 

Physical Constraints: The path followed by the pipelines must 

avoid physical obstacles and connect with the adequate 

equipment. 

Operational Constraints: The routes must consider accessibility 

for handling equipment and valves slackness for security. In 

addition, some zones in the decision space are more desir- 

able than others, as bottom spaces in a cabin that may be 

used for storing other types of materials. 
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Economic Constraints: There is a limited budget both for the 

material and workforce cost. Thus, it is necessary to reduce 

the pipe lengths, as well as the use of elbows in the design. 

Some of the above mentioned requirements must be imposed 

o design feasible routes, while others can be quantified and re- 

ected in a cost function in order to evaluate the different feasible 

lternatives and decide the most favorable. Nevertheless, defining 

dequately such a function implies including elements of different 

ature as material and workforce costs, use of elbows, routes pass- 

ng through preference zones and holes, etc. 

There exist a few software tools (as AVEVA, FORAN or 

MART3D, among others) that may help industrial designers for 

he development of this work. However, even those tools that in- 

orporate some automatic routing functionality are still limited to 

onsider all the technical requirements of this real-world problem 

eing them more adequate for industrial plants. Furthermore, the 

nderlying algorithms of these modules do not allow to incorpo- 

ate the different specificities for the design of a ship, and then, in 

ost cases the solution is not valid for the naval designer. In other 

ases, the decision aid tools are extremely specialized, not being 

exible enough for the design of networks of different characteris- 

ics. 

The goal of this paper is to derive an efficient mathemati- 

al programming based methodology for the automatic design of 

ipeline routes that take into account the different technical speci- 

cities of a naval design, but still flexible enough to be adapted to 

ifferent situations and constructibility criteria that appear in real- 

orld situations as the one that motivated this study. 

Automatic pipeline routing has been already addressed in the 

iterature (see for instance, [9,14,18,20,23,29] ) One of the most cru- 

ial steps in this problem is the description of the set of feasi- 

le routes for the pipes. Although the problem is initially stated 

n a continuous framework, with routes that are allowed to be 

raced in a continuous three-dimensional region, the mathemati- 

al problem is intractable in this form (one would need to locate 

 set of complex three-dimensional paths on a continuous space). 

hus, a discretization of the whole space into a finite set of feasible 

outes is needed also because the tractability of the problem and 

he simplicity of the obtained routes. One of the possible options 

s to discretize the space by cell decomposition. In [16] the au- 

hor proposed to subdivide the region into squared cells and those 

ontaining obstacles are removed. Several authors have used that 

cheme to derive algorithms for solving shortest path problems 

n continuous regions [10,17,19,25,27] . This approach has been also 

dapted to solve the pipeline routing problem [1,3,4,13,33] . How- 

ver, this method requires a high number of cells in the subdi- 

ision to get accurate solutions of the problem. To overcome this 

ituation, one may also discretize the space by means of a graph 

tructure [9,21,28] . Both approaches, cell subdivision and graph 

eneration can be also adequately combined to derive efficient ap- 

roaches in pipeline routing [23] . 

Once the space is adequately discretized, there are several 

euristic approaches that have been proposed to solve the pipeline 

outing problem. Most of them are genetic algorithms [11,12,14] or 

nt colony algorithms [30,31] . 

In this paper we will consider a graph-based discretization of 

he space that allows us to use Combinatorial Optimization tools 

or efficiently solving the problem. The graph is generated taking 

nto account the shape of the region and obstacles, the positions 

f the source and destination points of the pipes, the size of the 

ipelines, the preferred zones and penetrable zones (holes through 

hich some obstacles can be traversed), and other characteristics 

f the pipes to route. Firstly, we generate the nodes of the graph 

sing highlighted points (source and destination points, corners, 

oles, ...) and also intermediate points by means of a grid with a 
2 
esired width. Secondly, we define the edges of the graph by link- 

ng the close-enough nodes. Finally, each edge is provided with a 

et of weights (one for each pipeline to route) representing the dif- 

erent costs of using it in a path. 

On the basis of this idea our main contributions are: 

1. We discretize the continuous three-dimensional space by us- 

ing a graph-based framework that allows searching for pipeline 

routes taking into account the obstacles and the use of elbows 

in the routes. 

2. We propose a multicommodity network flow based model for 

the problem that incorporates the different physical and oper- 

ational limitations of the routing. In particular, the minimum 

allowed distances between consecutive elbows and separation 

between services. We provide a particular branch-and-cut ap- 

proach for the problem. 

3. We propose a flexible assessment function to evaluate feasible 

routes that take into account the different specificities that ap- 

pear in real-world naval design: length of the paths, preference 

zones, closeness to ceilings/floors, use of elbows, crossing pen- 

etrable zones, etc. 

4. We develop different matheuristic algorithms able to solve re- 

alistic instances of the problem in reasonable CPU times. 

To present our contribution we have organized the paper in 

ix sections. Section 2 describes the main elements involved in 

he pipeline routing problem and their mathematical represen- 

ation. Section 3 is devoted to present the mathematical pro- 

ramming model that we propose for solving the pipeline rout- 

ng problem imposing naval design technical requirements. In 

ection 3.1 a branch-and-cut method is proposed in order to in- 

orporate complicating constraints as they are required, instead of 

onsidering, initially, all of them. Two families of matheuristic al- 

orithms are provided in Section 4 to solve large-sized instances. 

n Section 5 we report the results of our computational experi- 

ents. There, we also include a case study based on real data pro- 

ided by our industrial partner. Finally, we derive some conclusions 

nd future lines of research is Section 6 . We have included an Ap- 

endix to gather all the pseudocodes that describe the details of 

ur algorithms. 

. The pipeline routing problem in naval design 

The goal of this paper is to model and solve the problem of 

ow to route different pipelines on a ship competing for a reduced 

pace taking into account the adequate technical requirements. In 

hat follows we describe the main elements of the problem: input 

ata, feasible actions and assessment of a particular solution. 

We assume that the underlined region where the pipelines are 

o be routed is represented by a bounded polyhedron, P 0 , in R 

3 .

n real-world situations, the polyhedron is usually a cuboid in the 

orm P 0 = [ a 1 , a 2 ] × [ b 1 , b 2 ] × [ c 1 , c 2 ] , representing a cabin in the

hip. We are also given a finite set of regions O 1 , . . . , O o ⊆ P 0 that

epresents o obstacles that cannot be traversed by a pipeline route. 

or the sake of simplicity, these regions will be also identified with 

uboids. Thus, the three-dimensional region where the pipelines 

re allowed to be traced is P = P 0 \ ∪ 

o 
� =1 

O � . In addition, we are

iven a finite set of services (cylindrical pipelines) each of them 

epresented by the coordinates of a source and a destination point 

both in P), a radius (of the cylindrical pipeline), and a safety 

inimum allowed distance with respect to other services. Our ap- 

roach can be easily adapted to other shapes of pipelines, as par- 

llelepipeds (with rectangular sections). 

