On the n-Color Weak Rado Numbers for the Equation $x_{1}+x_{2}+\cdots+x_{k}+c=x_{k}$ $+1$

L. Boza, J. M. Marín, M. P. Revuelta, and M. I. Sanz
Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s / n, Sevilla, Spain

ABSTRACT

For integers k, n, c with $k, n \geq 1$, and $c \geq 0$, the n-color weak Rado number $W R_{k}(n, c)$ is defined as the least integer N, if it exists, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation

$$
x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1},
$$

with $x_{i} \neq x_{j}$, when $i \neq j$. If no such N exists, then $W R_{k}(n, c)$ is defined as infinite.
In this paper, we determine the exact value of some of these numbers for $n=2$ and $n=3$, namely $W R_{3}(2, c)=5 c+24, W R_{4}(2, c)=6 c+52$ for all $c \geq 0$ and $W R_{2}(3, c)=13 c+22$ for all $c>0$. Our method consists in translating the problem into a Boolean satisfiability problem, which can then be handled by a SAT solver or by backtrack programming in the language C.

KEYWORDS

Schur numbers; sum-free sets; weak Schur numbers; weakly sum-free sets; Rado numbers; weak Rado numbers

MATHEMATICS SUBJECT

CLASSIFICATION
05C55; 05D10; 05-04; 05A17

1. Introduction

For integers $a \leq b$, we shall denote $[a, b]$ the integer interval consisting of all $t \in \mathbb{N}_{+}=\{1,2, \ldots\}$ such that $a \leq$ $t \leq b$. A function

$$
\Delta:[1, N] \longrightarrow\left\{d_{1}, \ldots, d_{n}\right\}
$$

where $d_{1}, \ldots, d_{n} \in \mathbb{N}_{+}$represent different colors, is a n-coloring of the interval [$1, N]$.

Given a n-coloring Δ and the equation $x_{1}+\cdots+$ $x_{k}=x_{k+1}$ in $k+1$ variables, then we say that a solution $x_{1}, \ldots, x_{k}, x_{k+1}$ to the equation is monochromatic if and only if $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\cdots=\Delta\left(x_{k+1}\right)$.

For integers k, n, c with $k, n \geq 1$, and $c \geq 0$, the n-color weak Rado number $W R_{k}(n, c)$ is defined as the least integer N, if it exists, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation

$$
x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1}
$$

with $x_{i} \neq x_{j}$ when $i \neq j$. If no such N exists, then $W R_{k}(n, c)$ is defined as infinite.

1.1. Schur numbers and weak Schur numbers

A set A of integers is called sum-free if it contains no elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$, where x_{1}, x_{2} need not be distinct. It is called weakly sum-free if
it contains no pairwise distinct elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$.
[Schur 16] proved that, given a positive integer n, there exists a greatest positive integer $S_{2}(n)=N$ with the property that the integer interval [1, N-1] can be partitioned into n sum-free sets. The numbers $S_{2}(n)$ are called Schur numbers. The current knowledge on these numbers for $1 \leq n \leq 7$ is given in Table 1.

The exact value of S_{2} (4) was obtained by [Baumert 61]. The lower and upper bounds on $S_{2}(5)$ are due to [Exoo 94] and [Sanz 10], respectively. Finally, the lower bounds on $S_{2}(6)$ and $S_{2}(7)$ were obtained by [Fredricksen and Sweet 00] by considering symmetric sum-free partitions.

Many generalizations of Schur numbers have appeared since their introduction. We denote by $W S_{2}(n)$, the greatest integer N, for which the integer interval [1, $N-$ 1] can be partitioned into n weakly sum-free sets $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

The numbers $W S_{2}(n)$ are called the weak Schur numbers. The known weak Schur numbers are given in Table 2.

The current state of knowledge concerning ${W S_{2}}_{2}(n)$ is quite confused.

The problem seems to have been first considered in [Walker 52], which is Walker's solution to Problem E985 proposed a year earlier, in 1951, by Moser. Walker considered the cases $n=3,4$, and 5 , and claimed the values $W S_{2}(3)=24, W S_{2}(4)=67$ and $W S_{2}(5)=197$. Unfortunately, the short account written by Moser on Walker's

Table 1. The first few Schur numbers $S_{2}(n)$.

n	1	2	3	4	5	6	7
$S_{2}(n)$	2	5	14	45	$161 \leq \cdots \leq 306$	≥ 537	≥ 1681

solution only gives suitable partitions of $[1,23]$ for $n=$ 3 , and no details at all for the cases $n=4$ and 5 . Walker's claimed values of $W S_{2}(3)$ and $W S_{2}(4)$ were later confirmed by [Blanchard et al. 06]. The lower bound $W S_{2}(5) \geq 197$ has been confirmed in [Eliahou et al. 12]. Whether equality holds in still an open problem. A lower bound on ${W S_{2}}_{2}(6)$ was obtained by [Eliahou et al. 12] and later improved to $W S_{2}(6) \geq 583$ in [Eliahou 13].

1.2. Rado numbers and weak Rado numbers

In terms of coloring, the Schur number $S_{2}(n)$ [Schur 16] is the least positive integer N such that for every n-coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{d_{1}, \ldots, d_{n}\right\}
$$

where d_{1}, \ldots, d_{n} represent n different colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}=x_{3}$, such that $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\Delta\left(x_{3}\right)$ where x_{1} and x_{2} need not be distinct.

In 1933, [Rado 33, Rado 36] generalized the work of Schur to arbitrary systems of linear equations. Given a system of linear equations L and a natural number n, the least integer N (if it exists) such that for every coloring of the integer interval $[1, N]$ with n colors there is a monochromatic solution to L, is called the n-color Rado number for L. If no such integer N exists, then the n-color Rado number for the system L is taken to be infinite.

After those first results of Rado, very little progress has been obtained for some systems of linear equations. [Burr and Loo 92] were able to determine the 2 -color Rado number for the equations $x_{1}+x_{2}+c=x_{3}$ and $x_{1}+x_{2}=$ $k x_{3}$ for every integer c and for every positive integer k.

In 1993, [Schaal 93] determined the 2 -color Rado number $R_{k}(2, c)$ for the equation $x_{1}+x_{2}+\cdots+x_{k}+$ $c=x_{k+1}$. He also obtained [Schaal 95] the 3-color Rado number $R_{2}(3, c)$ for the equation $x_{1}+x_{2}+c=x_{3}$. There are several results due to Schaal and other authors concerning 2-color and 3-color Rado numbers for particular equations, see [Jones and Schaal 04], [Kosek and Schaal 01], [Rendall and Schaal 06], and other authors [Guo and Sun 08]. In addition, recently we have studied when $R_{k}(n, c)$ is finite or infinite and we have obtained new exact values [Adhikari 16, Adhikari 17].

Table 2. The first few weak Schur numbers $W S_{2}(n)$.

n	1	2	3	4	5	6
$W S_{2}(n)$	3	9	24	67	≥ 197	≥ 583

For every integer $c \geq 0, n \geq 1$, let $W R_{2}(n, c)$ be the least integer N (if it exists) such that, for every coloring of the integer interval $[1, N]$ with n colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}+c=$ x_{3}, where $x_{1} \neq x_{2}$. The numbers $W R_{2}(n, c)$ are called the weak Rado numbers.

The number $W R_{2}(n, c)$ can be defined equivalently as the greatest N such that the integer interval $[1, N-1]$ can be partitioned into n sets $A_{1}, A_{2}, \ldots, A_{n}$ which are free of solutions to the equation $x_{1}+x_{2}+c=x_{3}$ with $x_{1} \neq x_{2}$.

Recently, Schaal et al. [Flint 13] have obtained the number $W R_{2}(2, c)$ for every integer c.

1.3. Contents

In Section 2, we determine the exact value of the 3-color weak Rado number for the equation $x_{1}+x_{2}+c=x_{3}$.

Computational Theorem 2.1. For every $c>0$, we have $W R_{2}(3, c)=13 c+22$.

