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ABSTRACT
For integers k, n, c with k, n ≥ 1, and c ≥ 0, the n-color weak Rado numberWRk(n, c) is defined as the
least integer N, if it exists, such that for every n-coloring of the integer interval [1,N], there exists a
monochromatic solution x1, . . . , xk, xk+1 in that interval to the equation

x1 + x2 + · · · + xk + c = xk+1,

with xi �= x j , when i �= j. If no such N exists, thenWRk(n, c) is defined as infinite.
In this paper, we determine the exact value of some of these numbers for n = 2 and n = 3, namely
WR3(2, c) = 5c + 24, WR4(2, c) = 6c + 52 for all c ≥ 0 and WR2(3, c) = 13c + 22 for all c > 0. Our
method consists in translating the problem into a Boolean satisfiability problem, which can then be
handled by a SAT solver or by backtrack programming in the language C.

1. Introduction

For integers a ≤ b, we shall denote [a, b] the integer inter-
val consisting of all t ∈ N+ = {1, 2, . . . } such that a ≤
t ≤ b. A function

� : [1,N] −→ {d1, . . . , dn},
where d1, . . . , dn ∈ N+ represent different colors, is a
n-coloring of the interval [1,N].

Given a n-coloring � and the equation x1 + · · · +
xk = xk+1 in k + 1 variables, then we say that a solution
x1, . . . , xk, xk+1 to the equation is monochromatic if and
only if�(x1) = �(x2) = · · · = �(xk+1).

For integers k, n, cwith k, n ≥ 1, and c ≥ 0, the n-color
weak Rado numberWRk(n, c) is defined as the least inte-
gerN, if it exists, such that for every n-coloring of the inte-
ger interval [1,N], there exists a monochromatic solution
x1, . . . , xk, xk+1 in that interval to the equation

x1 + x2 + · · · + xk + c = xk+1,

with xi �= x j when i �= j. If no such N exists, then
WRk(n, c) is defined as infinite.

1.1. Schur numbers andweak Schur numbers

A set A of integers is called sum-free if it contains no
elements x1, x2, x3 ∈ A satisfying x1 + x2 = x3, where
x1, x2 need not be distinct. It is called weakly sum-free if
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it contains no pairwise distinct elements x1, x2, x3 ∈ A
satisfying x1 + x2 = x3.

[Schur 16] proved that, given a positive integer n, there
exists a greatest positive integer S2(n) = N with the prop-
erty that the integer interval [1,N − 1] can be partitioned
into n sum-free sets. The numbers S2(n) are called Schur
numbers. The current knowledge on these numbers for
1 ≤ n ≤ 7 is given in Table 1.

The exact value of S2(4)was obtained by [Baumert 61].
The lower and upper bounds on S2(5) are due to [Exoo
94] and [Sanz 10], respectively. Finally, the lower bounds
on S2(6) and S2(7) were obtained by [Fredricksen and
Sweet 00] by considering symmetric sum-free partitions.

Many generalizations of Schur numbers have appeared
since their introduction. We denote byWS2(n), the great-
est integer N, for which the integer interval [1,N −
1] can be partitioned into n weakly sum-free sets
{A1,A2, . . . ,An}.

The numbersWS2(n) are called the weak Schur num-
bers. The knownweak Schur numbers are given inTable 2.

The current state of knowledge concerningWS2(n) is
quite confused.

The problem seems to have been first considered in
[Walker 52], which is Walker’s solution to Problem E985
proposed a year earlier, in 1951, by Moser. Walker con-
sidered the cases n = 3, 4, and 5, and claimed the values
WS2(3) = 24,WS2(4) = 67 andWS2(5) = 197. Unfortu-
nately, the short account written by Moser on Walker’s
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Table . The first few Schur numbers S2(n).

n       

S2(n)     161 ≤ · · · ≤ 306 ≥ 537 ≥ 1681

solution only gives suitable partitions of [1, 23] for n =
3, and no details at all for the cases n = 4 and 5.
Walker’s claimed values ofWS2(3) andWS2(4) were later
confirmed by [Blanchard et al. 06]. The lower bound
WS2(5) ≥ 197 has been confirmed in [Eliahou et al. 12].
Whether equality holds in still an open problem. A lower
bound onWS2(6) was obtained by [Eliahou et al. 12] and
later improved toWS2(6) ≥ 583 in [Eliahou 13].

1.2. Rado numbers andweak Rado numbers

In terms of coloring, the Schur number S2(n) [Schur
16] is the least positive integer N such that for every
n-coloring of [1,N],

� : [1,N] −→ {d1, . . . , dn},
where d1, . . . , dn represent n different colors, there exists
a monochromatic solution to the equation x1 + x2 = x3,
such that�(x1) = �(x2) = �(x3) where x1 and x2 need
not be distinct.

In 1933, [Rado 33, Rado 36] generalized the work of
Schur to arbitrary systems of linear equations.Given a sys-
tem of linear equations L and a natural number n, the least
integer N (if it exists) such that for every coloring of the
integer interval [1,N] with n colors there is a monochro-
matic solution to L, is called the n-color Rado number for
L. If no such integerN exists, then the n-color Rado num-
ber for the system L is taken to be infinite.

After those first results of Rado, very little progress has
been obtained for some systems of linear equations. [Burr
and Loo 92] were able to determine the 2-color Rado
number for the equations x1 + x2 + c = x3 and x1 + x2 =
kx3 for every integer c and for every positive integer k.

In 1993, [Schaal 93] determined the 2-color Rado
number Rk(2, c) for the equation x1 + x2 + · · · + xk +
c = xk+1. He also obtained [Schaal 95] the 3-color Rado
numberR2(3, c) for the equation x1 + x2 + c = x3.There
are several results due to Schaal and other authors con-
cerning 2-color and 3-color Rado numbers for particular
equations, see [Jones and Schaal 04], [Kosek and Schaal
01], [Rendall and Schaal 06], and other authors [Guo
and Sun 08]. In addition, recently we have studied when
Rk(n, c) is finite or infinite and we have obtained new
exact values [Adhikari 16, Adhikari 17].