The main decision to be taken in this problem is to determine 

he set of (dimensional) paths in P that each one of the services 

ust follow. Initially, a feasible path for a service will be a contin- 

ous union of segments in P starting off from its source point and 
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Fig. 1. Illustration of the first discretization phase of a PRPS instance with an obstacle and three services with sources and destinations at the blue and red points, respec- 

tively. The left figure shows the origin and destination points and the obstacle. The right figure depicts the grid of the discretized space. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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eaching its destination point. In addition, a minimum required 

istance must be ensured between two consecutive breakpoints 

elbows) by constructibility reasons. Furthermore, once a feasible 

ath for each service is traced, and once a dimensional pipeline 

s traced around the path, one has to ensure that a minimum re- 

uired distance between the different services is respected. In par- 

icular, the pipelines are not allowed to cross or to overlap in a 

olution. 

The quality of a suitable solution of the problem, given by a 

et of feasible paths, is evaluated with respect to different crite- 

ia. Apart from the length, which is proportional to costs, one also 

ooks for paths with small number of elbows, close to the ceiling 

f the region or traversing pre-specified preference zones. 

In what follows we describe the mathematical representation 

f the elements involved in the Pipeline Routing Problem in a Ship 

PRPS) that we analyze. 

In order to discretize the continuous space P , first, an or- 

hogonal 3D grid is built on the big parallelepiped P 0 , assuring 

hat source and destination points of each service are nodes of 

he grid and that they are connected with other nodes of the 

rid. This grid defines a baseline undirected graph to which nodes 

nd edges intersecting regions O � , for � = 1 , . . . , o, are removed. In

xample 1 we show a simple instace for the problem. 

xample 1. In order to illustrate the procedure described in the 

aper we include an example of a scenario with an obstacle and 

hree services (see Fig. 1 (left)). The scenario is a box with di- 

ensions 6 × 6 × 4 with an interior obstacle (box) of dimensions 

 × 2 × 4 located in the center of the box representing a pillar. The 

iscretized space of solutions is given by a three-dimensional or- 

hogonal grid from which the corresponding portion that is within 

he obstacle has been removed (see Fig. 1 (right)). 

However, when tracing a path in such a graph, one is not able 

o detect or penalize the use of elbows. Elbows in a pipeline must 

e adequately identified in its route both because constructibility 

nd also because routes with a smaller number of elbows are pre- 

erred. The goal is to obtain a mathematical programming model 
3 
or the problem that avoids non-linearities. In order to consider el- 

ows in a linear objective function in our model, we modify the 

nitial graph by exploiting the nodes of the graph as follows: 

1. Each physical node v in the initial graph is replaced by an ex- 

ploited node , i.e., a set of three virtual nodes , v X , v Y , v Z with

the same 3D coordinates than v , one for each direction of the 

canonical basis of R 

3 ( X, Y and Z). 

2. Virtual nodes associated to the same physical node are linked 

through the so-called virtual edges . Their lengths are zero (since 

they link nodes with the same coordinates), but they will have 

a positive cost representing the usage of an elbow in the route. 

3. Each physical edge in the initial graph is replaced by another 

edge with the same length as the physical one, where instead 

of joining two physical nodes, it connects two virtual nodes (as- 

sociated to the same physical end nodes of the original edge). 

Specifically, each edge is linked to the virtual nodes identi- 

fied with its direction. In this way, edges parallel to the X-axis 

link X-virtual nodes, edges parallel to the Y -axis link Y -virtual 

nodes, and edges parallel to the Z-axis link Z-virtual nodes. 

In Fig. 2 we show an illustration of this explosion of nodes. In 

he left picture we show a crossing node, v , which is linked in the

raph to other six nodes. In the right picture we show the three 

xploited nodes, v X , v Y and v Z , of node v . Node v X (resp. v Y , v Z ) is
inked only to the two adjacent nodes which are linked with edges 

arallel to the X-axis (resp. Y -axis, Z-axis) and with the others two 

irtual nodes associated with the same physical node. As we can 

ee, the three virtual edges linking v X with v Y , v X with v Z and v Y 
ith v Z are drawn with dashed lines in this picture. 

In Fig. 3 we illustrate the use of this graph to model different 

ypes of turns in a path. In the left picture, to go from a to b no

lbows are used and a single exploited node ( v Y ) is used. On the

ther hand, in the center (resp. right) picture, turning from an edge 

arallel to Y -axis towards an edge parallel to Z-axis (resp. X-axis) 

equires traversing the virtual edge (v Y , v Z ) (resp. (v Y , v X ) ) incur-

ing in a cost for using that elbow. The result is a graph represent-

ng the feasible space where routing the pipelines. 
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Fig. 2. Illustration of exploited nodes and virtual edges. 

Fig. 3. Illustration of the use of exploited nodes and virtual edges to model different types of turns in a path from node a to node b. 
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We denote by ˜ G = (V, E) the graph constructed as described 

bove where V is the set of (virtual) nodes and E the set of 

dges. Set E includes the set of virtual edges, denoted by E v , and 

he replicas of the physical initial edges. Since ˜ G is embedded 

n R 

3 , each node v ∈ V is also identified with its 3 D coordinates,

x v , y v , z v ) ∈ R 

3 . We denote by d vv ′ = d((x v , y v , z v ) , (x v ′ , y v ′ , z v ′ ))
he Euclidean distance between nodes v , v ′ ∈ V and by d ee ′ the Eu-

lidean distance between the edges e, e ′ ∈ E (representing either, a 

oint in R 

3 if e ∈ E v or a segment in R 

3 if e ∈ E \ E v ). 
We assume that we are given a finite set of commodities, K, 

ach of them requiring its own pipeline to determine the design of 

ts route. Each commodity k ∈ K is defined by a pair (s k , t k ) where

 

k ∈ V is the source of the commodity and t k ∈ V is the destina-

ion of the commodity. Depending on the commodity k ∈ K, a cost 

tructure, c k e ≥ 0 for each e ∈ E, is defined over the edges of the

raph. These costs depend on many factors as for instance, the 

ength of the edges, the elbow costs, the preferences of the de- 

igner when routing the pipelines, etc. A detailed cost structure 

ill be described in Section 5.2 for the case study we deal with in

his work. 

. A multicommodity network flow based model 

In this section we describe the mathematical programming 

odel that we propose for solving the PRPS imposing naval design 

echnical requirements. In a first approximation, one can model the 

roblem as a minimum cost multicommodity network flow prob- 

em (MCMNFP, for short). See, e.g., [2,8] for some other applica- 

ions of multicommodity flow models. Let us denote by G = (V, A )

where A = { (i, j) ∪ ( j, i ) : e = { i, j} ∈ E} is the arc set) the directed

ersion of the graph 

˜ G described in the previous section. Similar to 

he non-directed version, we assume that set A includes the set of 

irtual arcs, denoted by A 

v , and the replicas of the physical arcs. 

e also denote by d aa ′ the Euclidean distance between the arcs 

, a ′ ∈ A (notice that d aa ′ = 0 if a and a ′ are the arcs correspond-

ng to the two opposite directions of the same edge). In addition, 
4 
e assume that, for each commodity k ∈ K, the cost of each arc 

i, j) ∈ A is c k 
i j 

= c k 
ji 

= c k e , where e = { i, j} . 
The goal of MCMNFP is to route jointly all the commodities in K

rom their respective sources, s k , to their destinations, t k , through 

he network G at minimum cost. This model has been widely stud- 

ed in the literature (the interested reader is referred to [26] and 

he references therein for further details on the MCMNFP). 