In Section 3, we verify the exact values of the 2 -color weak Rado numbers for $k=3,4$.

Computational Theorem 3.1. For every $c \geq 0$, we have

$$
W R_{3}(2, c)= \begin{cases}\infty & \text { if } c \text { odd } \\ 5 c+24 & \text { if } c \text { even }\end{cases}
$$

Computational Theorem 3.2. For every $c \geq 0$, we have $W R_{4}(2, c)=6 c+52$.

In addition, we prove $W R_{5}(2,2)=109$ and $W R_{5}(2,4)=123$.

These exact values were obtained in two independent ways. One of them, by transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [Heule 11], and the other one using backtrack programming in the language C [Helsgaun 95].

In Sections 4 and 5, the two computational procedures used in the proofs are shown.

2. Exact value of the weak Rado numbers W $R_{2}(3, c)$

In this section, we shall prove that $W R_{2}(3, c)=13 c+22$ for every positive integer $c>0$.

2.1. Lower bound

We now prove the lower bound.
Lemma 2.1. We have $W R_{2}(3, c) \geq 13 c+22$ for any inte$\operatorname{ger} c>0$.

Proof. Let $c>0$ be a positive integer. We shall prove $W R_{2}(3, c) \geq 13 c+22$. Let Δ be a 3 -coloring:

$$
\Delta:[1,13 c+22] \longrightarrow\left\{d_{1}, d_{2}, d_{3}\right\}
$$

where d_{1}, d_{2}, d_{3} represent 3 different colors. Let $A_{i}=$ $\Delta^{-1}\left(d_{i}\right)$ for $i=1,2,3$ thus $[1,13 c+22]=A_{1} \sqcup A_{2} \sqcup$ A_{3}.

Consider the following partition of the integer interval $[1,13 c+21]$:

$$
\left\{\begin{aligned}
A_{1}= & {[1, c+2] \cup[3 c+7,4 c+7] } \\
& \cup[9 c+17,10 c+17] \cup[12 c+21,13 c+21] \\
A_{2}= & {[c+3,3 c+6] \cup[10 c+18,12 c+20] } \\
A_{3}= & {[4 c+8,9 c+16] }
\end{aligned}\right.
$$

Hence $\left\{A_{1}, A_{2}, A_{3}\right\}$ is a partition of $[1,13 c+21]$.
We now prove that for each $i, 1 \leq i \leq 3$, if $x_{1}, x_{2} \in A_{i}$ with $x_{1} \neq x_{2}$ then $x_{1}+x_{2}+c \notin A_{i}$. We assume, without any loss of generality, that $x_{1}<x_{2}$.

Case 1: $x_{1}, x_{2} \in A_{1}$

- If $x_{2} \leq c+2$, then $c+3 \leq x_{1}+x_{2}+c \leq 3 c+3$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $3 c+7 \leq x_{2} \leq 4 c+7$ then $4 c+8 \leq x_{1}+x_{2}+$ $c \leq 9 c+13$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $9 c+17 \leq x_{2} \leq 10 c+17$, we have:
- If $x_{1} \leq c+2$ then $10 c+18 \leq x_{1}+x_{2}+c \leq$ $12 c+19$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $3 c+7 \leq x_{1}$ then $13 c+24 \leq x_{1}+x_{2}+c$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $x_{2} \geq 12 c+21$ then $x_{1}+x_{2}+c \geq 13 c+22$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
Case 2: $x_{1}, x_{2} \in A_{2}$ and $x_{1} \geq c+3$
- If $x_{2} \leq 3 c+6$, then $3 c+7 \leq x_{1}+x_{2}+c \leq 7 c+$ 11, therefore $x_{1}+x_{2}+c \notin A_{2}$.
- If $x_{2} \geq 10 c+18$ then $12 c+21 \leq x_{1}+x_{2}+c$, therefore $x_{1}+x_{2}+c \notin A_{2}$.
Case 3: $x_{1}, x_{2} \in A_{3}$
Since $9 c+17 \leq x_{1}+x_{2}+c$, then $x_{1}+x_{2}+c \notin A_{3}$.

2.2. Upper bound

Let $c>0$ be a positive integer. We shall prove $W R_{2}(3, c) \leq 13 c+22$. This upper bound was established in the doctoral thesis [Sanz 10] through an exhaustive analysis of nearly 500 cases. We provide here a sketch of that proof, to this end, we shall prove that for every 3-coloring of the integer interval [$1,13 c+22$], there exists a monochromatic solution to the equation $x_{1}+x_{2}+c=x_{3}, x_{1} \neq x_{2}$.

Assume, for a contradiction, that there exists a 3coloring:

$$
\Delta:[1,13 c+22] \longrightarrow\left\{d_{1}, d_{2}, d_{3}\right\}
$$

where d_{1}, d_{2}, d_{3} represent three different colors, without any monochromatic solution of the equation $x_{1}+x_{2}+$ $c=x_{3}, x_{1} \neq x_{2}$.

Let $A_{i}=\Delta^{-1}\left(d_{i}\right)$ for $i=1,2,3$ thus $[1,13 c+22]=$ $A_{1} \sqcup A_{2} \sqcup A_{3}$.

We considered five main cases, depending on the colors assigned to the numbers 1,2 and 3:

Case 1. $A_{1} \supseteq\{1,2,3\}$.
Case 2. $A_{1} \supseteq\{1,2\}$ and $A_{2} \supseteq\{3\}$.
Case 3. $A_{1} \supseteq\{1,3\}$ and $A_{2} \supseteq\{2\}$.
Case 4. $A_{1} \supseteq\{1\}$ and $A_{2} \supseteq\{2,3\}$.
Case 5. $A_{1} \supseteq\{1\}, A_{2} \supseteq\{2\}$ and $A_{3} \supseteq\{3\}$.
Given a subset $X \subseteq[1,13 c+22]$, we denote

$$
\begin{aligned}
f(X)= & (X \dot{+} X+c) \cap[1,13 c+22] \\
= & \left(\left\{x_{1}+x_{2}+c \mid x_{1}, x_{2} \in X, x_{1} \neq x_{2}\right\}\right) \\
& \cap[1,13 c+22] .
\end{aligned}
$$

By hypothesis on Δ, for $1 \leq i \leq 3$, we have

$$
\begin{equation*}
A_{i} \cap f\left(A_{i}\right)=\emptyset \tag{1}
\end{equation*}
$$

The proof rests on the following claims, which are both direct consequences of (1). For every integers i, j, k such that $\{i, j, k\}=\{1,2,3\}$, we have:

- Claim I. $f\left(A_{i}\right) \cap f\left(A_{j}\right) \subseteq A_{k}$.
- Claim II. $f\left(A_{i}\right) \cap f\left(A_{j}\right) \cap f\left(A_{k}\right)=\emptyset$

We now start our analysis with Case 1 and explore various subcases.

Case 1: $A_{1} \supseteq\{1,2,3\}$
As $c+3=1+2+c$, without any loss of generality, we may assume that $\Delta(c+3)=d_{2}$. In addition, since $c+$ $4=1+3+c$ then $\Delta(c+4) \neq d_{1}$, and therefore $\Delta(c+$ 4) $=d_{2}$ or $\Delta(c+4)=d_{3}$.

Case 1.1: $\Delta(c+4)=d_{2}$
$A_{1} \supseteq\{1,2,3\}, A_{2} \supseteq\{c+3, c+4\}$.
Since $\{3 c+7, c+3, c+4\}$ would be a monochromatic solution in A_{2}, we must have $\Delta(3 c+7)=d_{1}$ or $\Delta(3 c+$ 7) $=d_{3}$.

Case 1.1.1: $\Delta(3 c+7)=d_{1}$
$A_{1} \supseteq\{1,2,3,3 c+7\}, A_{2} \supseteq\{c+3, c+4\}$.
As $\{4 \mathrm{c}+10,3 \mathrm{c}+7,3\}$ would be a monochromatic solution in A_{1}, we must have $\Delta(4 c+10)=d_{2}$ or $\Delta(4 c+$ 10) $=d_{3}$.