Table . The first few weak Schur numbersWS2(n).

n      

WS2(n)     ≥ 197 ≥ 583

For every integer c ≥ 0, n ≥ 1, let WR2(n, c) be the
least integer N (if it exists) such that, for every coloring
of the integer interval [1,N] with n colors, there exists
a monochromatic solution to the equation x1 + x2 + c =
x3, where x1 �= x2. The numbersWR2(n, c) are called the
weak Rado numbers.

The numberWR2(n, c) can be defined equivalently as
the greatestN such that the integer interval [1,N − 1] can
be partitioned into n setsA1,A2, . . . ,An which are free of
solutions to the equation x1 + x2 + c = x3 with x1 �= x2.

Recently, Schaal et al. [Flint 13] have obtained the
numberWR2(2, c) for every integer c.

1.3. Contents

In Section 2, we determine the exact value of the 3-color
weak Rado number for the equation x1 + x2 + c = x3.

ComputationalTheorem2.1. For every c > 0, we have
WR2(3, c) = 13c + 22.

In Section 3, we verify the exact values of the 2-color
weak Rado numbers for k = 3, 4.

Computational Theorem 3.1. For every c ≥ 0, we
have

WR3(2, c) =
{∞ if c odd,
5c + 24 if c even.

Computational Theorem 3.2. For every c ≥ 0, we have
WR4(2, c) = 6c + 52.

In addition, we prove WR5(2, 2) = 109 and
WR5(2, 4) = 123.

These exact values were obtained in two independent
ways. One of them, by transforming the problem into a
Boolean satisfiability problem and solving it with a SAT
solver [Heule 11], and the other one using backtrack pro-
gramming in the language C [Helsgaun 95].

In Sections 4 and 5, the two computational procedures
used in the proofs are shown.

2. Exact value of the weak Rado numbers
WR2(3, c)

In this section, we shall prove thatWR2(3, c) = 13c + 22
for every positive integer c > 0.

2.1. Lower bound

We now prove the lower bound.

Lemma 2.1. We have WR2(3, c) ≥ 13c + 22 for any inte-
ger c > 0.

Proof. Let c > 0 be a positive integer. We shall prove
WR2(3, c) ≥ 13c + 22. Let� be a 3-coloring:

� : [1, 13c + 22] −→ {d1, d2, d3},



where d1, d2, d3 represent 3 different colors. Let Ai =
�−1(di) for i = 1, 2, 3 thus [1, 13c + 22] = A1 � A2 �
A3. �

Consider the following partition of the integer interval
[1, 13c + 21]:⎧⎪⎪⎨
⎪⎪⎩

A1 = [1, c + 2] ∪ [3c + 7, 4c + 7]
∪ [9c + 17, 10c + 17] ∪ [12c + 21, 13c + 21],

A2 = [c + 3, 3c + 6] ∪ [10c + 18, 12c + 20],
A3 = [4c + 8, 9c + 16].

Hence {A1,A2,A3} is a partition of [1, 13c + 21].
We now prove that for each i, 1 ≤ i ≤ 3, if x1, x2 ∈ Ai

with x1 �= x2 then x1 + x2 + c /∈ Ai. We assume, without
any loss of generality, that x1 < x2.

Case 1: x1, x2 ∈ A1
� If x2 ≤ c + 2, then c + 3 ≤ x1 + x2 + c ≤ 3c + 3,
therefore x1 + x2 + c /∈ A1.

� If 3c + 7 ≤ x2 ≤ 4c + 7 then 4c + 8 ≤ x1 + x2 +
c ≤ 9c + 13, therefore x1 + x2 + c /∈ A1.

� If 9c + 17 ≤ x2 ≤ 10c + 17, we have:
– If x1 ≤ c + 2 then 10c + 18 ≤ x1 + x2 + c ≤
12c + 19, therefore x1 + x2 + c /∈ A1.

– If 3c + 7 ≤ x1 then 13c + 24 ≤ x1 + x2 + c,
therefore x1 + x2 + c /∈ A1.

� If x2 ≥ 12c + 21 then x1 + x2 + c ≥ 13c + 22,
therefore x1 + x2 + c /∈ A1.

Case 2: x1, x2 ∈ A2 and x1 ≥ c + 3
� If x2 ≤ 3c + 6, then 3c + 7 ≤ x1 + x2 + c ≤ 7c +
11, therefore x1 + x2 + c /∈ A2.

� If x2 ≥ 10c + 18 then 12c + 21 ≤ x1 + x2 + c,
therefore x1 + x2 + c /∈ A2.

Case 3: x1, x2 ∈ A3
Since 9c + 17 ≤ x1 + x2 + c, then x1 + x2 + c /∈ A3.

2.2. Upper bound

Let c > 0 be a positive integer. We shall prove
WR2(3, c) ≤ 13c + 22. This upper bound was estab-
lished in the doctoral thesis [Sanz 10] through an
exhaustive analysis of nearly 500 cases. We provide here
a sketch of that proof, to this end, we shall prove that
for every 3-coloring of the integer interval [1, 13c + 22],
there exists a monochromatic solution to the equation
x1 + x2 + c = x3, x1 �= x2.

Assume, for a contradiction, that there exists a 3-
coloring:

� : [1, 13c + 22] −→ {d1, d2, d3},
where d1, d2, d3 represent three different colors, without
any monochromatic solution of the equation x1 + x2 +
c = x3, x1 �= x2.

Let Ai = �−1(di) for i = 1, 2, 3 thus [1, 13c + 22] =
A1 � A2 � A3.

We considered five main cases, depending on the col-
ors assigned to the numbers 1, 2 and 3:

Case 1. A1 ⊇ {1, 2, 3}.
Case 2. A1 ⊇ {1, 2} and A2 ⊇ {3}.
Case 3. A1 ⊇ {1, 3} and A2 ⊇ {2}.
Case 4. A1 ⊇ {1} and A2 ⊇ {2, 3}.
Case 5. A1 ⊇ {1} , A2 ⊇ {2} and A3 ⊇ {3}.
Given a subset X ⊆ [1, 13c + 22], we denote

f (X ) = (X � X + c) ∩ [1, 13c + 22]
= ({x1 + x2 + c | x1, x2 ∈ X, x1 �= x2})

∩ [1, 13c + 22].