In order to describe the mathematical programming model for 

he MCMNFP, we use the following set of binary decision variables: 

 

k 
i j = 

{
1 if arc (i, j) is used by the route of commodity k , 
0 otherwise. 

ith this set of variables, the overall cost of routing the commodi- 

ies through the network can be expressed as: ∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k i j x 

k 
i j . 

he following set of linear constraints ensures the correct repre- 

entation of the problem: 
 

k ∈ K 

∑ 

j ∈ V :(i, j ) ∈ A 
x k i j ≤ 1 , ∀ i ∈ V, ( MCMNFP 1 ) 

∑ 

j ∈ V :(i, j ) ∈ A 
x k i j −

∑ 

j ∈ V :(i, j ) ∈ A 
x k ji = 0 , ∀ k ∈ K, i ∈ V (i 
 = s k , t k ) , ( MCMNFP 2 ) 

∑ 

j ∈ V :(s k , j ) ∈ A 
x k 

s k j 
= 1 , ∀ k ∈ K, ( MCMNFP 3 ) 

∑ 

j∈ V :( j,t k ) ∈ A 
x k 

jt k 
= 1 , ∀ k ∈ K, ( MCMNFP 4 ) 

 

k 
i j 

∈ { 0 , 1 } , ∀ (i, j) ∈ A, k ∈ K. ( MCMNFP 5 ) 

here ( MCMNFP 1 ) assures that only one commodity is routed 

hrough a node and in particular, through an arc, ( MCMNFP 2 ) - 

 MCMNFP 4 ) are the flow conservation constraints and ( MCMNFP 5 ) 

s the domain of the variables. 

The solution of MCMNFP is a set of paths (one for each com- 

odity) connecting sources with destinations that do not over- 

ap on the graph G . The reader may observe that in the graph G
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Fig. 4. Solution of a MCMNFP in the underlined graph without additional modelling constraints (left) and the final solution after adding the additional constraints on 

distances between services and elbow test (right). 
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ach physical node has been replaced by three virtual nodes on 

he same coordinates. This explains that in Fig. 4 (left) some paths 

ccupy the same space although they do not actually overlap on G . 

This problem is known to be N P -hard, even for the case of 

wo commodities (see [7] ). Additionally, in pipeline routing there 

re two main technical requirement that must be considered in or- 

er to construct feasible designs: a minimum distance between the 

ipelines and a minimum distance between consecutive elbows in 

 single pipeline. The first requirement allows to adequately sep- 

rate the different services to be used by the pipelines (and such 

hat, when they are enlarged to represent dimensional pipes, they 

t on the space) as well as to keep space for the manipulation of 

achinery in the ship cabins. The second one, is a physical limita- 

ion of pipeline routing since there is not enough space for a pipe 

o turn twice in case consecutive elbows are positioned too close. 

ote that solutions consists of segments in R 

3 with no dimension- 

lity and therefore, these considerations are not taken into account 

n the MCMNFP. Thus, to impose those technical requirements the 

ollowing constraints must be added to the problem in order to 

dequately model the PRPS: 

1. Distance between Services: Given an (non-virtual) active edge for 

a service k , a minimum distance with respect to other services 

is required. Let R k be the radius of the cylinder of pipeline k ∈ K

and let �k be the minimum security distance from k to any 

other element. Then, the minimum distance allowed between 

services k and k ′ is R kk ′ = R k + R k 
′ + max { �k , �k ′ } . 

This requirement is assured imposing the following set of con- 

straints: ∑ 

k ′ ∈ K: k ′ 
 = k 

∑ 

a ′ ∈ A 
d aa ′ <R kk ′ 

x k 
′ 

a ′ ≤ M 

k 
a (1 − x k a ) , ∀ a ∈ A \ A 

v , k ∈ K, ( Dist ) 

that is, if a is an active arc in the path of service k , then, no

arc in the path of any other service k ′ 
 = k can be activated

at a distance smaller than the minimum required. Here, fixed 

a ∈ A \ A 

v and k ∈ K, M 

k 
a is a big enough constant (greater than

2(| K| − 1) times the number of the grid edges contained in 

the cuboid centered at midpoint of arc a and with edge length 

length (a ) + 2 max k ′ 
 = k R kk ′ ). 
5 
2. Elbow Test : A feasible path for a service, k ∈ K, is required to

verify a minimum distance between consecutive elbows, D 

k ≥ 0 , 

of this single service. Since elbows are identified in the non- 

directed graph with virtual edges and then, with virtual arcs in 

the directed graph, this requirement can be incorporated to the 

model as follows: 

x k a + x k 
a ’ 

≤ 1 , ∀ a, a ’ ∈ A 

v : d aa ’ ≤ D 

k , a 
 = a ’ , k ∈ K, ( Elbow ) 

that is, if two different virtual arcs (elbows) of the same service 

k ∈ K are at a distance smaller than or equal to D 

k , then only

one of them is allowed to be active. 

Example 2 shows the effects of considering constraints ( Dist ) 

and ( Elbow ) . 

Example 2 (Example 1 - continuation) . Let (N, E) be the grid 

depicted in Fig. 1 (right). Grid (N, E) is a simplification of the 

actual graph G = (V, A ) used to solve the problem because in

the final graph a directed version is considered and each of the 

nodes in the grid is replaced by its explosion as explained in 

Section 2 . 

We have solved the Example 1 scenario with the multicom- 

modity model with and without the additional modelling con- 

straints ( Dist ) and ( Elbow ) . Observe that the paths without 

additional modelling constraints do not respect the conditions 

about distances and thus a much shorter solution is pro- 

vided (see Fig. 4 (left)) than in the case in which the techni- 

cal requirements imposed by means of constraints ( Dist ) and 

( Elbow ) have to be fulfilled (see Fig. 4 (right)). 

Fig. 5 shows the final solution with dimensional pipelines of 

the given pre-specified radii. 

In order to tighten the LP relaxation of the problem (and 

thus leading to a more efficient solution method), con- 

straints ( Elbow ) can be equivalently formulated as follows. 

