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For integers k, n, c with k, n ≥ 1, the n-color Rado number Rk(n, c) is defined to be
the least integer N if any, or infinity otherwise, such that for every n-coloring of the set
{1, 2, . . . ,N}, there exists a monochromatic solution in that set to the linear equation
x1 + x2 + · · · + xk + c = xk+1.

A recent conjecture of ours states that Rk(n, c) should be finite if and only if every divisor
d ≤ n of k−1 also divides c . In this paper, we complete the verification of this conjecture for
all k ≤ 7. As a key tool, we first prove a general result concerning the degree of regularity
over subsets of Z of some linear Diophantine equations.

1. Introduction

Denote N+ = {1, 2, 3, . . .}. Let k, n, c be integers with k, n ∈ N+. In this paper, we shall be concerned with the linear
Diophantine equation

x1 + x2 + · · · + xk + c = xk+1 (1)

and, more precisely, with the existence of monochromatic solutions to it under n-colorings of N+.

Definition 1.1. The n-color Rado number, denoted Rk(n, c), is the smallest positive integer N , if any, such that for every
n-coloring of the integer interval [1,N] = {1, . . . ,N}, there exists a monochromatic solution to Eq. (1). If no such N exists,
then Rk(n, c) is defined to be infinite.

In this paper, we are interested in the question of determining for what values of the parameters k, n, c the number
Rk(n, c) is finite. The general answer is not known. For c = 0, a result of Rado states that Rk(n, 0) is always finite [9]. See
[2–4,6,8,10–15] for other selected partial results. To add to this list, we present the following conjecture [1].
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Conjecture 1.2. Let k, n, c be integers with k ≥ 2, n ≥ 1 and c ≥ 0. Then Rk(n, c) is finite if and only if every divisor d ≤ n of
k − 1 also divides c.

The ‘‘only if’’ part of the conjecture is settled in [1]. As for the ‘‘if’’ part, we showed in that same paper that it holds in the
following cases:

• if k − 1 divides c ,
• or if n ≥ k − 1,
• or if k ≤ 7, provided R5(3, 2) and R6(4, 1) are shown to be finite.

Our present purpose is to complete the proof of Conjecture 1.2 for k ≤ 7, precisely by showing that both R5(3, 2)
and R6(4, 1) are finite. This is done in the last Section 4, using two tools set up in the earlier sections. The main one is
Theorem 2.5 of Section 2. It allows one to compare, in quite general circumstances, the degree of regularity, overN+ and over
Z, of some linear Diophantine equations. The second tool is provided in Section 3, where the degree of regularity is expressed
in terms of the chromatic number of a suitable hypergraph. As noted in the concluding Section 4.3, the smallest open case
of Conjecture 1.2 is now R8(6, 1).

2. Regularity

The Rado number Rk(n, c) can be expressed in terms of a variant of the degree of regularity of Eq. (1), as done in
Proposition 2.4 of Section 2.3. This variant is obtained by restricting the subset ofZ overwhich solutions to the given equation
are sought. Our main result, Theorem 2.5, is established in Section 2.4.

2.1. The equations (L) and (L0)

We shall consider here a somewhat more general version of Eq. (1). For integer vectors α, x ∈ Zk+1, let us denote by α · x
their standard dot product. That is, if α = (α1, . . . , αk+1) and x = (x1, . . . , xk+1), then α · x =

∑k+1
i=1 αixi. Now, given c ∈ Z,

consider the linear Diophantine equation (L) : α · x = −c and its associated homogeneous version, (L0) : α · x = 0. Note
that Eq. (1) is a special case of equation (L), namely where α = (1, 1, . . . , 1, −1) ∈ Zk+1.

2.2. Degree of regularity

The following notion was introduced by Rado [9]. Given n ∈ N+, the equation (L) is said to be n-regular if, for every
n-coloring of N+, there exists amonochromatic solution x ∈ Nk+1

+ to (L).
Clearly, for n ≥ 2, n-regularity implies (n − 1)-regularity. This motivates the following definition. See e.g. [5].