Case 1.1.1a: $\Delta(4 c+10)=d_{2}$.
Hence $\quad A_{1} \supseteq\{1,2,3,3 c+7\}, \quad A_{2} \supseteq\{c+3, c+4$, $4 c+10\}$. We now show $2 c+6 \in A_{3}$. Indeed, we cannot have $2 c+6 \in A_{1}$, for otherwise we would have $3 c+7 \in A_{1} \cap f(\{1,2 c+6\}) \subseteq A_{1} \cap f\left(A_{1}\right), \quad$ a contradiction since $A_{1} \cap f\left(A_{1}\right)=\emptyset$ by (1). Similarly, we cannot have $2 c+6 \in A_{2}$, for otherwise we would have $4 c+10 \in A_{2} \cap f(\{c+4,2 c+6\}) \subseteq A_{2} \cap f\left(A_{2}\right)$, a contradiction again. It follows that $2 c+6 \in A_{3}$, i.e. $\Delta(2 c+$ 6) $=d_{3}$, as claimed.

The element $2 c+5$ does not belong to A_{1}, since otherwise $3 c+7 \in A_{1} \cap f(\{2,2 c+5\}) \subseteq A_{1} \cap f\left(A_{1}\right)=\emptyset$. Hence $\Delta(2 c+5)=d_{2}$ or $\Delta(2 c+5)=d_{3}$.

Case 1.1.1a1: $\Delta(2 c+5)=d_{2}$
Hence $A_{1} \supseteq\{1,2,3,3 c+7\}, \quad A_{2} \supseteq\{c+3, c+4$, $4 c+10,2 c+5\}$ and $A_{3} \supseteq\{2 c+6\}$. We now show
$4 c+9 \in A_{3}$. In fact, we cannot have $4 c+9 \in A_{1}$, for otherwise we would have $4 c+9 \in A_{1} \cap f(\{2,3 c+7\}) \subseteq$ $A_{1} \cap f\left(A_{1}\right)$, a contradiction since $A_{1} \cap f\left(A_{1}\right)=\emptyset$ by (1). The same way, the element $4 c+9$ does not belong to A_{2}, for otherwise $4 c+9 \in A_{2} \cap f(\{c+4,2 c+5\}) \subseteq$ $A_{2} \cap f\left(A_{2}\right)$, a contradiction again. It follows that $4 c+9 \in A_{3}$, i.e. $\Delta(4 c+9)=d_{3}$, as claimed.

Therefore, $A_{1} \supseteq\{1,2,3,3 c+7\}, A_{2} \supseteq\{c+3, c+$ $4,4 c+10,2 c+5\}$, and $A_{3} \supseteq\{2 c+6,4 c+9\}$. We now show $7 c+15 \in A_{1}$. Indeed, it does not hold that $7 c+15 \in A_{2}$, for otherwise we would have $7 c+15 \in$ $A_{2} \cap f(\{4 c+10,2 c+5\}) \subseteq A_{2} \cap f\left(A_{2}\right)$, a contradiction since $A_{2} \cap f\left(A_{2}\right)=\emptyset$ by (1). Similarly, we cannot have $7 c+15 \in A_{3}$, for otherwise we would have $7 c+$ $15 \in A_{3} \cap f(\{2 c+6,4 c+9\}) \subseteq A_{3} \cap f\left(A_{3}\right)$, a contradiction again. It follows that $7 c+15 \in A_{1}$, i.e. $\Delta(7 c+$ 15) $=d_{1}$, as claimed.

Accordingly, $\quad A_{1} \supseteq\{1,2,3,3 c+7,7 c+15\}, \quad A_{2} \supseteq$ $\{c+3, c+4,4 c+10,2 c+5\}$, and $A_{3} \supseteq\{2 c+6,4 c+$ $9\}$. We now show $6 c+14 \in A_{3}$. Certainly, we cannot have $6 c+14 \in A_{1}$, for otherwise we would have $7 c+15 \in$ $A_{1} \cap f(\{1,6 c+14\}) \subseteq A_{1} \cap f\left(A_{1}\right), \quad$ a contradiction since $A_{1} \cap f\left(A_{1}\right)=\emptyset$ by (1). Analogously, the element $6 c+14$ does not belong to A_{2}, for otherwise we would have $6 c+14 \in A_{2} \cap f(\{c+4,4 c+10\}) \subseteq A_{2} \cap f\left(A_{2}\right)$, a contradiction again. It follows that $6 c+14 \in A_{3}$, i.e. $\Delta(6 c+14)=d_{3}$, as claimed.

Hence, $A_{1} \supseteq\{1,2,3,3 c+7,7 c+15\}, \quad A_{2} \supseteq\{c+$ $3, c+4,4 c+10,2 c+5\}$, and $A_{3} \supseteq\{2 c+6,4 c+9$, $6 c+14\}$. We now show $c+5 \notin A_{1}, c+5 \notin A_{2}$ and $c+5 \notin A_{3}$. In fact, it does not hold that $c+5 \in A_{1}$, for otherwise we would have $c+5 \in A_{1} \cap f(\{2,3\}) \subseteq$ $A_{1} \cap f\left(A_{1}\right)$, a contradiction since $A_{1} \cap f\left(A_{1}\right)=\emptyset$ by (1). We cannot have $c+5 \in A_{2}$, for otherwise we would have $4 c+10 \in A_{2} \cap f(\{2 c+5, c+5\}) \subseteq A_{2} \cap f\left(A_{2}\right)$, a contradiction since $A_{2} \cap f\left(A_{2}\right)=\emptyset$ by (1). We cannot have $c+5 \in A_{3}$, for otherwise we would have $6 c+14 \in$ $A_{3} \cap f(\{4 c+9, c+5\}) \subseteq A_{3} \cap f\left(A_{3}\right)$, a contradiction since $A_{3} \cap f\left(A_{3}\right)=\emptyset$ by (1).

This subcase is over.
Here is an outline of the proof in Case 1:

Case 1.1

Case 1.2

The other four cases were obtained in a similar way.
We now present two independent computational proofs of the upper bound.

Computational Lemma 2.1. Let $c>1$ and $\mathcal{X}_{c}=$ $\{1,2,3, c+2, c+3, c+4,2 c+4,2 c+5,2 c+6,3 c+$ $5,3 c+6,3 c+7,4 c+7,4 c+8,4 c+9,5 c+9,5 c+$ $10,5 c+11,6 c+10,6 c+11,6 c+12,7 c+13,8 c+14$, $8 c+15,9 c+16,9 c+17,10 c+18,10 c+19,11 c+20$, $12 c+21,13 c+22\}$ then:
(1) We have $\mathcal{X}_{c} \subseteq[1,13 c+22]$ and $\left|\mathcal{X}_{c}\right|=31$.
(2) For every partition of \mathcal{X}_{c} into three subsets A_{1}, A_{2}, A_{3}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+c=x_{3}, x_{1} \neq x_{2}$.

Proof.

1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [Heule XX] and using CBack [Helsgaun 95].

Computational Lemma 2.2. For $c=1$, let $\mathcal{X}=$ $\{1,2, \ldots, 18,20,22,25,26,28,29,31,33,35\}$ then:

1. We have $\mathcal{X} \subseteq[1,35]$.
2. For every partition of \mathcal{X} into three subsets A_{1}, A_{2}, A_{3}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+c=x_{3}, x_{1} \neq x_{2}$.

The proof is similar to Lemma 2.1.
In Section 4, the proof of the following result is given in detail.

Computational Theorem 2.1. For every $c>0$, we have $W R_{2}(3, c)=13 c+22$.

3. Exact values of weak Rado numbers $W R_{k}(2, c)$ for some $\boldsymbol{k}>2$

In this section, we prove that $W R_{3}(2, c)=5 c+24$ if c is even, $W R_{4}(2, c)=6 c+52, W R_{5}(2,2)=109$, and $W R_{5}(2,4)=123$. In addition, we formulate Corollary 3.1, which relates $W R_{k}(2, c)$ and a lower bound on the
weak Schur number $W S_{k}(2)$, leading us to formulate Conjecture 3.1.