By hypothesis on�, for 1 ≤ i ≤ 3, we have

Ai ∩ f (Ai) = ∅. (1)

The proof rests on the following claims, which are both
direct consequences of (1). For every integers i, j, k such
that {i, j, k} = {1, 2, 3}, we have:

� Claim I. f (Ai) ∩ f (Aj) ⊆ Ak.
� Claim II. f (Ai) ∩ f (Aj) ∩ f (Ak) = ∅
We now start our analysis with Case 1 and explore var-

ious subcases.
Case 1: A1 ⊇ {1, 2, 3}
As c + 3 = 1 + 2 + c, without any loss of generality, we

may assume that �(c + 3) = d2. In addition, since c +
4 = 1 + 3 + c then �(c + 4) �= d1, and therefore �(c +
4) = d2 or�(c + 4) = d3.

Case 1.1:�(c + 4) = d2
A1 ⊇ {1, 2, 3}, A2 ⊇ {c + 3, c + 4}.
Since {3c+7, c+3, c+4} would be a monochromatic

solution in A2, we must have �(3c + 7) = d1 or �(3c +
7) = d3.

Case 1.1.1:�(3c + 7) = d1
A1 ⊇ {1, 2, 3, 3c + 7}, A2 ⊇ {c + 3, c + 4}.
As {4c+10, 3c+7, 3} would be a monochromatic solu-

tion in A1, we must have �(4c + 10) = d2 or �(4c +
10) = d3.

Case 1.1.1a:�(4c + 10) = d2.
Hence A1 ⊇ {1, 2, 3, 3c + 7}, A2 ⊇ {c + 3, c + 4,

4c + 10}. We now show 2c + 6 ∈ A3. Indeed, we can-
not have 2c + 6 ∈ A1, for otherwise we would have
3c + 7 ∈ A1 ∩ f ({1, 2c + 6}) ⊆ A1 ∩ f (A1), a con-
tradiction since A1 ∩ f (A1) = ∅ by (1). Similarly, we
cannot have 2c + 6 ∈ A2, for otherwise we would have
4c + 10 ∈ A2 ∩ f ({c + 4, 2c + 6}) ⊆ A2 ∩ f (A2), a con-
tradiction again. It follows that 2c + 6 ∈ A3, i.e. �(2c +
6) = d3, as claimed.

The element 2c + 5 does not belong to A1, since oth-
erwise 3c + 7 ∈ A1 ∩ f ({2, 2c + 5}) ⊆ A1 ∩ f (A1) = ∅.
Hence�(2c + 5) = d2 or�(2c + 5) = d3.

Case 1.1.1a1:�(2c + 5) = d2
Hence A1 ⊇ {1, 2, 3, 3c + 7}, A2 ⊇ {c + 3, c + 4,

4c + 10, 2c + 5} and A3 ⊇ {2c + 6}. We now show



4c + 9 ∈ A3. In fact, we cannot have 4c + 9 ∈ A1, for oth-
erwise we would have 4c + 9 ∈ A1 ∩ f ({2, 3c + 7}) ⊆
A1 ∩ f (A1), a contradiction since A1 ∩ f (A1) = ∅ by
(1). The same way, the element 4c + 9 does not belong to
A2, for otherwise 4c + 9 ∈ A2 ∩ f ({c + 4, 2c + 5}) ⊆
A2 ∩ f (A2), a contradiction again. It follows that
4c + 9 ∈ A3, i.e.�(4c + 9) = d3, as claimed.

Therefore, A1 ⊇ {1, 2, 3, 3c + 7}, A2 ⊇ {c + 3, c +
4, 4c + 10, 2c + 5}, andA3 ⊇ {2c + 6, 4c + 9}. We now
show 7c + 15 ∈ A1. Indeed, it does not hold that
7c + 15 ∈ A2, for otherwise we would have 7c + 15 ∈
A2 ∩ f ({4c + 10, 2c + 5}) ⊆ A2 ∩ f (A2), a contradic-
tion since A2 ∩ f (A2) = ∅ by (1). Similarly, we cannot
have 7c + 15 ∈ A3, for otherwise we would have 7c +
15 ∈ A3 ∩ f ({2c + 6, 4c + 9}) ⊆ A3 ∩ f (A3), a contra-
diction again. It follows that 7c + 15 ∈ A1, i.e. �(7c +
15) = d1, as claimed.

Accordingly, A1 ⊇ {1, 2, 3, 3c + 7, 7c + 15}, A2 ⊇
{c + 3, c + 4, 4c + 10, 2c + 5}, and A3 ⊇ {2c + 6, 4c +
9}.We now show 6c + 14 ∈ A3. Certainly, we cannot have
6c + 14 ∈ A1, for otherwise we would have 7c + 15 ∈
A1 ∩ f ({1, 6c + 14}) ⊆ A1 ∩ f (A1), a contradiction
since A1 ∩ f (A1) = ∅ by (1). Analogously, the element
6c + 14 does not belong to A2, for otherwise we would
have 6c + 14 ∈ A2 ∩ f ({c + 4, 4c + 10}) ⊆ A2 ∩ f (A2),
a contradiction again. It follows that 6c + 14 ∈ A3, i.e.
�(6c + 14) = d3, as claimed.

Hence, A1 ⊇ {1, 2, 3, 3c + 7, 7c + 15}, A2 ⊇ {c +
3, c + 4, 4c + 10, 2c + 5}, and A3 ⊇ {2c + 6, 4c + 9,
6c + 14}. We now show c + 5 /∈ A1, c + 5 /∈ A2 and
c + 5 /∈ A3. In fact, it does not hold that c + 5 ∈ A1,
for otherwise we would have c + 5 ∈ A1 ∩ f ({2, 3}) ⊆
A1 ∩ f (A1), a contradiction since A1 ∩ f (A1) = ∅ by
(1). We cannot have c + 5 ∈ A2, for otherwise we would
have 4c + 10 ∈ A2 ∩ f ({2c + 5, c + 5}) ⊆ A2 ∩ f (A2),
a contradiction since A2 ∩ f (A2) = ∅ by (1). We cannot
have c + 5 ∈ A3, for otherwise we would have 6c + 14 ∈
A3 ∩ f ({4c + 9, c + 5}) ⊆ A3 ∩ f (A3), a contradiction
since A3 ∩ f (A3) = ∅ by (1).