Definition 2.1. The degree of regularity of (L) is the largest integer n ≥ 0, if any, such that (L) is n-regular. This (possibly
infinite) number is denoted by dor(L). If dor(L) = ∞, then (L) is said to be regular.

We shall need the following particular case of a general theorem of Rado on systems of linear Diophantine equations.

Theorem 2.2 ([9]). The homogeneous equation (L0) : α · x = 0 is regular if and only if some nonempty subsequence of the
coordinates of α sums up to 0.

2.3. Over a subset of Z

We now introduce a refined version of regularity, by focusing on solutions x to (L) all of whose coordinates belong to
some given subset A of Z.

Definition 2.3. Let A ⊆ Z. Let n ∈ N+. We say that (L) is n-regular over A if, for every n-coloring of A, there exists a
monochromatic solution x ∈ Ak+1 to (L). The degree of regularity of (L) over A is the largest integer n ≥ 0, if any, such
that (L) is n-regular over A. We shall denote this (possibly infinite) number by dorA(L).

Note that if A = N+, then dorN+
(L) coincides with dor(L) as defined in the previous section.

Clearly, for any A ⊆ B ⊆ Z, we have 0 ≤ dorA(L) ≤ dorB(L). Thus

dorN+
(L) ≤ dorZ(L). (2)

Whether the reverse inequality also holds is addressed in the next section. But first, let us connect this notion with the Rado
numbers Rk(n, c).

Proposition 2.4. Let k, n, c be integers with k, n ≥ 1. Let (L) be the equation corresponding to (1) with these parameters, i.e.
α · x = −c for α = (1, . . . , 1, −1) ∈ Zk+1. Then Rk(n, c) = ∞ if and only if dor(L) < n, i.e. if and only if (L) is not n-regular.



Moreover, if Rk(n, c) is finite, then Rk(n, c) is the smallest positive integer N such that (L) is n-regular over A = [1,N], i.e. such
that dorA(L) ≥ n.

Proof. Straightforward from the definitions, together with a standard compactness argument according to which (L) is
n-regular over N+ if and only if there exists N ∈ N+ such that (L) is n-regular over [1,N]. □

2.4. Comparing dorN+
(L) and dorZ(L)

We now show that, under suitable conditions, inequality (2) is in fact an equality. As will be seen in the applications,
this turns out to be very helpful in efforts to determine the degree of regularity of Eq. (1) for some values of the parameters
k, n, c.

Theorem 2.5. Let k ≥ 1, α ∈ Zk+1 and c ∈ Z. Let (L) be the equation α · x = −c, and let (L0) be its homogeneous counterpart
α · x = 0. Assume that equation (L0) is regular, and that the coordinate sum of α is nonzero. Then dorN+

(L) = dorZ(L).

Proof. By (2), it remains to prove the inequality dorZ(L) ≤ dorN+
(L). If dorN+

(L) is infinite, there is nothing to do. Assume
now that this number is finite. Set dorN+

(L) = n − 1. Since (L) is not n-regular, there exists an n-coloring of N+, say
∆ : N+ −→ {1, . . . , n}, such that there exists no ∆-monochromatic solution in Nk+1

+ to equation (L).
Let K ∈ N+. Let V = [−K , K ] ⊆ Z. We shall prove the inequality dorV (L) ≤ n − 1 by establishing the existence of a

specific n-coloring ∆ : V −→ {1, . . . , n} with the property that V k+1 contains no monochromatic solution to equation (L).
Since K is arbitrary, this will imply dorZ(L) ≤ n − 1 by a standard compactness argument, as desired.