3.1. The weak Rado numbers $W R_{3}(2, c)$

For $c=0$, [Blanchard et al. 06] obtained the weak Schur number $W S_{3}(2)=W R_{3}(2,0)=24$. A partition which is free of monochromatic solutions to the equation $x_{1}+x_{2}+x_{3}+c=x_{4}$ is $A_{1}=[1,5] \cup[21,23]$ and $A_{2}=$ $[6,20]$.

For $c \geq 0$ and odd, $W R_{3}(2, c) \geq R_{3}(2, c)=\infty[$ Schaal 93].

Let us first consider the lower bound for any $c \geq 0$ and even.
Lemma 3.1. We have $W R_{3}(2, c) \geq 5 c+24$ for any $c \geq 0$ and even.

Proof. For every even integer $c \geq 0$, it is easy to verify that the 2-coloring

$$
\Delta:[1,5 c+23] \longrightarrow\left\{d_{1}, d_{2}\right\}
$$

where d_{1}, d_{2} represent 2 different colors, defined by

$$
\Delta(x)= \begin{cases}d_{1} & \text { if } 1 \leq x \leq c+5 \\ d_{2} & \text { if } c+6 \leq x \leq 4 c+20 \\ d_{1} & \text { if } 4 c+21 \leq x \leq 5 c+23\end{cases}
$$

has no monochromatic solutions to the equation $x_{1}+$ $x_{2}+x_{3}+c=x_{4}$ such that $x_{i} \neq x_{j}$ when $i \neq j$.
Computational Lemma 3.1. We have $W R_{3}(2,2)=34$.
A partition which is free of monochromatic solutions to the equation $x_{1}+x_{2}+x_{3}+c=x_{4}$ is $A_{1}=[1,7] \cup$ $[29,33]$ and $A_{2}=[8,28]$.

In order to prove the upper bounds, we shall use the following result:

Computational Lemma 3.2. Let $c \geq 4$ and even. If $l=c / 2$, then the set $\mathcal{Y}_{l}=\{1,2,3,4,2+l, 3+l, 4+$ $l, 3+2 l, 4+2 l, 5+2 l, 6+2 l, 7+2 l, 8+2 l, 6+3 l$, $7+3 l, 8+3 l, 6+4 l, 9+4 l, 11+5 l, 10+6 l, 12+6 l$, $13+7 l, 14+8 l, 15+8 l, 16+8 l, 18+8 l, 21+8 l$, $23+10 l, 24+10 l\}$ verifies:

1. We have $\mathcal{Y}_{l} \subseteq[1,24+10 l]$.
2. For every partition of \mathcal{Y}_{l} into two subsets A_{1}, A_{2}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}+c=x_{4}, x_{i} \neq x_{j}$, with $i \neq j$.

In the proof of Lemma 3.2, we proceed similarly to Lemma 2.1.

Therefore, we conclude with the following result:
Computational Theorem 3.1. For every $c \geq 0$, we have

$$
W R_{3}(2, c)= \begin{cases}\infty & \text { if } c \text { odd } \\ 5 c+24 & \text { if } c \text { even }\end{cases}
$$

3.2. The weak Rado numbers $W R_{4}(2, c)$

For $c=0$, the weak Schur number $W S_{4}(2)=$ $W R_{4}(2,0)=52$ was obtained [Sanz 10]. A partition which is free of monochromatic solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}+c=x_{5}$ is $A_{1}=[1,9] \cup[46,51]$ and $A_{2}=[10,45]$.

We now consider the lower bound for any $c \geq 0$.
Lemma 3.2. We have $W R_{4}(2, c) \geq 6 c+52$ for any $c \geq 0$.
Proof. For every integer $c \geq 0$, it is easy to verify that the 2-coloring

$$
\Delta:[1,6 c+51] \longrightarrow\left\{d_{1}, d_{2}\right\}
$$

defined by

$$
\Delta(x)= \begin{cases}d_{1} & \text { if } 1 \leq x \leq c+9 \\ d_{2} & \text { if } c+10 \leq x \leq 5 c+45 \\ d_{1} & \text { if } 5 c+46 \leq x \leq 6 c+51\end{cases}
$$

has no monochromatic solutions to the equation $x_{1}+$ $x_{2}+x_{3}+x_{4}+c=x_{5}$ such that $x_{i} \neq x_{j}$ when $i \neq j$.

In order to prove the opposite inequality, we shall use the following result:

Computational Lemma 3.3. Let $c \geq 1$. The set $\mathcal{Z}_{c}=\{1,2,3,4,5,6,8, c+9, c+10, c+11, c+12$, $c+13, c+14, c+15,2 c+16,2 c+17,2 c+18,2 c+$ $19,2 c+20,2 c+21,2 c+22,2 c+24,3 c+32,4 c+33$, $5 c+43,5 c+44,5 c+45,5 c+46,6 c+52\}$ verifies:

1. $\mathcal{Z}_{c} \subseteq[1,6 c+52]$.
2. For every partition of \mathcal{Z}_{c} into two subsets A_{1}, A_{2}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}+x_{4}+c=x_{5}, x_{i} \neq x_{j}$, with $i \neq j$.

In the proof of Lemma 3.3, we use similar reasonings to those established in Lemma 2.1 and Lemma 3.2.

Therefore, we conclude with the following result:
Computational Theorem 3.2. For every $c \geq 0$, we have $W R_{4}(2, c)=6 c+52$.

3.3. The weak Rado numbers $W R_{5}(2,2)$ and $W R_{5}(2,4)$

The weak Rado numbers $W R_{5}(2,2)$ and $W R_{5}(2,4)$ have been obtained through backtrack programming [Helsgaun 95] and by transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver. In the Sections 4.4, 5.4, and 5.5, the results are shown.

In the case of $W R_{5}(2,2)$, backtrack programming shows three partitions, which are free of monochromatic solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}+2=x_{5}$,
$x_{i} \neq x_{j}$, with $i \neq j$. These are

$$
\begin{aligned}
& A_{1}=[1,16] \cup[97,108], A_{2}=[17,96] . \\
& A_{1}=[1,20] \cup[94,108], A_{2}=\{2\} \cup[21,93] . \\
& A_{1}=\{1\} \cup[21,92], A_{2}=[2,20] \cup[93,108] .
\end{aligned}
$$

Therefore, we have that 109 is the lower bound of $W R_{5}(2,2)$. In Section 4.4, we show that $W R_{5}(2,2) \leq 109$.

In the case of $W R_{5}(2,4)$, a partition free of monochromatic solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}+4=$ $x_{5}, x_{i} \neq x_{j}$, with $i \neq j$, is:

$$
A_{1}=[1,18] \cup[109,122], A_{2}=[19,108]
$$

Therefore, we have that 123 is the lower bound of $W R_{5}(2,4)$. In Section 5.4, we show that $W R_{5}(2,4) \leq 123$.

Hence, we conclude with the following results:
Computational Theorem 3.3. We have $W R_{5}(2,2)=109$.
Computational Theorem 3.4. We haveWR ${ }_{5}(2,4)=123$.

3.4. Weak Schur numbers $W S_{5}(2)$ and lower bounds

In this subsection, we obtain the weak Schur number $W S_{5}(2)=101$ and we show a lower bound for the weak Schur numbers $W S_{k}(2)$.

To obtain the lower bound $W S_{5}(2) \geq 101$, the following partition of $[1,100]$ is considered $A_{1}=\{1\} \cup[20,86]$ and $A_{2}=[2,19] \cup[87,100]$.

In order to obtain the upper bound $W S_{5}(2) \leq 101$, we shall use the following result:

Computational Lemma 3.4. The set $\mathcal{U}=[1,7] \cup$ $\{9,11,13\} \cup[15,17] \cup[19,23] \cup[25,27] \cup\{29,31,35$, $39\} \cup[43,45] \cup\{51,75,87,101\} \subseteq[1,101]$ verifies that for every partition of \mathcal{U} into two subsets A_{1}, A_{2}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}+$ $x_{4}+x_{5}=x_{6}, x_{i} \neq x_{j}$, with $i \neq j$.