This subcase is over.
Here is an outline of the proof in Case 1:

Case 1.1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(3c + 7) = d1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(4c + 10) = d2
{
�(2c + 5) = d2
�(2c + 5) = d3

�(4c + 10) = d3
{
�(4c + 9) = d2
�(4c + 9) = d3

�(3c + 7) = d3

⎧⎪⎪⎨
⎪⎪⎩
�(c + 5) = d2

{
�(3c + 9) = d1
�(3c + 9) = d3

�(c + 5) = d3
{
�(5c + 12) = d1
�(5c + 12) = d2

Case 1.2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(c + 5) = d1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(3c + 8) = d1
{
�(4c + 11) = d2
�(4c + 11) = d3

�(3c + 8) = d3
{
�(5c + 12) = d1
�(5c + 12) = d2

�(c + 5) = d3

⎧⎪⎪⎨
⎪⎪⎩
�(3c + 9) = d1

{
�(4c + 10) = d2
�(4c + 10) = d3

�(3c + 9) = d2
{
�(5c + 12) = d1
�(5c + 12) = d3

The other four cases were obtained in a similar way.
We now present two independent computational

proofs of the upper bound.

Computational Lemma 2.1. Let c > 1 and X c =
{1, 2, 3, c + 2, c + 3, c + 4, 2c + 4, 2c + 5, 2c + 6, 3c +
5, 3c + 6, 3c + 7, 4c + 7, 4c + 8, 4c + 9, 5c + 9, 5c +
10, 5c + 11, 6c + 10, 6c + 11, 6c + 12, 7c + 13, 8c + 14,
8c + 15, 9c + 16, 9c + 17, 10c + 18, 10c + 19, 11c + 20,
12c + 21, 13c + 22} then:

(1) We have Xc ⊆ [1, 13c + 22] and |Xc| = 31.
(2) For every partition of Xc into three subsets

A1,A2,A3, some Ai contains a monochromatic
solution of x1 + x2 + c = x3, x1 �= x2.

Proof.
1. This is trivial.
2. We have checked the result transforming the prob-

lem into a Boolean satisfiability problem and solv-
ing it with a SAT solver [Heule XX] and using
CBack [Helsgaun 95]. �

Computational Lemma 2.2. For c = 1, let X =
{1, 2, . . . , 18, 20, 22, 25, 26, 28, 29, 31, 33, 35}then:

1. We have X ⊆ [1, 35].
2. For every partition of X into three subsets

A1,A2,A3, some Ai contains a monochromatic
solution of x1 + x2 + c = x3, x1 �= x2.

The proof is similar to Lemma 2.1.
In Section 4, the proof of the following result is given

in detail.

Computational Theorem 2.1. For every c > 0, we have
WR2(3, c) = 13c + 22.

3. Exact values of weak Rado numbersWRk(2, c)
for some k > 2

In this section, we prove that WR3(2, c) = 5c + 24 if
c is even, WR4(2, c) = 6c + 52, WR5(2, 2) = 109, and
WR5(2, 4) = 123. In addition, we formulate Corollary
3.1, which relates WRk(2, c) and a lower bound on the



weak Schur number WSk(2), leading us to formulate
Conjecture 3.1.

3.1. Theweak Rado numbersWR3(2, c)

For c = 0, [Blanchard et al. 06] obtained the weak Schur
number WS3(2) = WR3(2, 0) = 24. A partition which
is free of monochromatic solutions to the equation
x1 + x2 + x3 + c = x4 is A1 = [1, 5] ∪ [21, 23] and A2 =
[6, 20].

For c ≥ 0 and odd,WR3(2, c) ≥ R3(2, c) = ∞ [Schaal
93].

Let us first consider the lower bound for any c ≥ 0 and
even.

Lemma 3.1. We have WR3(2, c) ≥ 5c + 24 for any c ≥ 0
and even.

Proof. For every even integer c ≥ 0, it is easy to verify that
the 2-coloring

� : [1, 5c + 23] −→ {d1, d2},
where d1, d2 represent 2 different colors, defined by

�(x) =
⎧⎨
⎩
d1 if 1 ≤ x ≤ c + 5,
d2 if c + 6 ≤ x ≤ 4c + 20,
d1 if 4c + 21 ≤ x ≤ 5c + 23

has no monochromatic solutions to the equation x1 +
x2 + x3 + c = x4 such that xi �= x j when i �= j. �
Computational Lemma 3.1. We haveWR3(2, 2) = 34.

A partition which is free of monochromatic solutions
to the equation x1 + x2 + x3 + c = x4 is A1 = [1, 7] ∪
[29, 33] and A2 = [8, 28].

In order to prove the upper bounds, we shall use the
following result:

Computational Lemma 3.2. Let c ≥ 4 and even. If
l = c/2, then the set Yl = {1, 2, 3, 4, 2 + l, 3 + l, 4 +
l, 3 + 2l, 4 + 2l, 5 + 2l, 6 + 2l, 7 + 2l, 8 + 2l, 6 + 3l,
7 + 3l, 8 + 3l, 6 + 4l, 9 + 4l, 11 + 5l, 10 + 6l, 12 + 6l,
13 + 7l, 14 + 8l, 15 + 8l, 16 + 8l, 18 + 8l, 21 + 8l,
23 + 10l, 24 + 10l} verifies:

1. We have Yl ⊆ [1, 24 + 10l].
2. For every partition of Yl into two subsets A1,A2,

some Ai contains a monochromatic solution of
x1 + x2 + x3 + c = x4, xi �= x j, with i �= j.

In the proof of Lemma 3.2, we proceed similarly to
Lemma 2.1.

Therefore, we conclude with the following result:

Computational Theorem 3.1. For every c ≥ 0, we have

WR3(2, c) =
{∞ if c odd,
5c + 24 if c even.

3.2. Theweak Rado numbersWR4(2, c)

For c = 0, the weak Schur number WS4(2) =
WR4(2, 0) = 52 was obtained [Sanz 10]. A partition
which is free of monochromatic solutions to the equation
x1 + x2 + x3 + x4 + c = x5 is A1 = [1, 9] ∪ [46, 51] and
A2 = [10, 45].

We now consider the lower bound for any c ≥ 0.

Lemma 3.2. We haveWR4(2, c) ≥ 6c + 52 for any c ≥ 0.