The main idea is to first consider the n2K+1-coloring

∆∗
: N+ \ [1, K ] −→ {1, . . . , n}2K+1

defined by ∆∗(m) = (∆(m − K ), ∆(m − K + 1), . . . , ∆(m + K )) for all m ≥ K + 1. We extend it to a (n2K+1
+ K )-coloring

of the whole of N+, ∆∗
: N+ −→ {1, . . . , n}2K+1

⊔ {q1, . . . , qK }, by setting ∆∗(m) = qm for all m ∈ [1, K ], where q1, . . . , qK
are K new pairwise distinct colors.

Since the homogeneous equation (L0) is assumed to be regular, there exists a ∆∗-monochromatic solution s =

(s1, . . . , sk+1) ∈ Nk+1
+ to this equation, i.e. satisfying α · s = 0.

We claim that sj ≥ K +1 for all 1 ≤ j ≤ k+1, i.e. that s ∈ (N+ \ [1, K ])k+1. For otherwise, if some entry sj of s belonged to
[1, K ], then since s is monochromatic, all entries of s would have the same unique color qj, whence all entries of s would be
equal to sj, i.e. s = sj(1, 1, . . . , 1). But then, α · swould equal sj times the coordinate sum of α, and hence would be nonzero
by hypothesis, in contradiction with α · s = 0. This proves the claim.

Therefore, since s ∈ (N+ \ [1, K ])k+1 and s is ∆∗-monochromatic, it follows that for all i ∈ V = [−K , K ], we have
∆(s1 + i) = ∆(s2 + i) = · · · = ∆(sk+1 + i). Denote by ∆(i) this common color, i.e.

∆(i) = ∆(s1 + i) = ∆(s2 + i) = · · · = ∆(sk+1 + i). (3)

This is the announced n-coloring ∆ : V −→ {1, . . . , n} with the desired property. Indeed, we claim that V k+1 contains no
∆-monochromatic solution to equation (L).

Assume for a contradiction that, on the contrary, there exists δ ∈ V k+1 satisfying (L), i.e. such that α · δ = −c, and
which is monochromatic under ∆, say of color t ∈ {1, . . . , n}. Let E denote the set of distinct coordinates of δ. We then have
∆(i) = t for all i ∈ E. It follows from (3) that ∆(sj + i) = t for all 1 ≤ j ≤ k + 1 and all i ∈ E. Therefore the vector s + δ is
∆-monochromatic of color t . But now, s+δ belongs toNk+1

+ , and it satisfies α ·(s+δ) = −c. Thus, s+δ is a∆-monochromatic
solution to equation (L) in Nk+1

+ , thereby contradicting our hypothesis on ∆. This proves our claim about ∆.
It follows that dorV (L) ≤ n − 1 as desired, and this concludes the proof of the theorem. □

3. An associated hypergraph

We now associate to equation (L) a certain hypergraph whose chromatic number is closely related to the degree of
regularity of (L).

Let us first recall a few basic notions. Let H = (V , E) be a hypergraph, with vertex set V and hyperedge set E . A proper
n-coloring of H is a coloring ∆ : V −→ {1, . . . , n} of its vertices such that none of its hyperedges is monochromatic. The
chromatic number χ (H) of H is the least positive integer n such that H admits a proper n-coloring. Finally, for any subset
W ⊆ V , letH|W = (W , E|W ) denote the restriction ofH toW . By definition, the vertex set ofH|W isW , and its hyperedges are
all hyperedges of H which are contained in W . That is, for E ∈ E , we have E ∈ E|W ⇐⇒ E ⊆ W . Note that the chromatic
number is monotonic with respect to restriction. That is, ifW ⊆ W ′, then χ (H|W ) ≤ χ (H|W ′ ).

Notation 3.1. Let z = (z1, . . . , zm) ∈ Zm. We denote by U(z) the underlying set of the coordinates of z, i.e. U(z) = {z1, . . . , zm}.



Fig. 1. The graph G0 .

For example, if z = (2, −1, 2, 1, 1) ∈ Z5, then U(z) = {−1, 1, 2}. We are now ready to associate a suitable hypergraph
H = H(L) to equation (L). It is defined as follows.