In the proof of Lemma 3.4, we use similar reasonings to those established in Lemma 2.1 and Lemma 3.2.

Therefore, we conclude with the following result:
Computational Theorem 3.5. We have $W S_{5}(2)=101$.
Here, below can be seeing a new lower bound for the weak Schur numbers $W S_{k}(2)$.

Lemma 3.3. We have $W S S_{k}(2) \geq(k+2) T_{k}-2 k$, with $T_{k}=\frac{(1+k)}{2} k$.

Proof. It is easy to verify that the 2 -coloring

$$
\Delta:\left[1,(k+2) T_{k}-2 k-1\right] \longrightarrow\left\{d_{1}, d_{2}\right\}
$$

defined by
$\Delta(x)=\left\{\begin{array}{l}d_{1} \text { if } 1 \leq x \leq T_{k}-1, \\ d_{2} \text { if } T_{k} \leq x \leq(k+1) T_{k}-k-1, \\ d_{1} \text { if }(k+1) T_{k}-k \leq x \leq(k+2) T_{k}-2 k-1\end{array}\right.$
has no monochromatic solution to the equation $x_{1}+x_{2}+$ $\cdots+x_{k}=x_{k+1}$ such that $x_{i} \neq x_{j}$ when $i \neq j$.

Consider the lower bound $L W S_{k}(2)=(k+2) T_{k}-2 k$. We formulate the following Corollaries that relate the weak Rado numbers $W R_{k}(2, c)$ with the lower bound $L W S_{k}(2)$.

Corollary 3.1. Let c be a integer with $c \geq 0$ and $k=2,3,4$. Then, $W R_{k}(2, c)=(k+2) c+L W S_{k}(2)$.

Corollary 3.2. Let $c=2$ or $c=4$ and $k=5$. Then, $W R_{k}(2, c)=(k+2) c+L W S_{k}(2)$.

The exact values $W R_{2}(2, c), W R_{3}(2, c), W R_{4}(2, c)$, $W R_{5}(2,2)$, and $W R_{5}(2,4)$ have been obtained. All of them verify the following Conjecture 3.1.

Conjecture 3.1. Let c and k be integers with $c \geq 0$ and $k \geq$ 2 , we have $W R_{k}(2, c)=(k+2) c+L W S_{k}(2)$, when c or k is even.

4. Reformulation as a SAT problem

Our idea for constructing the above partitions is to express the corresponding combinatorial constraints as Boolean satisfiability problems, to be then fed into a SAT solver. See [Dransfield et al. 04, Eliahou et al. 12, Herwig et al. 07, Kouril and Paul 08, Robilliard et al. 10] for earlier successful uses of SAT solvers in combinatorial number theory. The specific SAT solver used here, is the March rw, the gold medal winner of the 2011 International SAT Competition [Heule XX]. Recall that a logical expression over Boolean variables x_{1}, \ldots, x_{n} is said to be satisfiable if there is an assignment of the x_{i} 's to True or False in such a way that the value evaluates to True.

4.1. Seeking $W R_{2}(3, c)$ by computer

Let $c>1$ and consider the set \mathcal{X}_{c} of Lemma 2.1. That is, $\mathcal{X}_{c}=\{1,2,3, c+2, c+3, c+4,2 c+4,2 c+5,2 c+$ $6,3 c+5,3 c+6,3 c+7,4 c+7,4 c+8,4 c+9,5 c+9$, $5 c+10,5 c+11,6 c+10,6 c+11,6 c+12,7 c+13$, $8 c+14,8 c+15,9 c+16,9 c+17,10 c+18,10 c+19$, $11 c+20,12 c+21,13 c+22\}$.

Let Δ_{c} be a 3-coloring of $[1,13 c+22]$:

$$
\Delta_{c}:[1,13 c+22] \longrightarrow\left\{d_{1}, d_{2}, d_{3}\right\}
$$

and let $X^{*}=\left\{(a, b): a c+b \in \mathcal{X}_{c}\right.$ for any $\left.c \geq 1\right\}$, i.e. $X^{*}=\{(0,1),(0,2),(0,3),(1,2),(1,3),(1,4),(2,4)$,
$(2,5),(2,6),(3,5),(3,6),(3,7),(4,7),(4,8),(4,9)$, $(5,9),(5,10),(5,11),(6,10),(6,11),(6,12),(7,13)$, $(8,14),(8,15),(9,16),(9,17),(10,18),(10,19),(11$, 20), $(12,21),(13,22)\}$.

For any $(a, b) \in X^{*}$, we consider two Boolean variables $\phi((a, b))$ and $\psi((a, b))$ defined as follow:

$$
\begin{aligned}
& \phi((a, b))=\left\{\begin{array}{l}
\text { True if } \Delta_{c}(a c+b)=d_{1} \text { or } d_{2} \\
\text { False if } \Delta_{c}(a c+b)=d_{3}
\end{array}\right. \\
& \psi((a, b))=\left\{\begin{array}{l}
\text { True if } \Delta_{c}(a c+b)=d_{1} \text { or } d_{3} \\
\text { False if } \Delta_{c}(a c+b)=d_{2}
\end{array}\right.
\end{aligned}
$$

Thus, for any $n \in X^{*}$ we have that $\phi(n)$ is True or $\psi(n)$ is True.

Let $\mathcal{S}=\left\{\left(n_{1}, n_{2}, n_{3}\right) \mid n_{i}=\left(a_{i}, b_{i}\right) \in X^{*}\right.$, verifying that $\quad a_{1}+b_{1}<a_{2}+b_{2}, a_{1}+a_{2}+1=a_{3}, b_{1}+b_{2}=$ $\left.b_{3}\right\}$.

For any $s=\left(n_{1}, n_{2}, n_{3}\right) \in \mathcal{S}$, we consider three clauses:

$$
\begin{aligned}
p(s)= & \left(\neg \phi\left(n_{1}\right) \vee \neg \psi\left(n_{1}\right) \vee \neg \phi\left(n_{2}\right) \vee \neg \psi\left(n_{2}\right)\right. \\
& \left.\vee \neg \phi\left(n_{3}\right) \vee \neg \psi\left(n_{3}\right)\right), \\
q(s)= & \left(\neg \phi\left(n_{1}\right) \vee \psi\left(n_{1}\right) \vee \neg \phi\left(n_{2}\right) \vee \psi\left(n_{2}\right)\right. \\
& \left.\vee \neg \phi\left(n_{3}\right) \vee \psi\left(n_{3}\right)\right), \text { and } \\
r(s)= & \left(\phi\left(n_{1}\right) \vee \neg \psi\left(n_{1}\right) \vee \phi\left(n_{2}\right) \vee \neg \psi\left(n_{2}\right)\right. \\
& \left.\vee \phi\left(n_{3}\right) \vee \neg \psi\left(n_{3}\right)\right) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta_{c}(n) \neq d_{1}$ for some $n \in s, q(s)$ is satisfiable if and only if $\Delta_{c}(n) \neq d_{2}$ for some $n \in s$ and $r(s)$ is satisfiable if and only if $\Delta_{c}(n) \neq d_{3}$ for some $n \in s$, thus $p(s) \wedge q(s) \wedge r(s)$ are satisfiable if and only if Δ_{c} does not induce on s a monochromatic solution of the equation $x_{1}+x_{2}+c=x_{3}$.

$$
\begin{aligned}
\text { Let } \mathcal{C} & =\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s) \wedge r(s)) \text { and } \\
\mathcal{D} & =\bigwedge_{n \in X^{*}}(\phi(n) \vee \psi(n))
\end{aligned}
$$

Clearly, $\mathcal{C} \wedge \mathcal{D}$ is satisfiable if and only if the restriction of Δ_{c} to \mathcal{X}_{c} is a 3-coloring without monochromatic solution of the equation.