Given a virtual arc a ∈ A 

v , we denote by RE(a ) = { ̃  a ∈ A 

v :

˜ a has the same coordinates as a } , namely the set of arcs link- 

ing virtual nodes associated to the same physical node as the 

one linked by a . Clearly, if d aa ′ ≤ D 

k , all the arcs in RE(a ) and

RE(a ′ ) are incompatible and then cannot take simultaneously a 
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Fig. 5. A graphical display of the solution of Example 1 with the final pipelines of 

the three services and their actual radii . 
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value of 1. Thus, ∑ 

˜ a ∈ RE ( a ) 

x k ˜ a + 

∑ 

a ∈ RE ( a ’ ) 

x k a ≤ 1 , ∀ a, a ’ ∈ A 

v : d aa ’ ≤ D 

k , a 
 = a ’ , k ∈ K. 

( Elbow − R )

With the above considerations, the PRPS can be formulated as: 

in 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k i j x 

k 
i j ( PRPS )

s.t. ( MCMNFP 1 ) − ( MCMNFP 5 ) , 

( Dist ) , ( Elbow − R ) . 

Problem ( PRPS ) is a minimum cost multicommodity network 

ow problem with additional constraints that enforce the fulfill- 

ent of the technical requirements for the pipelines in the solu- 

ion. Although the problem is modeled as an Integer Linear Pro- 

ramming Problem, in real-world situations it has a large num- 

er of variables ( O(| A || K| ) ) and a large number of constraints. In

articular, the technical constraints ( Dist ) and ( Elbow − R ) place a 

onsiderably load leading to a model with complexity ( O(| A | 2 | K| ) ).

.1. An exact solution method for (PRPS) 

The large dimensions of our model makes the straightforward 

pproach of putting it into a MIP solver not possible even for 

mall-sized instances. We overcome this drawback using a branch- 

nd-cut method that incorporates the constraints as they are re- 

uired, instead of considering initially all of them. This strategy al- 

ows an efficient exact solution approach of the problem by means 

f solving an incomplete (relaxed) formulation with only some of 

he constraints in the model, while the remaining constraints, re- 

uired to assure the feasibility of the solutions, are incorporated 

n-the-fly as needed. Although in the worst case situation, the pro- 

edure may need all the constraints not initially included, in prac- 

ice, only a small number of them are added, reducing considerably 

he size of the problem. 
6 
Specifically, we consider, in the beginning, the relaxed master 

roblem (MCMNFP): 

in 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k i j x 

k 
i j ( MCMNFP )

s.t. ( MCMNFP 1 ) − ( MCMNFP 5 ) . 

The above problem is nothing but the multicommodity network 

ow model that does not consider the two families of technical 

onstraints that are required for a feasible solution of our problem. 

hus, when solving ( MCMNFP ) , one may obtain solutions which do 

ot satisfy constraints ( Dist ) and/or ( Elbow − R ) . Therefore, each 

btained solution must be checked for feasibility. To separate the 

iolated constraints, we apply an enumerative procedure and those 

hich are violated are added to the pool so that the problem is 

olved again (cutting off the previously obtained solution). 

More specifically, for a given solution of the relaxed master 

roblem, we check whether it violates ( Dist ) and/or ( Elbow − R ) 

s follows: 

• To check the violation of any of the constraints in ( Dist ) we 

proceed by measuring the distance between two arcs from dif- 

ferent commodities in the solution or the distance between an 

arc from a commodity in the solution and obstacles’ edges. If 

the distance measured is smaller than the sum of the radius of 

both commodities plus the security distance between them, the 

constraint is violated. In case it is violated for a service k ∈ K

and a ∈ A \ A 

v , the constraint is added to the constraint pool of

the master problem. 
• The violation of the constraints ( Elbow − R ) is tested by first or- 

dering virtual arcs within each commodity in the path given by 

the current solution and then measuring the distance between 

two consecutive virtual arcs in the path. If the distance mea- 

sured is smaller than the minimum required distance between 

elbows for this commodity then the constraint is violated. In 

this case, this particular constraint ( Elbow − R ) is introduced as 

a feasibility cut to the set of constraints of the problem. 

For a more efficient implementation of the procedure, it is em- 

edded in the branch-and-bound tree relaxing constraints ( Dist ) 

nd ( Elbow − R ) . This procedure, which in solvers is applied by 

efining those constraints as lazy cuts, results in a constraints re- 

axation to solve the problem by means of a row generation ap- 

roach. 

. Two matheuristic algorithms for the PRPS 

In order to solve the pipeline routing model PRPS presented in 

ection 3 one has to solve a MILP problem. However, in most cases 

f real-world situations, due to their large number of variables and 

onstraints, the corresponding problem cannot be solved by a com- 

ercial solver (and in many cases it cannot be even loaded). For 

his reason, we provide in this section two families of matheuris- 

ic algorithms for the problem based on two different paradigms: 

educing the dimension of the MILP model and decomposing the 

roblem into simpler problems. The pseudocode of both algorithms 

s included in Appendix A . 

.1. Dimensionality reduction 

Recall that we assume that the underlined region where the 

ipelines are to be routed is represented by a bounded polyhedron 

n R 

3 , and that in real-world situations, the polyhedron is usu- 

lly a cuboid representing a cabin in the ship where some other 

maller cuboids (obstacles) have been removed. In addition, there 

re zones of such a region that are rarely used by the paths in the

olutions (by all or some of the services). We exploit this fact in 

rder to reduce the number of variables of our model. 
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Fig. 6. Illustration of the initial region used in the dimensionality reduction algorithm. 
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We propose an iterative procedure that starts by considering 

ome tentative areas as candidate zones for searching for the solu- 

ion (called in the pseudocode Init-Sol ) and then solving the 

ulticommodity flow problem with additional ( Elbow − R ) con- 

traints for each single commodity to determine the best solution 

or each service independently of the remainder services. Then, for 

ach commodity we consider a parallelepiped of a given initial di- 

ension around the obtained path and instead of solving ( PRPS ) 

n the whole graph, we solve the problem in the union of these 

arallelepipeds together with the initial candidate zones (see Fig. 6 

right)). We do this by fixing to zero the variables indicating arcs 

utside the above mentioned regions. In case the problem is fea- 

ible, it provides a solution of ( PRPS ) . Otherwise, the dimension 

f the parallelepipeds is increased and the procedure is repeated 

ntil feasibility is obtained. Although in the worst case situation 

he algorithm requires solving the original instance of the prob- 

em (the whole graph), in practice, it allows to solve the problem 

ith a considerably smaller number of variables. Algorithm 1 in 

ppendix A.1 provides a pseudocode for this procedure. 

.2. Decomposition-based algorithms 

Note that when removing the capacity constraints, ( MCMNFP 1 ) , 

rom MCMNFP, the problem can be decomposed in | K| single- 

ommodity network flow problems with unitary demands which 

re equivalent to solve | K| shortest path problems on the undi- 

ected graph 

˜ G , and then, solvable in O(| V | 2 + | E| ) time by the

lassical Dijkstra algorithm [6] . Based on this idea, we propose an 

lgorithm that exploits the use of this decomposition for solving 

ast and accurately the PRPS. Algorithm 2 in Appendix A.2 shows 

he pseudocode of this algorithm. 