Definition 3.2. The set of vertices of H(L) is Z, and a subset E ⊆ Z is a hyperedge in H(L) if and only if E = U(δ) for some
solution δ ∈ Zk+1 to equation (L).

Here is the relationship, to be used in the next section, between the chromatic number ofH and the degree of regularity
of (L) over any subset of Z.

Proposition 3.3. Let H = H(L) be the hypergraph associated to equation (L), and let A ⊆ Z. Then

dorA(L) = χ (H|A) − 1. (4)

Proof. Let n = dorA(L)+ 1. Then there exists an n-coloring ∆ : A −→ {1, . . . , n} under which (L) admits no monochromatic
solution with entries in A. Hence, for any solution δ ∈ Ak+1 to (L), the underlying set U(δ) is not monochromatic either.
Therefore no hyperedge of H|A is monochromatic, showing that ∆ is a proper n-coloring of H|A. This yields dorA(L) + 1 ≥

χ (H|A). The inequality in the other direction is obvious. □

4. Applications

We now apply the above results and show that R5(3, 2) and R6(4, 1) are both finite. Combined with the results of [1], this
settles Conjecture 1.2 for all k ≤ 7.

4.1. Finiteness of R5(3, 2)

Here we focus on equation (L) with parameters k = 5, α = (1, 1, 1, 1, 1, −1) ∈ Z6 and c = 2, i.e.

x1 + x2 + x3 + x4 + x5 − x6 = −2. (5)

Our purpose is to show that R5(3, 2) is finite, i.e. that there exists an integer N such that (L), i.e. Eq. (5), is 3-regular over
the interval [1,N].

We do not know how to prove this directly. However, since the associated homogeneous equation α · x = 0 is regular
by Rado’s Theorem 2.2, the vector α satisfies the hypotheses of Theorem 2.5. It follows that dorN+

(L) = dorZ(L). This fact,
allowing us to use negative entries, will prove very effective in our quest for the value of dorN+

(L). Indeed, we now show that
dorZ(L) = 3. By dorN+

(L) = dorZ(L) and Proposition 2.4, this will imply R5(3, 2) < ∞, as desired.
Let H = H(L) denote the hypergraph associated to (L). Consider the subset V = {−5,−3, −2, −1, 0, 1, 2, 4} of Z. We

shall show that χ (H|V ) ≥ 4, which by (4) will imply dorV (L) ≥ 3 and hence dorZ(L) ≥ 3. This already suffices to get
R5(3, 2) < ∞. Note that, in order to obtain the exact value dorZ(L) = 3, it would remain to show that dorZ(L) < 4. But this
easily follows from the 4-coloring of the integers according to the class mod 4.

Recall that a stable set in a graph is a subset of its vertices which are pairwise non-adjacent. Of course, under a proper
vertex coloring, any monochromatic subset of vertices is stable. Also, by triple, we shall mean a 3-element subset.

Proposition 4.1. Using the above notation, we have χ (H|V ) ≥ 4.

Proof. Let G0 be the graph on the vertex set V shown in Fig. 1.

Claim 1. The graph G0 is a subhypergraph of H|V .



Table 1
Ten vectors δ with α · δ = −2.

{λ, λ′
} δ = δ(λ, λ′)

{4, −2} (−2, −2, −2, 4, 4, 4)
{−2, 0} (−2, 0, 0, 0, 0, 0)
{0, 2} (0, 0, 0, 0, 0, 2)
{−5, 1} (−5, 1, 1, 1, 1, 1)
{1, −1} (−1, −1, −1, 1, 1, 1)
{−1, −3} (−1, −1, −1, −1, −1, −3)
{4, −5} (−5, −5, 4, 4, 4, 4)
{−2, 1} (−2, −2, 1, 1, 1, 1)
{0, −1} (−1, −1, 0, 0, 0, 0)
{2, −3} (−3, −3, 2, 2, 2, 2)

Table 2
Ten more vectors δ with α · δ = −2.