Proof. For every integer c ≥ 0, it is easy to verify that the
2-coloring

� : [1, 6c + 51] −→ {d1, d2}
defined by

�(x) =
⎧⎨
⎩
d1 if 1 ≤ x ≤ c + 9,
d2 if c + 10 ≤ x ≤ 5c + 45,
d1 if 5c + 46 ≤ x ≤ 6c + 51

has no monochromatic solutions to the equation x1 +
x2 + x3 + x4 + c = x5 such that xi �= x j when i �= j. �

In order to prove the opposite inequality, we shall use
the following result:

Computational Lemma 3.3. Let c ≥ 1. The set
Zc = {1, 2, 3, 4, 5, 6, 8, c + 9, c + 10, c + 11, c + 12,
c + 13, c + 14, c + 15, 2c + 16, 2c + 17, 2c + 18, 2c +
19, 2c + 20, 2c + 21, 2c + 22, 2c + 24, 3c + 32, 4c + 33,
5c + 43, 5c + 44, 5c + 45, 5c + 46, 6c + 52} verifies:

1. Zc ⊆ [1, 6c + 52].
2. For every partition of Zc into two subsets A1,A2,

some Ai contains a monochromatic solution of
x1 + x2 + x3 + x4 + c = x5, xi �= x j, with i �= j.

In the proof of Lemma 3.3, we use similar reasonings
to those established in Lemma 2.1 and Lemma 3.2.

Therefore, we conclude with the following result:

Computational Theorem 3.2. For every c ≥ 0, we have
WR4(2, c) = 6c + 52.

3.3. Theweak Rado numbersWR5(2, 2) and
WR5(2, 4)

The weak Rado numbers WR5(2, 2) and WR5(2, 4)
have been obtained through backtrack programming
[Helsgaun 95] and by transforming the problem into a
Boolean satisfiability problem and solving it with a SAT
solver. In the Sections 4.4, 5.4, and 5.5, the results are
shown.

In the case of WR5(2, 2), backtrack programming
shows three partitions, which are free of monochromatic
solutions to the equation x1 + x2 + x3 + x4 + 2 = x5,



xi �= x j, with i �= j. These are

A1 = [1, 16] ∪ [97, 108], A2 = [17, 96].
A1 = [1, 20] ∪ [94, 108], A2 = {2} ∪ [21, 93].
A1 = {1} ∪ [21, 92], A2 = [2, 20] ∪ [93, 108].

Therefore, we have that 109 is the lower bound of
WR5(2, 2). In Section 4.4, we show thatWR5(2, 2) ≤ 109.

In the case ofWR5(2, 4), a partition free of monochro-
matic solutions to the equation x1 + x2 + x3 + x4 + 4 =
x5, xi �= x j, with i �= j, is:

A1 = [1, 18] ∪ [109, 122], A2 = [19, 108].

Therefore, we have that 123 is the lower bound of
WR5(2, 4). In Section 5.4, we show thatWR5(2, 4) ≤ 123.

Hence, we conclude with the following results:

Computational Theorem3.3. WehaveWR5(2, 2) = 109.

Computational Theorem 3.4. We haveWR5(2, 4) = 123.

3.4. Weak Schur numbersWS5(2) and lower bounds

In this subsection, we obtain the weak Schur number
WS5(2) = 101 and we show a lower bound for the weak
Schur numbersWSk(2).

To obtain the lower boundWS5(2) ≥ 101, the follow-
ing partition of [1, 100] is consideredA1 = {1} ∪ [20, 86]
and A2 = [2, 19] ∪ [87, 100].

In order to obtain the upper boundWS5(2) ≤ 101, we
shall use the following result:

Computational Lemma 3.4. The set U = [1, 7] ∪
{9, 11, 13} ∪ [15, 17] ∪ [19, 23] ∪ [25, 27] ∪ {29, 31, 35,
39} ∪ [43, 45] ∪ {51, 75, 87, 101} ⊆ [1, 101] verifies that
for every partition of U into two subsets A1,A2, some
Ai contains a monochromatic solution of x1 + x2 + x3 +
x4 + x5 = x6, xi �= x j, with i �= j.

In the proof of Lemma 3.4, we use similar reasonings
to those established in Lemma 2.1 and Lemma 3.2.

Therefore, we conclude with the following result:

Computational Theorem 3.5. We haveWS5(2) = 101.

Here, below can be seeing a new lower bound for the
weak Schur numbersWSk(2).

Lemma 3.3. We have WSk(2) ≥ (k + 2)Tk − 2k, with
Tk = (1+k)

2 k.

Proof. It is easy to verify that the 2-coloring

� : [1, (k + 2)Tk − 2k − 1] −→ {d1, d2}

defined by

�(x) =
⎧⎨
⎩
d1 if 1 ≤ x ≤ Tk − 1,
d2 if Tk ≤ x ≤ (k + 1)Tk − k − 1,
d1 if (k + 1)Tk − k ≤ x ≤ (k + 2)Tk − 2k − 1

has nomonochromatic solution to the equation x1 + x2 +
· · · + xk = xk+1 such that xi �= x j when i �= j. �

Consider the lower bound LWSk(2) = (k + 2)Tk − 2k.
We formulate the following Corollaries that relate the
weak Rado numbers WRk(2, c) with the lower bound
LWSk(2).

Corollary 3.1. Let c be a integerwith c ≥ 0 and k = 2, 3, 4.
Then,WRk(2, c) = (k + 2)c + LWSk(2).

Corollary 3.2. Let c = 2 or c = 4 and k = 5. Then,
WRk(2, c) = (k + 2)c + LWSk(2).

The exact values WR2(2, c), WR3(2, c), WR4(2, c),
WR5(2, 2), and WR5(2, 4) have been obtained. All of
them verify the following Conjecture 3.1.

Conjecture 3.1. Let c and k be integers with c ≥ 0 and k ≥
2, we haveWRk(2, c) = (k + 2)c + LWSk(2), when c or k
is even.

4. Reformulation as a SAT problem

Our idea for constructing the above partitions is to
express the corresponding combinatorial constraints as
Boolean satisfiability problems, to be then fed into a SAT
solver. See [Dransfield et al. 04, Eliahou et al. 12, Herwig
et al. 07, Kouril and Paul 08, Robilliard et al. 10] for earlier
successful uses of SAT solvers in combinatorial number
theory. The specific SAT solver used here, is the March
rw, the gold medal winner of the 2011 International SAT
Competition [Heule XX]. Recall that a logical expression
over Boolean variables x1, . . . , xn is said to be satisfiable if
there is an assignment of the xi’s to True or False in such
a way that the value evaluates to True.