First, the algorithm considers a sorted list of all the commodi- 

ies (pipelines to route), K 0 , and a maximum number of iterations 

o perform, maxit . The iterations are grouped in three different 

lasses: parallel iterations ( I_par ), sequential iterations ( I_seq ) 
nd cluster iterations ( I_cluster ), such that the three sets de- 

ne a partition of { 1 , . . . , maxit} . 
The main scheme for all the iterations is similar. At each itera- 

ion it ∈ { 1 , . . . , maxit} , a shortest path is built for each commod-

ty included in the sorted list K it trying to pass the elbow test, i.e.,

he minimum required distance between consecutive elbows in the 

aths (constraints ( Elbow ) ). This path is constructed using the pro- 
7 
edure SPP_ETest ( Algorithm 3 in Appendix A.2 ). In this proce- 

ure, for each commodity k ∈ K it , a shortest path from the source 

ode s k to the destination node t k is initially built on the undi- 

ected graph 

˜ G using Dijkstra algorithm ( SPP (s k → t k ) ). In case the

lbow test is passed, SPP_ETest returns that path. Otherwise, the 

art of the path that passes the test is kept, the cost of the first el-

ow that does not pass the test is increased and Dijkstra algorithm 

s run again (with the new costs) from the last elbow passing the 

est to the destination node (updating the source node for SPP ). 

he process is repeated every time we find an elbow that does not 

ass the test. If we identify the process is cycling we initialize it 

aintaining the increased costs and taking the source node of the 

ommodity as destination node and viceversa. This last step is re- 

eated until the elbow test is passed or until a maximum number 

f iterations (of the elbow test) is reached and then, the elbow test 

as not been passed. 

The second step consists of avoiding overlapping of paths in the 

olution. This phase is different for each of the types of iterations 

hat we consider. In the sequential iterations paths for commodi- 

ies are solved one by one in the sorted order and therefore, the 

orting of the commodities affects the solution. In these iterations, 

nce the path for commodity k is solved, this path is kept, com- 

odity k is removed from the list of sorted commodities and over- 

apping is avoided by increasing for the remaining services k ′ 
 = k 

n the list, the cost of the edges in conflict, that is, the edges at a

istance lower or equal than R k + �k from the edges used in the 

ath of service k . They can be tested using Algorithm 4 described 

n Appendix A.2 . 

In the parallel iterations the paths for commodities are solved 

ndependently and the overlapping phase is addressed once all the 

aths are constructed by increasing the cost of the edges in con- 

ict. This strategy is similar to the Touch-and-Cross method pro- 

osed in [15] . In the cluster iterations, paths for all the commodi- 

ies are solved initially in parallel. The commodities that do not 

verlap with any other are removed from the set of commodities 

 it and their paths are kept. The remainder commodities k ∈ K it are 

rganized in clusters of services with edges in conflict and they 

re sorted by some prefixed measure, as for instance, increasing 

ength of their paths. The first sorted commodity of each cluster 

s removed for the set of commodities K it and their path is kept. 

he cost of the edges in conflict with the paths that are kept is in-
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Fig. 7. Flowchart of the decomposition-based approach. 
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reased for the commodities remaining in K it and these commodi- 

ies are solved in parallel. The process is repeated until K it = ∅ or

ntil the maximum number of iterations is reached. 

Note that, for all types of iterations, each iteration is performed 

ith a new set of costs for the edges, trying to avoid the use of

onflicting edges in the solutions for the next iteration. 

In Fig. 7 we sketch with a flowchart the decomposition ap- 

roach. There, we denote by SPP_ETest(k) and CovList(k) 
he results of Algorithms 3 and 4 , respectively. Cov(k,k') de- 

otes the set of edges in conflict for services k , and k ′ , i.e

ov(k,k') = CovList ( k ) ∩ CovList ( k ′ ). 

. Computational experience 

Next, we report on the results of some computational exper- 

ments that we have First, we compare empirically the proposed 

xact and heuristic approaches in a set of 90 random instances that 

ary the grid density, the number of services and a number of ob- 

tacles within the instance to test the performance, applicability 

nd flexibility of the proposed algorithms for solving different in- 

tances. Second, a case study on one realistic instance provided by 

ur partner Ghenova further illustrates the applicability and per- 

ormance of the proposed algorithms. 

.1. Random instances 

The set of random instances are generated as follows. We 

hoose P 0 as a cube of edge length equal to 128 units. An orthog- 

nal 3D grid of d × d × d physical nodes, with d ∈ { 17 , 33 } is built
8 
n this cube, being the distance between adjacent nodes fixed to 
128 
d−1 

units. This means a spacing of 8 and 4 units for d = 17 and

 = 33 , respectively. We will call d the density of the grid. 

Five different groups of 15 obstacles each are generated with 

ube shape and edge length l = 10 units. Each coordinate of the 

enter of an obstacle is placed in [ ε + 

l 
2 , 128 − ε − l 

2 ] where ε
tands for the width of an obstacles-free layer along the facets 

f P 0 that ensures some feasible origin-destination paths in case 

oo many obstacles are placed. This grid defines a baseline for the 

ndirected graph 

˜ G described in Section 2 and the directed version 

 described in Section 3 . 

Five different groups of 12 services are generated with equal 

adius of 4 units and establishing a safety minimum allowed dis- 

ance of 1 unit with respect to other srun.ervices. For each service, 

 source and a destination have been randomly generated belong- 

ng to planes y = 0 (for the source) and y = 128 (for the destina-

ion) assuring that both points are nodes of the grid for d = 17 and

herefore, for d = 33 . 

Several details on real-life cost functions for our problem are 

iven in Section 5.2 . However, for this preliminary study on ran- 

om instances, we choose the cost function coefficients for an edge 

 as: 

 

k 
e = αk 

1 (d e + 10 El e + 2 Ch e ) , 

here: 

• αk 
1 

takes random integer values in [1,9]. 
• d e is the physical distance between the two end-nodes i and j

of the edge e = { i, j} (length of the edge). 
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Table 1 

Computational results for random instances. 