The SAT-Solver shows that $\mathcal{C} \wedge \mathcal{D}$ is not satisfiable, therefore there does not exist a 3-coloring of the sets \mathcal{X}_{c} and $[1,13 c+22]$ without monochromatic solution. Thus, $W R_{2}(3, c) \leq 13 c+22$.

4.2. Seeking $W R_{3}(2, c)$ by computer

Let $c=2 l \geq 4$ and the set \mathcal{Y}_{l} of Lemma 3.2. That is, $\mathcal{Y}_{l}=$ $\{1,2,3,4,2+l, 3+l, 4+l, 3+2 l, 4+2 l, 5+2 l, 6+$ $2 l, 7+2 l, 8+2 l, 6+3 l, 7+3 l, 8+3 l, 6+4 l, 9+4 l$,
$11+5 l, 10+6 l, 12+6 l, 13+7 l, 14+8 l, 15+8 l$,
$16+8 l, 18+8 l, 21+8 l, 23+10 l, 24+10 l\}$.
Let Δ_{l} be a 2 -coloring of $[1,24+10 l]$,

$$
\Delta_{l}:[1,24+10 l] \longrightarrow\left\{d_{1}, d_{2}\right\}
$$

and let $Y^{*}=\left\{(a, b): a l+b \in \mathcal{Y}_{l}\right.$ for any $\left.l \geq 2\right\}$, i.e. $Y^{*}=\{(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)$, $(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,6),(3,7)$, $(3,8),(4,6),(4,9),(5,11),(6,10),(6,12),(7,13),(8$, $14),(8,15),(8,16),(8,18),(8,21),(10,23),(10,24)\}$.

For any $(a, b) \in Y^{*}$, we consider a Boolean variable $\phi((a, b))$ defined as follows:

$$
\phi((a, b))=\left\{\begin{array}{l}
\text { True if } \Delta_{l}(2 a l+b)=d_{1} \\
\text { False if } \Delta_{l}(2 a l+b)=d_{2}
\end{array}\right.
$$

Let $\mathcal{S}^{\prime}=\left\{\left(n_{1}, \ldots, n_{4}\right) \mid n_{i}=\left(a_{i}, b_{i}\right) \in Y^{*}\right.$, verifying that $4 a_{1}+b_{1}<4 a_{2}+b_{2}<4 a_{3}+b 3, a_{1}+a_{2}+a_{3}+$ $\left.2=a_{4}, b_{1}+b_{2}+b_{3}=b_{4}\right\}$ For any $s=\left(n_{1}, \ldots, n_{4}\right) \in$ \mathcal{S}^{\prime}, we consider two clauses:

$$
p(s)=\left(\phi\left(n_{1}\right) \vee \phi\left(n_{2}\right) \vee \phi\left(n_{3}\right) \vee \phi\left(n_{4}\right)\right)
$$

and

$$
q(s)=\left(\neg \phi\left(n_{1}\right) \vee \neg \phi\left(n_{2}\right) \vee \neg \phi\left(n_{3}\right) \vee \neg \phi\left(n_{4}\right)\right)
$$

Then $p(s)$ is satisfiable if and only if $\Delta_{l}(n) \neq d_{2}$ for some $n \in s$ and $q(s)$ is satisfiable if and only if $\Delta_{l}(n) \neq d_{1}$ for some $n \in s$, thus $p(s) \wedge q(s)$ are satisfiable if and only if Δ_{l} does not induce on s a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}+x_{4}+c=x_{5}$.

$$
\operatorname{Let} \mathcal{C}^{\prime}=\bigwedge_{s \in \mathcal{S}^{\prime}}(p(s) \wedge q(s))
$$

Clearly \mathcal{C}^{\prime} is satisfiable if and only if the restriction of Δ_{l} to \mathcal{Y}_{l} is a 2 -coloring without monochromatic solution of the equation.

The SAT-Solver shows that \mathcal{C}^{\prime} is not satisfiable, therefore there does not exist a 2 -coloring of the sets \mathcal{Y}_{l} and $[1,24+10 l]$ without monochromatic solution. Thus $W R_{3}(2,2 l) \leq 24+10 l$.

4.3. Seeking W $R_{4}(\mathbf{2}, c)$ by computer

Let \mathcal{Z}_{c} be the set of Lemma 3.3. That is, $\mathcal{Z}_{c}=$ $\{1,2,3,4,5,6,8, c+9, c+10, c+11, c+12, c+13$, $c+14, c+15,2 c+16,2 c+17,2 c+18,2 c+19,2 c+$ $20,2 c+21,2 c+22,2 c+24,3 c+32,4 c+33,5 c+$ $43,5 c+44,5 c+45,5 c+46,6 c+52\}$ Let Δ_{c} be a 2 coloring of $[1,6 c+52]$,

$$
\Delta_{c}:[1,6 c+52] \longrightarrow\left\{d_{1}, d_{2}\right\}
$$

and let $Z^{*}=\left\{(a, b): a c+b \in \mathcal{Z}_{c}\right.$ for any $\left.c \geq 0\right\}$, i.e. $Z^{*}=\{(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,8)$, $(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(1,15)$, $(2,16),(2,17),(2,18),(2,19),(2,20),(2,21),(2,22)$, $(2,24),(3,32),(4,33),(5,43),(5,44),(5,45),(5,46)$, $(6,52)\}$. For any $(a, b) \in Z^{*}$ we consider a Boolean variable $\phi((a, b))$ defined as follow:

$$
\phi((a, b))=\left\{\begin{array}{l}
\text { True if } \Delta_{c}(a c+b)=d_{1} \\
\text { False if } \Delta_{c}(a c+b)=d_{2}
\end{array}\right.
$$

Let $\mathcal{S}^{\prime \prime}=\left\{\left(n_{1}, \ldots, n_{5}\right) \mid n_{i}=\left(a_{i}, b_{i}\right) \in Z^{*}\right.$, verifying that $\quad b_{1}<b_{2}<b_{3}<b_{4}, a_{1}+a_{2}+a_{3}+a_{4}+1=$ $\left.a_{5}, b_{1}+b_{2}+b_{3}+b_{4}=b_{5}\right\}$.

For any $s=\left(n_{1}, \ldots, n_{5}\right) \in \mathcal{S}^{\prime \prime}$, we consider two clauses:

$$
p(s)=\left(\phi\left(n_{1}\right) \vee \phi\left(n_{2}\right) \vee \phi\left(n_{3}\right) \vee \phi\left(n_{4}\right) \vee \phi\left(n_{5}\right)\right)
$$

and

$$
\begin{aligned}
q(s)= & \left(\neg \phi\left(n_{1}\right) \vee \neg \phi\left(n_{2}\right) \vee \neg \phi\left(n_{3}\right) \vee \neg \phi\left(n_{4}\right)\right. \\
& \left.\vee \neg \phi\left(n_{5}\right)\right) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta_{c}(n) \neq d_{2}$ for some $n \in s$ and $q(s)$ is satisfiable if and only if $\Delta_{c}(n) \neq d_{1}$ for some $n \in s$, thus $p(s) \wedge q(s)$ are satisfiable if and only if Δ_{c} does not induce on s a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}+x_{4}+c=x_{5}$.

$$
\operatorname{Let} \mathcal{C}^{\prime \prime}=\bigwedge_{s \in \mathcal{S}^{\prime \prime}}(p(s) \wedge q(s))
$$

Clearly, $\mathcal{C}^{\prime \prime}$ is satisfiable if and only if the restriction of Δ_{c} to \mathcal{Z}_{c} is a 2 -coloring without monochromatic solution of the equation.

The SAT-Solver shows that $\mathcal{C}^{\prime \prime}$ is not satisfiable, therefore there does not exist a 2 -coloring of the sets \mathcal{Z}_{c} and $[1,6 c+52]$ without monochromatic solution. Thus $W R_{4}(2, c) \leq 6 c+52$.