4.1. SeekingWR2(3, c) by computer

Let c > 1 and consider the set Xc of Lemma 2.1. That
is, Xc = {1, 2, 3, c + 2, c + 3, c + 4, 2c + 4, 2c + 5, 2c +
6, 3c + 5, 3c + 6, 3c + 7, 4c + 7, 4c + 8, 4c + 9, 5c + 9,
5c + 10, 5c + 11, 6c + 10, 6c + 11, 6c + 12, 7c + 13,
8c + 14, 8c + 15, 9c + 16, 9c + 17, 10c + 18, 10c + 19,
11c + 20, 12c + 21, 13c + 22}.

Let�c be a 3-coloring of [1, 13c + 22]:

�c : [1, 13c + 22] −→ {d1, d2, d3},
and let X∗ = {(a, b) : ac + b ∈ Xc for any c ≥ 1}, i.e.
X∗ = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (1, 4), (2, 4),



(2, 5), (2, 6), (3, 5), (3, 6), (3, 7), (4, 7), (4, 8), (4, 9),
(5, 9), (5, 10), (5, 11), (6, 10), (6, 11), (6, 12), (7, 13),
(8, 14), (8, 15), (9, 16), (9, 17), (10, 18), (10, 19), (11,
20), (12, 21), (13, 22)}.

For any (a, b) ∈ X∗, we consider twoBoolean variables
φ((a, b)) and ψ((a, b)) defined as follow:

φ((a, b)) =
{
True if �c(ac + b) = d1 or d2,
False if �c(ac + b) = d3.

ψ((a, b)) =
{
True if �c(ac + b) = d1 or d3,
False if �c(ac + b) = d2.

Thus, for any n ∈ X∗ we have that φ(n) is True orψ(n) is
True.

Let S = {(n1, n2, n3) | ni = (ai, bi) ∈ X∗, verifying
that a1 + b1 < a2 + b2, a1 + a2 + 1 = a3, b1 + b2 =
b3}.

For any s = (n1, n2, n3) ∈ S , we consider three
clauses:

p(s) = (¬φ(n1) ∨ ¬ψ(n1) ∨ ¬φ(n2) ∨ ¬ψ(n2)
∨¬φ(n3) ∨ ¬ψ(n3)),

q(s) = (¬φ(n1) ∨ ψ(n1) ∨ ¬φ(n2) ∨ ψ(n2)
∨¬φ(n3) ∨ ψ(n3)), and

r(s) = (φ(n1) ∨ ¬ψ(n1) ∨ φ(n2) ∨ ¬ψ(n2)
∨φ(n3) ∨ ¬ψ(n3)).

Then, p(s) is satisfiable if and only if�c(n) �= d1 for some
n ∈ s, q(s) is satisfiable if and only if�c(n) �= d2 for some
n ∈ s and r(s) is satisfiable if and only if �c(n) �= d3 for
some n ∈ s, thus p(s) ∧ q(s) ∧ r(s) are satisfiable if and
only if�c does not induce on s amonochromatic solution
of the equation x1 + x2 + c = x3.

Let C =
∧
s∈S
(p(s) ∧ q(s) ∧ r(s)) and

D =
∧
n∈X∗

(φ(n) ∨ ψ(n)).

Clearly, C ∧ D is satisfiable if and only if the restriction of
�c toXc is a 3-coloring without monochromatic solution
of the equation.

The SAT-Solver shows that C ∧ D is not satisfiable,
therefore there does not exist a 3-coloring of the sets
Xc and [1, 13c + 22] without monochromatic solution.
Thus,WR2(3, c) ≤ 13c + 22.

4.2. SeekingWR3(2, c) by computer

Let c = 2l ≥ 4 and the set Yl of Lemma 3.2. That is, Yl =
{1, 2, 3, 4, 2 + l, 3 + l, 4 + l, 3 + 2l, 4 + 2l, 5 + 2l, 6 +
2l, 7 + 2l, 8 + 2l, 6 + 3l, 7 + 3l, 8 + 3l, 6 + 4l, 9 + 4l,

11 + 5l, 10 + 6l, 12 + 6l, 13 + 7l, 14 + 8l, 15 + 8l,
16 + 8l, 18 + 8l, 21 + 8l, 23 + 10l, 24 + 10l}.

Let�l be a 2-coloring of [1, 24 + 10l],

�l : [1, 24 + 10l] −→ {d1, d2},
and let Y ∗ = {(a, b) : al + b ∈ Yl for any l ≥ 2}, i.e.
Y ∗ = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 6), (3, 7),
(3, 8), (4, 6), (4, 9), (5, 11), (6, 10), (6, 12), (7, 13), (8,
14), (8, 15), (8, 16), (8, 18), (8, 21), (10, 23), (10, 24)}.

For any (a, b) ∈ Y ∗, we consider a Boolean variable
φ((a, b)) defined as follows:

φ((a, b)) =
{
True if �l (2al + b) = d1,
False if �l (2al + b) = d2.

Let S ′ = {(n1, . . . , n4) | ni = (ai, bi) ∈ Y ∗, verifying
that 4a1 + b1 < 4a2 + b2 < 4a3 + b3, a1 + a2 + a3 +
2 = a4, b1 + b2 + b3 = b4} For any s = (n1, . . . , n4) ∈
S ′, we consider two clauses:

p(s) = (φ(n1) ∨ φ(n2) ∨ φ(n3) ∨ φ(n4))
and

q(s) = (¬φ(n1) ∨ ¬φ(n2) ∨ ¬φ(n3) ∨ ¬φ(n4)).
Then p(s) is satisfiable if and only if�l (n) �= d2 for some
n ∈ s and q(s) is satisfiable if and only if �l (n) �= d1 for
some n ∈ s, thus p(s) ∧ q(s) are satisfiable if and only if
�l does not induce on s a monochromatic solution of the
equation x1 + x2 + x3 + x4 + c = x5.

Let C ′ =
∧
s∈S ′
(p(s) ∧ q(s)).

Clearly C ′ is satisfiable if and only if the restriction of �l
to Yl is a 2-coloring without monochromatic solution of
the equation.