GAP Time 

d s o Vars Cons Solved Ex H1 H2 Ex H1 H2 

17 5 5 228,232 73,572 5 0.00 0.10 0.00 11.15 6.26 1.28 

10 227,421 73,386 5 0.00 0.32 0.00 11.51 7.80 1.48 

15 226,736 73,230 5 0.00 2.01 0.00 12.21 9.73 1.40 

8 5 399,406 117,761 5 0.00 0.31 0.64 400.17 396.38 2.24 

10 397,986 117,463 5 0.00 1.96 0.22 339.85 240.53 4.37 

15 396,788 117,214 5 0.00 5.73 0.34 347.41 482.09 4.59 

12 5 627,638 176,735 5 0.00 0.61 1.59 4216.11 1824.99 3.78 

10 625,407 176,289 5 0.00 2.64 1.17 3367.94 2159.86 7.20 

15 623,524 175,914 5 0.00 4.93 1.26 2596.96 2215.58 7.55 

17 417,015 122,396 45 0.00 2.07 0.58 1225.45 1149.25 3.77 

33 5 5 1,694,166 537,852 5 0.00 0.10 0.00 163.20 3.31 98.08 

10 1,689,282 536,568 5 0.00 0.16 0.00 152.31 5.43 90.72 

15 1,684,880 535,407 5 0.00 0.69 0.00 176.34 9.82 98.66 

8 5 2,964,791 860,609 3 0.06 0.24 0.64 5100.74 62.58 183.93 

10 2,956,243 858,554 4 0.16 1.26 0.15 4393.18 247.27 181.27 

15 2,948,540 856,697 4 0.16 3.07 0.32 3484.85 1546.39 184.73 

12 5 4,658,958 1,291,007 0 1.26 0.45 1.59 7200.05 236.02 315.66 

10 4,645,524 1,287,926 0 1.48 1.32 1.17 7200.05 1214.57 311.04 

15 4,633,420 1,285,139 0 1.38 3.68 1.26 7200.05 4278.22 308.63 

33 3,097,312 894,418 26 0.50 1.22 0.57 3896.75 844.85 196.97 

Total 1,757,163 508,407 71 0.25 1.64 0.57 2576.11 997.05 100.37 
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• El e takes value 1 if edge e represents an elbow and 0 otherwise. 
• Ch e takes value 1 if edge e is a vertical edge (in the Z-axis) and 

0 otherwise. 

Observe that the cost function considers the distance of the 

aths, the number of elbows introduced as well as changes in 

eight. This cost system is a simplified version of the general cost 

unction described in Section 5.2 for our case study. 

We denote by (d, s, o, g) the instance of density d ∈ { 17 , 33 } , ser-

ices { 1 , 2 , . . . , s } with s ∈ { 5 , 8 , 12 } , obstacles { 1 , 2 , . . . , o} with o ∈
 5 , 10 , 15 } and creating five instances, g ∈ { 1 , . . . , 5 } , for each com-

ination of services and obstacles. Therefore 90 different bench- 

ark instances are generated. 

All instances were solved with the Gurobi 7.7 optimizer, under a 

indows 10 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz 

rocessor and 16 GB RAM. Default values were initially used for all 

arameters of Gurobi solver and a CPU time limit of 7200 seconds 

as set. We have also tested different combinations of parameters 

or the solver cut strategy and dimensionality reduction heuristic 

ut, unless it is specified, the best results were obtained with the 

arameters of the solver set to the default values. An initial solu- 

ion was given to the problem by solving the multicommodity flow 

roblem with additional ( Elbow − R ) constraints for each service 

ndependently of the remainder services. 

For the decomposition based heuristic, we fix the maximum 

umber of iterations to 20, the first 10% of them of type I_par , 
he next 80% of type I_cluster and the last 10% of type I_seq .
n case a feasible solution is not found with the maximum num- 

er of iterations (which only happens for some of the d = 33 in-

tances), we generate the solution for the same instance by reduc- 

ng the density to d = 17 , which is indeed, a feasible solution of

he instance. 

In Table 1 we report the average results of our computational 

xperiments. The first three columns indicate the parameters iden- 

ifying the instances, d (density), s (number of services) and o

number of obstacles). For each of the combinations of these pa- 

ameters we report the average results of the five generated in- 

tances. Column Vars indicates the number of variables of the 

MCMNFP) problem and column Cons the number of constraints. 

olumn Solved reports the number of instances out of five solved 
9 
o optimality by the Exact method (Ex). In the block of columns 

enoted by GAP we report the gap obtained with the three pro- 

osed procedures, the Exact (Ex) model, the dimensionality reduc- 

ion algorithm (H1), based on trimming down instances, and the 

ne based on decomposing the problem (H2). The GAP reported 

or the exact approach indicates the MIP gap obtained at the end of 

he time limit in case the problem has not been optimally solved, 

hile the gap for the heuristic procedures gives the percent de- 

iation of the heuristic solution with respect to the best solution 

btained with the exact approach. Finally, in the block of columns 

ime we report the CPU time required by each one of the ap- 

roaches. 

A first analysis of the results shows that the exact algorithm 

olves all instances with d = 17 and any number of services and 

bstacles, whereas for d = 33 we could solve to optimality almost 

ll the instances for number of services s = 5 and 8 but not for

 = 12 services. Actually, for s = 12 services none of the instances

ould be solved to optimality within the time limit although the 

nal MIP gap is always very small and less than or equal to 1 . 48% .

On the other hand, the results reported for the heuristic algo- 

ithms are rather good. For all the instances our two heuristic ap- 

roaches (H1) and (H2) always find feasible solutions and the gaps 

ith respect to the best solution found by the exact method (Ex) 

re less than or equal to 5 . 73% . Actually, heuristic (H2) reports even

etter gaps being always less than or equal to 1 . 59% . 

Concerning running times, as expected, the methods based on 

olving mathematical programming models, i.e., the exact method 

Ex) and the matheuristic (H1), require more time to get to their 

olutions. Clearly, (H1) is less time consuming than (Ex) since it 

olves trimmed instances which results in programs with much 

ess variables and constraints so that the computing time is also 

maller. On the other hand, the decomposition heuristic (H2) 

hich is based on iteratively solving shortest path problems with 

odified weights is much lighter and the running times are con- 

iderably smaller. 

.2. Case study 

This section is devoted to present the application of the pro- 

osed methodology to one of the realistic instances provided by 



V. Blanco, G. González, Y. Hinojosa et al. Omega 111 (2022) 102659 

Fig. 8. Scenario of the case study . 
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Fig. 9. Graph used to illustrate the cost function in Example 3 . 

E

t

 

{  

p

i

i

u

d

�

h

f

i  

a

p

a

a

[

f

f

n

t

i

(

s

ur partner Ghenova in order to show the actual applicability of 

ur solution methods to solve scenarios that appear in naval de- 

ign. 

In what follows we describe the elements involved in the in- 

tance analyzed in this section, which is drawn in Fig. 8 : 

• The space to design the pipelines systems consists of the three- 

dimensional parallelepiped with widths 5732 , 2836 and 2013 

units (in the X , Y and Z axis, respectively) which represent a 

ship cabin. 
• A grid was generated for the cabin by subdividing each axis in 

segments of width 100, producing an initial grid of 58 × 29 × 21 

nodes. The graph 

˜ G = (V, E) is generated by introducing virtual 

nodes and edges, with | V | = 73 , 407 and | E| = 282 , 202 . 
• Ten services are to be routed in such a cabin, each of then iden-

tified with a number from 0 to 9. The sources and destinations 

of the services are located as needed by the designer through 

the whole cabin (red and blue numbers/services in the figure, 

respectively). 
• Five obstacles (walls) obstructing the routes are given (light 

blue shapes in the figure). They consist of metal slices of 10 

units width and can be traversed through 8 holes/windows 

(light orange squares in the figure). 
• The minimum distance between consecutive elbows is assumed 

to be 50 units, as required by the designer. 
• The radii of the cylindrical pipes are 50, 75 and 100 units and 

the minimal security distance among two pipelines is 50 units. 