Stable triple X δ = δ(X)

{−5, −2, −1} (−2, −2, −1, −1, −1, −5)
{−5, −2, 2} (−5, −5, 2, 2, 2, −2)
{−5, −1, 2} (−5, −1, 2, 2, 2, 2)
{−3, 0, 1} (−3, 1, 0, 0, 0, 0)
{−3, 0, 4} (−3, −3, 4, 0, 0, 0)
{−3, 0, −5} (−5, 0, 0, 0, 0, −3)
{−3, 1, 4} (−3, −3, −3, 4, 4, 1)
{−2, −1, 2} (−2, −1, −1, 2, 2, 2)
{−1, 2, 4} (4, −1, −1, −1, −1, 2)
{0, 1, 4} (1, 1, 0, 0, 0, 4)

Proof of Claim 1. We must show that every edge {λ, λ′
} of G0 is a hyperedge of H|V . This amounts to exhibit a vector

δ = δ(λ, λ′) in Z6, with entries in the pair {λ, λ′
} exclusively, satisfying α · δ = −2.

The graph G0 has 10 edges {λ, λ′
}. The occurrence of each one in the hypergraphH|V is testified by the vector δ = δ(λ, λ′)

given in Table 1.
This settles Claim 1.

Note that G0 is a bipartite graph. Indeed, its vertex set V admits a partition into two stable sets, namely V0 = {4, 1, 0, −3}
and V1 = {−5,−2, −1, 2}.

We shall see thatmost stable triples in G0 belong to H|V . Let us first count them.

Claim 2. The graph G0 contains exactly 12 stable triples.

Proof of Claim 2. The top row of G0 contains three stable pairs, and each one of them can be extended in two distinct ways
to a stable triple by adding a third vertex from the bottom row. This gives 6 stable triples. Symmetrically, there are 6 more
stable triples with 2 vertices in the bottom row and 1 vertex in the top row. This settles Claim 2.

Claim 3. All twelve stable triples in G0, with the possible two exceptions of {4, 2, 1} and {−5, −3, −2}, belong to H|V .

Proof of Claim 3. Let X ⊆ V be any subset. As in the proof of Claim 1, in order to prove that X belongs to H|V , it suffices to
exhibit a vector δ = δ(X) of length 6, with entries in X exclusively, satisfying α · δ = −2.

Table 2 provides the required vector δ = δ(X) for each of the 10 relevant stable triples X ⊆ V . This settles Claim 3.

We are now ready to conclude the proof of the proposition. Assume for a contradiction that there exists a proper
3-coloring of H|V , say ∆ : V −→ {a, b, c}. In particular, ∆ is a proper 3-coloring of the subgraph G0. Since there are 8
vertices colored with 3 colors, then either

(1) some color occurs with multiplicity at least 4 in V ,
(2) or else two colors occur with multiplicity 3 each.

Option (1) is impossible. Indeed, in the subgraph G0, no color can occur more than twice in either the top or the bottom
row. Moreover, no color can simultaneously occur twice in both rows, for otherwise we would get four monochromatic
stable triples, in contradiction with Claim 3 and the fact that ∆ is a proper 3-coloring of H|V .

Therefore option (2) holds: there are two colors occurring each with multiplicity 3, the third color being then of
multiplicity 2. Since, by Claim 3, there are at most two stable triples which do not necessarily belong to H|V and hence
are not forbidden to be monochromatic, in fact now they must be monochromatic. These stable triples being {4, 2, 1} and
{−5, −3, −2}, it follows, up to color permutation, that ∆(4) = ∆(2) = ∆(1) = a, ∆(−5) = ∆(−3) = ∆(−2) = b.



Therefore, the remaining two vertices, namely −1 and 0, must be colored c. But {−1, 0} is an edge in G0, hence in H|V , and
∆ is a proper vertex coloring of H|V . This contradiction concludes the proof of the proposition. □

As already commented above, this result implies the finiteness of R5(3, 2).