4.4. Seeking W $R_{5}(2,2)$ by computer

Let $\mathcal{T}_{2}=[1,109]$. Let Δ be a 2 -coloring of \mathcal{T}_{2}. For any $n \in \mathcal{T}_{2}$, we consider a Boolean variable $\phi(n)$ defined as follow:

$$
\phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta(n)=d_{1} \\
\text { False if } \Delta(n)=d_{2}
\end{array}\right.
$$

Let $\quad \mathcal{S}^{\prime \prime \prime}=\left\{\left(n_{1}, \ldots, n_{6}\right) \mid 1 \leq n_{1}<n_{2}<\cdots<n_{6} \leq\right.$ 109, and $\left.n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+2=n_{6}\right\}$.

For any $s=\left(n_{1}, \ldots, n_{6}\right) \in \mathcal{S}^{\prime \prime \prime}$, we consider two clauses:

$$
\begin{aligned}
p(s)= & \left(\phi\left(n_{1}\right) \vee \phi\left(n_{2}\right) \vee \phi\left(n_{3}\right) \vee \phi\left(n_{4}\right) \vee \phi\left(n_{5}\right)\right. \\
& \left.\vee \phi\left(n_{6}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
q(s)= & \left(\neg \phi\left(n_{1}\right) \vee \neg \phi\left(n_{2}\right) \vee \neg \phi\left(n_{3}\right) \vee \neg \phi\left(n_{4}\right)\right. \\
& \left.\vee \neg \phi\left(n_{5}\right) \vee \neg \phi\left(n_{6}\right)\right) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta(n) \neq d_{2}$ for some $n \in s$ and $q(s)$ is satisfiable if and only if $\Delta(n) \neq d_{1}$ for some $n \in s$, thus $p(s) \wedge q(s)$ are satisfiable if and only if Δ does not induce on s a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+2=x_{6}$.

$$
\text { Let } \mathcal{C}^{\prime \prime \prime}=\bigwedge_{s \in \mathcal{S}^{\prime \prime \prime}}(p(s) \wedge q(s))
$$

Clearly, $\mathcal{C}^{\prime \prime \prime}$ is satisfiable if and only if Δ is a 2 coloring without monochromatic solution of the equation.

The SAT-Solver shows that $\mathcal{C}^{\prime \prime \prime}$ is not satisfiable, therefore there does not exist a 2 -coloring of the set \mathcal{T}_{2} without monochromatic solution. Thus, $W R_{5}(2,2) \leq$ 109.

This result can be generalized to prove $W R_{5}(2,4) \leq$ 123.

5. Backtrack programming in language C

5.1. Seeking $W R_{2}(3, c)$ by computer

```
#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()
int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
```

\{ fprintf(fp,"N $=\frac{\circ d}{}$ is the maximum with \%d solutions. $\ln "$, Count, Solu); \}

```
int T[4][600]={0};
int L[4]={0};
int VR[31] ={0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9,10,
10,11,12,13};
int VT[31]={1,2,3,2,3,4,4,5,6,5,6,7,7,8,9,9,10,11,10,11,12,13,14,15,16,17,18,
19,20,21,22};
Solu=0;
Fiasco=PrintSol;
N=Select (30,31);
for (r = 0; r <= N-1; r++)
{
    c = Choice(3);
    for (i = 0; i <= L[c]-1; i++)
        for (j = 0; j < i; j++)
        {
                if (VR[r]==R[c][i] +R[c][j]+1&&VT[r]==T[c][i]+T[c][j])
                Backtrack();
                }
                R[c][L[c]] = VR[r];
                T[c][L[c]] = VT[r];
                L[C]++;
}
Count=0;
Solu++;
for (c = 1; c <= 3; c++)
{
    Count+=L[c];
    for (r = 0; r <= L[c]-1; r++)
        {
        if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
        else
            if (R[c][r]==1) fprintf(fp,"(%c%c%d)",'a',''+',T[c][r]);
            else fprintf(fp,"(%d%c%c%d)",R[c][r],'a','+',T[c][r]);
        }
/* fprintf(fp,"((%d))\n",L[c]); */
    fprintf(fp,"\n");
}
    fprintf(fp,"%c",'\n');
    printf(" Solutions : %d \n",Solu);
    Backtrack();
}
main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}
```


5.2. Seeking $W R_{3}(2, c)$ by computer

```
#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()
{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }
int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int T[4][600]={0};
int L[4]={0};
int VR[29]={0,0,0,0,1,1,1,2,2,2,2,2,2,3,3,3,4,4, 5, 6, 6, 7, 8, 8, 8, 8, 8,
    10,10};
int VT[29]={1,2,3,4,2,3,4,3,4,5,6,7,8,6,7,8,6,9,11,10,12,13,14,15,16,18,21,23,
    24};
Solu=0;
Fiasco=PrintSol;
N=Select (28,29);
for (r = 0; r <= N-1; r++)
{
    c = Choice(2);
    for (i = 0; i <= L[c]-1; i++)
        for (j = 0; j < i; j++)
            for (k = 0; k < j; k++)
                {
                if (VR[r]==R[c][i] +R[c][j]+R[c][k]+2&&VT[r]==T[c][i]+T[c][j]+T[c][k])
                Backtrack();
                }
                R[c][L[c]] = VR[r];
                T[c][L[c]] = VT[r];
                L[C]++;
}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
    Count+=L[c];
    for (r = 0; r <= L[c]-1; r++)
        {
        if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
        else
            if (R[c][r]==1) fprintf(fp,"(%c%c%d)",'a','+',T[c][r]);
            else fprintf(fp,"(%d%c%c%d)",R[c][r],'a','+',T[c][r]);
        }
/* fprintf(fp,"((%d))\n",L[c]); */
        fprintf(fp,"\n");
```

```
    fprintf(fp,"%c",'\n');
    printf(" Solutions : %d \n",Solu);
    Backtrack();
}
```

main(int argc, char *argv[])
\{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
$\mathrm{fp}=$ fopen (str,"w");
Backtracking (Problem())
fclose(fp);
\}

5.3. Seeking $W R_{4}(2, c)$ by computer

```
#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()
{fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }
int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int T[4][600]={0};
int L[4]={0};
//int VR[30] ={0,0,0,0,0,0,0,1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
    4, 5, 5, 5, 5, 6};
//int VT[30]={1,2,3,4,5,6,7,9,10,11,12,13,14,15,15,16,17,18,19,20,21,22,24,32,
    33,43,44,45,46,52};
```

int $\operatorname{VR}[29]=\{0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3$,
$4,5,5,5,5,6\}$;
int $\operatorname{VT}[29]=\{1,2,3,4,5,6,7,9,10,11,12,13,14,15,15,16,17,18,19,20,21,22,24,32$,
$33,43,44,45,46,52\}$;
Solu=0;
Fiasco=PrintSol;
$\mathrm{N}=$ Select $(30,30)$;
for (r \quad ($0 ; r<=N-1$; $r++$)
\{
$\mathrm{c}=$ Choice (2) ;
for (i $=0$; $i \quad<=L[c]-1 ; i++$)
for ($j=0 ; j<i ; j++$)
for $(k=0 ; k<j ; k++)$
for $(l=0 ; 1<k ; ~ l++)$

```
{
    if (VR[r]==R[c][i]+R[c][j]+R[c][k]+R[c][l]+1&&VT[r]==
    T[c][i]+T[c][j]+T[c][k]+T[c] [l])
    Backtrack();
    }
    R[c][L[c]] = VR[r];
    T[c][L[c]] = VT[r];
    L[c]++;
}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
    Count+=L[c];
    for (r = 0; r <= L[c]-1; r++)
        {
        if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
        else
            if (R[c][r]==1) fprintf(fp,"(%c%c%d)",'a','+',T[c][r]);
            else fprintf(fp,"(%d%c%c%d)",R[c][r],'a','+',T[c][r]);
        }
/* fprintf(fp,"((%d))\n",L[c]); */
        fprintf(fp,"\n");
}
    fprintf(fp,"%c",'\n');
    printf(" Solutions : %d \n",Solu);
// if (Solu<10)
    Backtrack();
}
main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}
```