As already mentioned, each edge in the generated grid for the 

nstance, has an associated cost that allows to evaluate the feasi- 

le routes to be traced in the network. The cost system incorpo- 

ates the preferences of the designer when routing the pipelines. 

e consider an additive cost structure for the objective function 

o model the use of edges and elbows in the route of each com- 

odity with the following shape: 

 

k 
e = (αk 

1 + αk 
5 P r e ) d e + αk 

2 El e + αk 
3 H e + αk 

4 Ch e + αk 
6 P c e + αk 

7 Cl e , 

or each edge e and each service k . In this function there are some

-parameters affected by the characteristics of the edge. The cri- 

eria and parameters that define the cost system are detailed in 

able 2 . This cost structure is flexible enough to reflect most the 

references of naval designers, and was determined in view of the 

riteria exposed by our partner company for the selection of im- 

lementable solutions. 
10 
xample 3. In order to illustrate the above cost function, we use 

he part of the graph drawn in Fig. 9 . 

In this graph, �1 is the plane { (x, y, z) : z = 1 } while �2 =
 (x, y, z) : z = 0 } and then, plane �1 is closer to the ceiling than

lane �2 . We denote by v 1 and v 2 the nodes which are virtualized 

n the figure (for each of the hyperplanes). We assume that there 

s a preference zone using �1 but there are no preference zones 

sing �2 . Furthermore, v 2 is assumed to be close to the source or 

estination point of some service and also that the black edge in 

2 crosses a penetrable zone for the service. In this situation, we 

ave: 

• The criteria d and El coincide for all the edges that belong to 

the planes �1 and �2 , being the part of their costs affected by 

parameters α1 and α2 , the same. 
• The height of the edges in �1 is larger than height of the edges 

in �2 , being the term α3 H smaller for the edges in �1 . 
• The criterion P r affects the edges in �1 but not those in �2 . 
• The criteria P c and Cl affect some of the edges in �2 but none 

of those in �1 . 
• The edges linking nodes in �1 with nodes in �2 (parallel to 

the Z-axis) are only affected by criteria d and Ch . 

In Table 3 we summarize the cost function for edges in the dif- 

erent planes depicted in Fig. 9 . 

In the actual instance considered in the case study, each edge 

n the graph 

˜ G has the same cost for all services, i.e., c k e = c k 
′ 

e , for

ll k, k ′ ∈ K, as required by our partner company. The parameters 

rovided for this instance were: 

α1 α2 α3 α4 α5 α6 α7 

1 2800 700 200 -0.7 4000 3000 

nd the preference zones were defined as the following par- 

llelepipeds: [154241 , 158844] × [535 , 1419] × [24249 , 25221] and 

152013 , 154241] × [535 , 3371] × [24249 , 25221] . 

We run our model for this instance with the exact and the dif- 

erent heuristic approaches. A time limit of 12 hours was fixed 

or all the procedures. The exact branch-and-cut approach was 

ot able to find a feasible solution of the problem within the 

ime limit. Note that the number of variables for this problem 

s 2,819,480 and the (initial) number of constraints is 31,014,280 

constraints ( Dist ) and ( Elbow − R ) that are added as lazy con- 

traints in the branch-and-cut approach are not counted here). The 
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Table 2 

Criteria and parameters involved in the cost function of the case study. 

Criteria Description 

d e physical distance between end-nodes i and j of edge e = { i, j} (length of the edge). 

El e 1 if edge e represents an elbow and 0 otherwise. 

H e = MH − h e being MH the maximum height of the ship cabin and h e the height of edge e in case it is in a plane parallel to the XY -plane and 0 otherwise. 

Ch e 1 if edge e is a vertical edge (in the Z-axis) and 0 otherwise. 

Pr e 1 if edge e belongs to a preference zone and 0 otherwise. 

Pc e 1 if edge e crosses a penetrable zone and 0 otherwise. 

Cl e 1 if edge e represents an elbow and it is close to a source or a destination point and 0 otherwise. 

Parameters Description 

αk 
1 Cost per unit length. 

αk 
2 Cost of an elbow. 

αk 
3 Cost of moving away from the ceiling. 

αk 
4 Cost of changing in z-coordinates (height). Therefore, moving to a different height is penalized. 

αk 
5 Bonus per routing the pipeline in a preference zone ( αk 

5 < 0 ; αk 
1 + αk 

5 > 0 ). 

αk 
6 Cost of crossing a penetrable zone. 

αk 
7 Cost of locating an elbow close to the source or destination point of a pipeline. 

Table 3 

Illustration of the cost function. 

Virtual Arcs (Elbows) Non Virtual Arcs (Straight Pipes) 

e ∈ �1 αk 
2 (αk 

1 + αk 
5 ) d e + αk 

3 H e 

e ∈ �2 αk 
2 + αk 

7 αk 
1 d e + αk 

3 H e 

αk 
1 d e + αk 

3 H e + αk 
6 (penetrable edges) 

e parallel to Z-axis αk 
1 d e + αk 

4 

Fig. 10. Graphical display of the solution for the case study with 10 services. In the left it is shown the solution without showing the obstacles. The figure on the right 

shows the same solution integrated within the set of obstacles in the scenario. 
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umber of explored nodes after 12 hours was 1804, which gives an 

dea of the high computational load required to solve the problem 

t each node of the branch-and-bound tree. 

For the dimensionality reduction matheuristic (H1), we first 

olve, independently, the multicommodity flow problem with addi- 

ional ( Elbow − R ) constraints for each single service, and restrict 

he search region of our problem to the region induced by these 

aths enlarged by a parallelepiped of dimension δk = max { R k ′ + 

k ′ : k ′ ∈ K} around the paths. The value of δk is sequentially en- 

arged by 0.1 units until a feasible solution is obtained. This pro- 

edure obtains a solution in 132.37 seconds, and the last problem 

xplored 18,041 nodes in the branch-and-bound tree. The number 

f variables of this problem was 473,292 ( 16 . 78% of the variables

f the exact approach) and the initial number of constraints was 

07,657 ( 2 . 6% of the number of constraints required in the exact 

pproach). The number of lazy constraints added in the branch- 
11 
nd-cut approach was 40,800 (12 of them of type ( Elbow − R ) ). 

he objective value of the solution was 448,690.78. 

For the decomposition based heuristic (H2) we fix to 10 the 

aximum number of iterations with the first 10% of them of type 

_par , the next 20% of type I_cluster and the last 70% of type

_seq . This configuration was adequately tuned using a simpli- 

ed instance for the problem as a training sample. This heuristic 

omputed a solution in 94.54 seconds after 6 iterations and the 

btained objective value was 433,387.86. Observe that the devia- 

ion between the solutions obtained with the two heuristics was 

 . 41% . 