Remark 4.2. This proof does not yield a realistic estimate for R5(3, 2), as is often the case in Ramsey theory. However,
with some computer help, we have determined this number and obtained the exact value R5(3, 2) = 259. The inequality
R5(3, 2) ≥ 259 follows from the following 3-coloring of [1, 258], where Xi ⊂ [1, 258] denotes the subset of elements of
color i for 1 ≤ i ≤ 3:

X1 = [1, 6] ∪ [37, 42] ∪ [217, 222] ∪ [253, 258],
X2 = [7, 36] ∪ [223, 252],
X3 = [43, 216].

As easily checked, none of the Xi’s contains a monochromatic solution to (L). Therefore R5(3, 2) ≥ 259, as stated. For the
reverse inequality, we reduced equation (L) to its 4-variable version

x1 + x2 + 3x3 − x6 = −2 (6)

by identifying x3 = x4 = x5. The SAT solver march_rw [7], running on a standard desktop computer, then established in
about 13000 s that, for every 3-coloring of [1, 259], there is a monochromatic solution to the reduced equation (6); and
hence to (L) itself, from which R5(3, 2) ≤ 259 follows.

Actually, one can establish R5(3, 2) ≤ 259 in a dramatically shorter computing time, as follows. Consider the subset
X ⊂ [1, 259] of cardinality 51:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29,
31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 55, 69, 71, 75, 81, 83, 87, 93, 99,
109, 121, 127, 139, 163, 175, 187, 193, 217, 223, 247, 259}.

Then, here again, every 3-coloring of X admits a monochromatic solution to Eq. (6). This has been established with
march_rw in just 1 s on the same desktop computer as above. To be on the safe side, this property of X has also been
established with a completely different method, namely by backtrack programming in C, in about 25 min on a comparable
desktop computer. Finally, let usmention thatX isminimal for this property: after removing any of its elements, the resulting
set admits 3-colorings without any monochromatic solution to (6).

4.2. Finiteness of R6(4, 1)

We now focus on equation (L) with parameters k = 6, α = (1, 1, 1, 1, 1, 1, −1) ∈ Z7 and c = 1, i.e.

x1 + x2 + x3 + x4 + x5 + x6 − x7 = −1. (7)

Using the same approach as in the preceding section, we shall show that R6(4, 1) is finite or, in other terms, that dorN+
(L) ≥ 4.

However, here, we shall need to rely on some computer help.
Theorem 2.5 applies again and yields dorN+

(L) = dorZ(L).
Let H = H(L) be the hypergraph associated to (L). By dorN+

(L) = dorZ(L) and Proposition 3.3, we must show χ (H) ≥ 5.
As in the preceding section, since the chromatic number is monotonic with respect to restriction, it suffices to find a
finite restriction of H with chromatic number at least 5. Computer experiments show that restricting H to the interval
[−12, 14] ⊂ Z already suffices for this purpose, as we now explain. More precisely, let

V = {−12,−11, −8, −7, −6, −5, −3, −2, −1, 0, 1, 2, 3, 7, 8, 9, 10, 11, 13, 14}.

Let us now consider the hyperedges ofH|V . Generally speaking, the constraint contributed by a hyperedge to the chromatic
number tends to fade away with its cardinality. Therefore, in H|V , we only considered those hyperedges of cardinality 2 or
3. We have found, by computer, that H|V contains 16 edges of cardinality 2 and 218 hyperedges of cardinality 3.

Recall that, in order to testify that some subset E ⊆ V is a hyperedge of H|V , it suffices to exhibit a solution δ ∈ Z7 to
equation (L) whose set of distinct coordinates is equal to E. For instance, both {−11, −2} and {−12, −11, 0} are hyperedges
of H|V , as witnessed by the following two solutions to (L):

(−2, −2, −2, −2, −2, −2, −11) and (−12, 0, 0, 0, 0, 0, −11).