5.4. Seeking $W R_{5}(2,2)$ by computer

```
#include "CBack.c"
int i, j, k, l, m, N, Count, Solu;
FILE *fp;
void PrintSol()
{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }
int Problem()
{
```

```
int r, c, a;
int R[4][600]={0};
int L[4]={0};
Solu=0;
Fiasco=PrintSol;
N=Select(108,109);
a=2;
for (r = 1; r <= N; r++)
{
    c = Choice(2);
    for (i = 0; i <= L[c]-1; i++)
        for (j = 0; j < i; j++)
        for (k = 0; k < j; k++)
                for (l = 0; l < k; l++)
                for (m = 0; m<l; m++)
                {
                if (r-a==R[c][i]+R[c][j]+R[c][k]+R[c][l]+R[c][m])
                Backtrack();
                }
                R[c][L[c]] = r;
                L[C]++;
}
Count=0;
Solu++;
for (c = 1; c <= 2; c++)
{
    Count+=L[c];
    for (r = 0; r <= L[c]; r++)
        {
        fprintf(fp,"(%d)",R[c][r]);
        }
        fprintf(fp,"((%d))\n",L[c]);
}
        fprintf(fp,"%c",'\n');
// if (Solu < 2)
        Backtrack();
}
main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}
```


5.5. Seeking W $R_{5}(2,4)$ by computer

```
#include "CBack.c"
```

int i, j, k, l, m, N, Count, Solu;

```
FILE *fp;
void PrintSol()
{fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }
int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int L[4]={0};
int VR[123]={
int VR[123]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
                                    25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,
                                    47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,
                                    69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,
                                    91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,
                                    110,111,112,113,114,115,116,117,118,119,120,121,122,123};
Solu=0;
Fiasco=PrintSol;
N=Select (122,123);
a=4;
for (r = 0; r <= N-1; r++)
{
    c = Choice(2);
    for (i = 0; i <= L[c]-1; i++)
        for (j = 0; j < i; j++)
            for (k = 0; k < j; k++)
                for (l = 0; l < k; l++)
                for (m = 0; m < l; m++)
                {
                if (VR[r]-a==R[c][i] +R[c] [j] +R[c][k] +R[c][l] +R[c][m])
                Backtrack();
                }
                R[c][L[c]] = VR[r];
                L[c]++;
}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
    Count+=L[c];
    for (r = 0; r <= L[c]; r++)
        {
        fprintf(fp,"(%d)",R[c][r]);
        }
        fprintf(fp,"((%d))\n",L[c]);
}
        fprintf(fp,"%c",'\n');
// if (Solu < 2)
        Backtrack();
}
```

```
main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}
```


Acknowledgment

The authors wish to thank an anonymous referee for your very careful reading of this paper and your sharp comments correcting of a few dubious points.

References

[Adhikari 16] S. D. Adhikari, L. Boza, S. Eliahou, J. M. Marín, M. P. Revuelta, and M. I. Sanz. "On the n-color Rado Number for the Equation $x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1 ., " ~ M a t h . ~}^{\text {. }}$ Comp. 85: 300 (2016), 2047-2064.
[Adhikari 17] S. D. Adhikari, L. Boza, S. Eliahou, J. M. Marín, M. P. Revuelta, and M. I. Sanz. "On the Finiteness of Some n-Color Rado Numbers," Dis. Math. 340: 2 (2017), 39-45.
[Baumert 61] L. D. Baumert. "Sum-Free Sets," J.P.L. Res. Summ. 36-10 (1961), 16-18.
[Blanchard et al. 06] P. F. Blanchard, F. Harary, and R. Reis. "Partitions into Sum-Free Sets," Elect. J. Comb. Num. Theo. 6 (2006), 1-10.
[Burr and Loo 92] S. A. Burr and S. Loo. On Rado number I. Preprint.
[Dransfield et al. 04] M. R. Dransfield, L. Liu, V. W. Marek, and M. Truszczynski. "Satisfiability and Computing Van Der Waerden Numbers," Elect. J. Comb. 11: Research Paper \#R41, 15, pp., 2004.
[Eliahou et al. 12] S. Eliahou, J. M. Marín, M. P. Revuelta, and M. I. Sanz. "Weak Schur Numbers and the Search for G.W. Walker's Lost Partitions," Comput. Math. Appli. 63 (2012), 175-182.
[Eliahou 13] S. Eliahou, C. Fonlupt, J. Fromentin, V. MarionPoty, D. Robilliard, and F. Teytaud. "Investigating MonteCarlo Methods on the weak Schur Problem," Lecture Notes in Computer Science 7832 (2013), 191-201.
[Exoo 94] G. Exoo. "A lower bound for Schur numbers and multicolor Ramsey numbers of K_{3}," Elect. J. Comb. 1:\#R8, 1994.
[Flint 13] D. Flint, B. Lowery, and D. Schaal. "Distinct Rado Number for $x_{1}+x_{2}+c=x_{3}$," Ars Combinatoria 110 (2013), 331-342.
[Fredricksen and Sweet 00] H. Fredricksen and M. Sweet. "Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers," Elec. J. Comb. 7:\#R32, 2000.
[Guo and Sun 08] S. Guo and Z-W. Sun. "Determination of the Two-Color Rado Number for $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{m} x_{m}=$ x_{0}," J. Combin. Theo. Ser. A 115: 2 (2008), 345-353.
[Helsgaun 95] K. Helsgaun. "CBack: A Simple Tool for Backtrack Programming in C," Softw. Pract. Exp. 25: 8 (1995), 905-934.
[Herwig et al. 07] P. R. Herwig, M. J. H. Heule, P. M. van Lambalgen, and H. van Maaren. "A New Method to Construct Lower Bounds for Van Der Waerden Numbers," Elect. J. Comb. 14 Research Paper \#R6, 2007.
[Heule 11] M. Heule. http://www.st.ewi.tudelft.nl/sat/, March RW. SAT Competition 2011, 2011.
[Jones and Schaal 04] S. Jones and D. Schaal. "Two-Color Rado Numbers for $x+y+c=k z$," Dis. Math. 289 (2004), 63-69.
[Kosek and Schaal 01] W. Kosek and D. Schaal. "Rado Numbers for the Equation $x_{1}+\cdots+x_{m-1}+c=x_{m}$ for Negative Values of c, " Adv. Appl. Math. 27 (2001), 805-815.
[Kouril and Paul 08] M. Kouril and J. L. Paul. "The Van Der Waerden Number W(2, 6)," Exp. Math. 17 (2008), 53-61.
[Rado 33] R. Rado. "Studien zur Kombinatorik," Math. Z. 36 (1933), 424-480.
[Rado 36] R. Rado. "Some Recent Results in Combinatorial Analysis," Congres International des Mathematiciens, Oslo, 1936.
[Rendall and Schaal 06] K. Rendall and D. Schaal. "Three-Color Rado number for $x_{1}+x_{2}+c=x_{3}$ for Negative Values of c," Congressus Numerantium 183 (2006), 5-10.
[Robilliard et al. 10] D. Robilliard, A. Boumaza, and V. Marion-Poty. "Meta-Heuristic Search and Square Erickson Matrices," Proc. IEEE Cong. Evol. Comp. 10 (2010): 3237-3244.
[Sanz 10] M. I. Sanz. "Números de Schur y Rado," PhD diss. Universidad de Sevilla, 2010.
[Schaal 93] D. Schaal. "On Generalized Schur Numbers," Congressus Numerantium 98 (1993), 178-187.
[Schaal 95] D. Schaal. "A Family of 3-Color Rado Numbers," Congressus Numerantium 111 (1995), 150-160.
[Schur 16] I. Schur. "Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod$ p)," Jber. Deutsch. Math.- Verein. 25 (1916), 114-117.
[Walker 52] G. W. Walker. "A Problem in Partitioning," Am. Math. Monthly 59 (1952), 253.