We draw in Fig. 10 the obtained solution (with heuristic H1) as 

aths in the graph. In the picture we represent the obtained paths 

ithout (left) and with obstacles and holes (right). The obtained 

olution as actual pipelines is drawn in Fig. 11 . One can observe 

rom the picture that real-world instances require routing intricate 
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Fig. 11. Graphical display of the solution for the case study with 10 services actual pipelines. In the left it is shown the set of pipelines without showing the obstacles. The 

figure on the right shows the same solution integrated within the set of obstacles in the scenario. 
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ipelines avoiding obstacles and respecting the space between the 

ipes what really makes difficult to locate them in the cabin. The 

euristic approaches produce, in view of the results obtained with 

he synthetic instances, good quality solutions in reasonable CPU 

imes, providing the naval designer with a powerful decision-aid 

ool for this task. 

. Conclusions 

This paper develops a general methodology for the optimal 

utomatic network design of different commodities incorporating 

eal-world constructability conditions. This methodology was orig- 

nated by an actual problem consisting of the design of spatial 

ipelines with ships cabins motivated by a recent collaboration 

ith the company Ghenova, a leading naval engineering company. 

ur proposal is to adapt an ‘ad hoc’ minimum cost multicommod- 

ty network flow model to the problem that includes all the techni- 

al requirements of feasible pipelines routing. The large number of 

ariables and constraints of real-sized instances makes it inappro- 

riate (impossible in real-world instances) to load into the solver 

he complete model so that we implemented a branch-and-cut al- 

orithm, where, initially only the standard multicommodity flow 

odel is considered and additional technical constraints are sep- 

rated within the branch-and-bound tree as lazy constraints. On 

op of that, we also develop two heuristic algorithms that pro- 

ide rather good feasible solutions. The first one is a matheuris- 

ic based on solving trimmed instances and the second one is a 

ecomposition heuristic that iteratively solves shortest path prob- 

ems with modified edges weights. Our computational results on 

andomly generated instances are rather promising showing that 

e can solve to optimality medium-sized instances. We also re- 

ort a case study based on a realistic naval instance of a ship cabin

rovided by our partner company to our research group to test the 

ethodology. 

Future work on this topic includes the consideration of more 

eneral underline networks including non-orthogonal designs 

hich are conceptually easy to handle once the admissible solu- 

ions graphs are generated whereas the generation of these graphs 

s still a challenging question that will be the focus of a follow up 

aper. 

We will also explore the use of Machine Learning tools to de- 

ermine, in advance, the parameters of the cost function, that are 

ssumed in this paper to be given by the designer. The study of the 
12 
ubregions of α-parameters inducing the same routes will allow us 

o provide the designers different options of reasonable parameters 

o explore in the decision making process. 
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ppendix A. Pseudocode of the algorithms described in 

ection 4 

We gather in this section the pseudocode of the different al- 

orithms described in Section 4 devoted to our matheuristic algo- 

ithms. 

1. Pseudocode for the dimensionality reduction algorithm in 

ection 4.1 

In Algorithm 1 , we include the pseudocode of the dimensional- 

ty reduction algorithm. 

2. Pseudocode for the decomposition-based algorithm described in 

ection 4.2 

In Algorithms 2 , 3 and 4 we describe the different modules of 

he decomposition-based matheuristic. 
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Algorithm 1: Dimensionality reduction algorithm. 

input : Initial set of candidate zones provided by user 

{ Init-sol k } k ∈ K . 
{ δk = R k + �k } k ∈ K initial dimension of the 

parallelepiped around the best path for commodity k . 

it = 1. stop = 0 . 

1 for k ∈ K do 

2 Solve the Multicommodity Flow Problem with additional 

(Elbow - R) constraints for the single commodity k in the 

whole graph G : { path k } k ∈ K 
3 while stop = 0 do 

4 Solve (PRPS)(it), where all variables x k 
i j 

for a given service 

k , that are outside Init − sol k union with the 

parallelepiped of dimension δk around path k , are fixed to 

zero. if (PRPS) (it) is feasible then 

5 stop = 1 

6 else 

7 Increase δk for all k in K 

8 it = it+1 

output : Solution of (PRPS)(it) 

Algorithm 2: Decomposition-based Algorithm. 

input : stop := 0 (termination criterion); it =0 (iterations 

counter); { 1 , . . . , maxit} = I_par ∪ I_seq ∪ I_cluster 
(Index ser for iterations); K 0 (sorted set of all 

services in K). 

1 while stop = 0 and it ≤ maxit do 

2 if it ∈ I_seq then 

3 K it = K 0 and K̄ = K 0 . 

4 for k ∈ K it do 

5 Apply the SPP_ETest to k . (Algorithm 3) 

6 Update CovList( k ) . (Algorithm 4) 

7 if it ∈ I_seq then 

8 K̄ = K̄ \ { k } .For all k ′ ∈ K̄ , slightly increase the cost 

of edges linking vertices in CovList( k ) . 

9 for k ∈ K it and k ′ ∈ K do 

10 Compute Cov (k, k ′ ) := CovList( k ) ∩ CovList( k ′ ) . 
11 if Cov (k, k ′ ) 
 = ∅ for some pair (k, k ′ ) , k ∈ K it , k 

′ ∈ K then 

12 stop = 0 . 

13 if it ∈ I_par then 

14 For all service k ∈ K it ,increase the cost (to the most 

costly service) of edges linking vertices in ⋃ 

k ′ ∈ K Cov (k, k ′ ) . 
15 if it ∈ I_cluster then 

16 K it+1 = ∅;
17 Sort the services, k 1 � k 2 � · · · � k � (by priority); 

18 if Cov (k i , k j ) 
 = ∅ and k i � k j then 

19 K it+1 = K it+1 ∪ { k j } . 
20 For all service k ∈ K it+1 ,increase the cost (to the 

most costly service) of edges linking vertices in ⋃ 

k ′ ∈ K\ K it+1 
Cov (k, k ′ ) . 

21 it = it + 1 

22 else 

23 stop = 1 

Algorithm 3: SPP_ETest(k) . 
input : N 

0 := s k (source node for service k ); N 

f := t k 

(destination node for service k ); P k = ∅ (initial path 

for service k ); test := 1 (initial infeasibility test). 

1 while (test = 1) do 

2 P k := P k ∪ SPP (N 

0 → N 

f ) ; 

3 if (Elbow) is verified by P k then 

4 test := 0 and return P k 

5 else 

6 Identify previous node that has passed the elbow test: 

i 0 ; 

7 N 

0 := i 0 ; 

8 P k := P k \ SPP (i 0 → N 

f ) ; 

9 Increase the cost of the elbow not verifying the elbow 

test; 

Algorithm 4: CovList ( k ). 
input : P k = path connecting source node s k and destination 

node t k ; L k = P k and δk = R k + �k (covering of the 

pipeline). 

1 for v 0 ∈ P k do 

2 for v ∈ L k do 

3 while there exists a vertex v ′ adjacent to v such that 

d v ′ v 0 < δk and v ′ / ∈ L k do 

4 L k = L k ∪ { v ′ } ; 
5 go to line 2. 

output : L k . 

R
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