Here are the promised 16 edges of H|V :
{−11, −2}, {−11, 7}, {−5, −1}, {−5, 1}, {−5, 3}, {−5, 7}, {−2, 1}, {−2, 7}, {−1, 0}, {−1, 1}, {−1, 3}, {0, 1}, {1, 7},

{−7, 10}, {−3, 11}, {2, 13}.



As for the 218 hyperedges of cardinality 3 of H|V , it turns out that a certain subset of 95 of them suffices to guarantee a
chromatic number of 5. Here is this subset:

{−12, −11, 0}, {−11, −8, 1}, {−11, −7, −1}, {−11, −5, 9}, {−11, −5, 10}, {−11, −5, 13}, {−11, −3, −1},
{−11, −3, 0}, {−11, −1, 11}, {−11, −1, 13}, {−11, 0, 2}, {−11, 1, 11}, {−8, −2, −1}, {−8, 0, 7}, {−7, −2, −1}, {−7, 0, 3},
{−7, 1, 3}, {−7, 3, 7}, {−6, −5, 0}, {−6, −2, −1}, {−6, 1, 3}, {−5, −3, 0}, {−5, −2, 2}, {−5, −2, 10}, {−5, −2, 13},
{−5, 0, 2}, {−3, −2, 0}, {−3, −2, 3}, {−3, −1, 7}, {−3, 1, 3}, {−3, 3, 7}, {−2, −1, 2}, {−2, −1, 8}, {−2, 0, 9}, {−2, 2, 3},
{−1, 2, 7}, {−1, 7, 11}, {0, 2, 3}, {0, 2, 7}, {0, 3, 10}, {0, 3, 13}, {0, 7, 8}, {1, 3, 9}, {1, 3, 11}, {1, 3, 13}, {−12, −3, −2},
{−12, −3, 2}, {−12, −3, 13}, {−12, −2, 11}, {−12, −1, 2}, {−12, 0, 11}, {−12, 2, 3}, {−12, 3, 10}, {−11, −8, 13},
{−11, −7, 14}, {−11, −6, 2}, {−11, −3, 8}, {−8, −7, 0}, {−8, −7, 2}, {−8, −7, 11}, {−8, −1, 10}, {−8, 1, 2}, {−8, 2, 3},
{−7, −6, 0}, {−7, −6, 1}, {−7, −5, 8}, {−6, −2, 11}, {−6, 2, 7}, {−6, 7, 10}, {−3, −2, 9}, {−1, 8, 13}, {−1, 9, 13},
{−1, 10, 14}, {0, 13, 14}, {1, 2, 8}, {1, 2, 9}, {2, 3, 14}, {−12, −11, 8}, {−12, −6, 1}, {−12, −1, 14}, {−12, 7, 9}, {−11, 1, 3},
{−8, −6, 3}, {−8, −3, 14}, {−8, 1, 8}, {−7, −3, 7}, {−7, 1, 2}, {−5, −2, 0}, {−3, 1, 2}, {−2, 0, 3}, {−1, 2, 10}, {0, 3, 7},
{0, 8, 9}, {0, 10, 11}, {1, 2, 10}.

Restricting ourselves to those 16 + 95 (hyper)edges, and using a SAT solver [7], we have obtained the following result.

Proposition 4.3. Using the above notation, we have χ (H|V ) = 5.

Proof. Besides SAT solvers, tools to determine the chromatic number of a hypergraph are available on the web and may be
used to confirm this statement. □

As commented earlier, Proposition 4.3 implies that R6(4, 1) is indeed finite.

4.3. Conclusion

Combining the finiteness of R5(3, 2) and R6(4, 1) with the results of [1], it follows that Conjecture 1.2 holds for all k ≤ 7.
More explicitly, the following result holds.

Theorem 4.4. For all integers k, n, c such that 2 ≤ k ≤ 7, n ≥ 1 and c ≥ 0, we have that Rk(n, c) is finite if and only if every
divisor d ≤ n of k − 1 also divides c. □

The smallest open case of Conjecture 1.2 is now R8(6, 1), which should be finite according to the conjecture.
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