The SAT-Solver shows that C ′ is not satisfiable, there-
fore there does not exist a 2-coloring of the sets Yl
and [1, 24 + 10l] without monochromatic solution. Thus
WR3(2, 2l) ≤ 24 + 10l.

4.3. SeekingWR4(2, c) by computer

Let Zc be the set of Lemma 3.3. That is, Zc =
{1, 2, 3, 4, 5, 6, 8, c + 9, c + 10, c + 11, c + 12, c + 13,
c + 14, c + 15, 2c + 16, 2c + 17, 2c + 18, 2c + 19, 2c +
20, 2c + 21, 2c + 22, 2c + 24, 3c + 32, 4c + 33, 5c +
43, 5c + 44, 5c + 45, 5c + 46, 6c + 52} Let �c be a 2-
coloring of [1, 6c + 52],

�c : [1, 6c + 52] −→ {d1, d2}



and let Z∗ = {(a, b) : ac + b ∈ Zc for any c ≥ 0}, i.e.
Z∗ = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 8),
(1, 9), (1, 10), (1, 11), (1, 12), (1, 13), (1, 14), (1, 15),
(2, 16), (2, 17), (2, 18), (2, 19), (2, 20), (2, 21), (2, 22),
(2, 24), (3, 32), (4, 33), (5, 43), (5, 44), (5, 45), (5, 46),
(6, 52)}. For any (a, b) ∈ Z∗ we consider a Boolean
variable φ((a, b)) defined as follow:

φ((a, b)) =
{
True if �c(ac + b) = d1,
False if �c(ac + b) = d2.

Let S ′′ = {(n1, . . . , n5) | ni = (ai, bi) ∈ Z∗, verifying
that b1 < b2 < b3 < b4, a1 + a2 + a3 + a4 + 1 =
a5, b1 + b2 + b3 + b4 = b5}.

For any s = (n1, . . . , n5) ∈ S ′′, we consider two
clauses:

p(s) = (φ(n1) ∨ φ(n2) ∨ φ(n3) ∨ φ(n4) ∨ φ(n5))
and

q(s) = (¬φ(n1) ∨ ¬φ(n2) ∨ ¬φ(n3) ∨ ¬φ(n4)
∨¬φ(n5)).

Then, p(s) is satisfiable if and only if�c(n) �= d2 for some
n ∈ s and q(s) is satisfiable if and only if �c(n) �= d1 for
some n ∈ s, thus p(s) ∧ q(s) are satisfiable if and only if
�c does not induce on s a monochromatic solution of the
equation x1 + x2 + x3 + x4 + c = x5.

Let C ′′ =
∧
s∈S ′′

(p(s) ∧ q(s)).

Clearly, C ′′ is satisfiable if and only if the restriction of�c
to Zc is a 2-coloring without monochromatic solution of
the equation.

The SAT-Solver shows that C ′′ is not satisfiable, there-
fore there does not exist a 2-coloring of the sets Zc
and [1, 6c + 52] without monochromatic solution. Thus
WR4(2, c) ≤ 6c + 52.

4.4. SeekingWR5(2, 2) by computer

Let T2 = [1, 109]. Let � be a 2-coloring of T2. For any
n ∈ T2, we consider a Boolean variable φ(n) defined as
follow:

φ(n) =
{
True if �(n) = d1,
False if �(n) = d2.

Let S ′′′ = {(n1, . . . , n6) | 1 ≤ n1 < n2 < · · · < n6 ≤
109, and n1 + n2 + n3 + n4 + n5 + 2 = n6}.

For any s = (n1, . . . , n6) ∈ S ′′′, we consider two
clauses:

p(s) = (φ(n1) ∨ φ(n2) ∨ φ(n3) ∨ φ(n4) ∨ φ(n5)
∨φ(n6))

and

q(s) = (¬φ(n1) ∨ ¬φ(n2) ∨ ¬φ(n3) ∨ ¬φ(n4)
∨¬φ(n5) ∨ ¬φ(n6)).

Then, p(s) is satisfiable if and only if�(n) �= d2 for some
n ∈ s and q(s) is satisfiable if and only if �(n) �= d1 for
some n ∈ s, thus p(s) ∧ q(s) are satisfiable if and only if
� does not induce on s a monochromatic solution of the
equation x1 + x2 + x3 + x4 + x5 + 2 = x6.

Let C ′′′ =
∧
s∈S ′′′

(p(s) ∧ q(s)).

Clearly, C ′′′ is satisfiable if and only if � is a 2-
coloring without monochromatic solution of the
equation.

The SAT-Solver shows that C ′′′ is not satisfiable, there-
fore there does not exist a 2-coloring of the set T2
without monochromatic solution. Thus, WR5(2, 2) ≤
109.

This result can be generalized to prove WR5(2,4) �
123.

5. Backtrack programming in language C

5.1. SeekingWR2(3, c) by computer

#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()
{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }

int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};



int T[4][600]={0};
int L[4]={0};
int VR[31]={0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9,10,
10,11,12,13};
int VT[31]={1,2,3,2,3,4,4,5,6,5,6,7,7,8,9,9,10,11,10,11,12,13,14,15,16,17,18,
19,20,21,22};
Solu=0;

Fiasco=PrintSol;
N=Select(30,31);
for (r = 0; r <= N-1; r++)
{
c = Choice(3);
for (i = 0; i <= L[c]-1; i++)
for (j = 0; j < i; j++)
{
if (VR[r]==R[c][i]+R[c][j]+1&&VT[r]==T[c][i]+T[c][j])
Backtrack();
}
R[c][L[c]] = VR[r];
T[c][L[c]] = VT[r];
L[c]++;

}
Count=0;
Solu++;
for (c = 1; c <= 3; c++)
{
Count+=L[c];
for (r = 0; r <= L[c]-1; r++)

{
if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
else
if (R[c][r]==1) fprintf(fp,"(%c%c%d)",’a’,’+’,T[c][r]);
else fprintf(fp,"(%d%c%c%d)",R[c][r],’a’,’+’,T[c][r]);

}
/* fprintf(fp,"((%d))\n",L[c]); */

fprintf(fp,"\n");
}

fprintf(fp,"%c",’\n’);
printf(" Solutions : %d \n",Solu);
Backtrack();

}

main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}



5.2. SeekingWR3(2, c) by computer

#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()

{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }

int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int T[4][600]={0};
int L[4]={0};
int VR[29]={0,0,0,0,1,1,1,2,2,2,2,2,2,3,3,3,4,4, 5, 6, 6, 7, 8, 8, 8, 8, 8,

10,10};
int VT[29]={1,2,3,4,2,3,4,3,4,5,6,7,8,6,7,8,6,9,11,10,12,13,14,15,16,18,21,23,

24};

Solu=0;

Fiasco=PrintSol;
N=Select(28,29);
for (r = 0; r <= N-1; r++)
{
c = Choice(2);
for (i = 0; i <= L[c]-1; i++)
for (j = 0; j < i; j++)
for (k = 0; k < j; k++)
{
if (VR[r]==R[c][i]+R[c][j]+R[c][k]+2&&VT[r]==T[c][i]+T[c][j]+T[c][k])
Backtrack();
}
R[c][L[c]] = VR[r];
T[c][L[c]] = VT[r];
L[c]++;

}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
Count+=L[c];
for (r = 0; r <= L[c]-1; r++)

{
if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
else
if (R[c][r]==1) fprintf(fp,"(%c%c%d)",’a’,’+’,T[c][r]);
else fprintf(fp,"(%d%c%c%d)",R[c][r],’a’,’+’,T[c][r]);

}
/* fprintf(fp,"((%d))\n",L[c]); */

fprintf(fp,"\n");



}
fprintf(fp,"%c",’\n’);
printf(" Solutions : %d \n",Solu);
Backtrack();

}

main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}

5.3. SeekingWR4(2, c) by computer

#include "CBack.c"
int i, j, k, l, N, Count, Solu;
FILE *fp;
void PrintSol()
{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }

int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int T[4][600]={0};
int L[4]={0};
//int VR[30]={0,0,0,0,0,0,0,1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,

4, 5, 5, 5, 5, 6};
//int VT[30]={1,2,3,4,5,6,7,9,10,11,12,13,14,15,15,16,17,18,19,20,21,22,24,32,

33,43,44,45,46,52};

int VR[29]={0,0,0,0,0,0,0,1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
4, 5, 5, 5, 5, 6};

int VT[29]={1,2,3,4,5,6,7,9,10,11,12,13,14,15,15,16,17,18,19,20,21,22,24,32,
33,43,44,45,46,52};

Solu=0;

Fiasco=PrintSol;
N=Select(30,30);
for (r = 0; r <= N-1; r++)
{
c = Choice(2);
for (i = 0; i <= L[c]-1; i++)
for (j = 0; j < i; j++)
for (k = 0; k < j; k++)
for (l = 0; l < k; l++)



{
if (VR[r]==R[c][i]+R[c][j]+R[c][k]+R[c][l]+1&&VT[r]==
T[c][i]+T[c][j]+T[c][k]+T[c][l])
Backtrack();

}
R[c][L[c]] = VR[r];
T[c][L[c]] = VT[r];
L[c]++;

}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
Count+=L[c];
for (r = 0; r <= L[c]-1; r++)

{
if (R[c][r]==0) fprintf(fp,"(%d)",T[c][r]);
else
if (R[c][r]==1) fprintf(fp,"(%c%c%d)",’a’,’+’,T[c][r]);
else fprintf(fp,"(%d%c%c%d)",R[c][r],’a’,’+’,T[c][r]);

}
/* fprintf(fp,"((%d))\n",L[c]); */

fprintf(fp,"\n");
}

fprintf(fp,"%c",’\n’);
printf(" Solutions : %d \n",Solu);

// if (Solu<10)
Backtrack();

}

main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}

5.4. SeekingWR5(2, 2) by computer

#include "CBack.c"
int i, j, k, l, m, N, Count, Solu;
FILE *fp;
void PrintSol()
{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }

int Problem()
{



int r, c, a;
int R[4][600]={0};
int L[4]={0};
Solu=0;
Fiasco=PrintSol;
N=Select(108,109);
a=2;
for (r = 1; r <= N; r++)
{
c = Choice(2);
for (i = 0; i <= L[c]-1; i++)
for (j = 0; j < i; j++)
for (k = 0; k < j; k++)
for (l = 0; l < k; l++)
for (m = 0; m < l; m++)
{
if (r-a==R[c][i]+R[c][j]+R[c][k]+R[c][l]+R[c][m])
Backtrack();
}
R[c][L[c]] = r;
L[c]++;

}
Count=0;
Solu++;
for (c = 1; c <= 2; c++)
{
Count+=L[c];
for (r = 0; r <= L[c]; r++)

{
fprintf(fp,"(%d)",R[c][r]);
}
fprintf(fp,"((%d))\n",L[c]);

}
fprintf(fp,"%c",’\n’);

// if (Solu < 2)
Backtrack();

}

main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}

5.5. SeekingWR5(2, 4) by computer

#include "CBack.c"
int i, j, k, l, m, N, Count, Solu;



FILE *fp;
void PrintSol()

{ fprintf(fp,"N = %d is the maximum with %d solutions. \n",Count,Solu); }

int Problem()
{
int r, t, c, a, rr, tt;
int R[4][600]={0};
int L[4]={0};
int VR[123]={
int VR[123]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,
47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,
69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,
91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,120,121,122,123};

Solu=0;

Fiasco=PrintSol;
N=Select(122,123);
a=4;
for (r = 0; r <= N-1; r++)
{
c = Choice(2);
for (i = 0; i <= L[c]-1; i++)
for (j = 0; j < i; j++)
for (k = 0; k < j; k++)
for (l = 0; l < k; l++)
for (m = 0; m < l; m++)
{
if (VR[r]-a==R[c][i]+R[c][j]+R[c][k]+R[c][l]+R[c][m])
Backtrack();
}
R[c][L[c]] = VR[r];
L[c]++;

}
Count=0;
Solu++;
for (c = 1; c <=2; c++)
{
Count+=L[c];
for (r = 0; r <= L[c]; r++)

{
fprintf(fp,"(%d)",R[c][r]);
}
fprintf(fp,"((%d))\n",L[c]);

}
fprintf(fp,"%c",’\n’);

// if (Solu < 2)
Backtrack();

}



main(int argc, char *argv[])
{
char str[80];
strcpy (str,argv[0]);
strcat (str,".txt");
fp = fopen(str,"w");
Backtracking(Problem())
fclose(fp);
}
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