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Quantum correlations are contextual yet, in general, nothing prevents the existence of even more

contextual correlations. We identify and test a noncontextuality inequality in which the quantum violation

cannot be improved by any hypothetical postquantum theory, and use it to experimentally obtain

correlations in which the fraction of noncontextual correlations is less than 0.06. Our correlations are

experimentally generated from the results of sequential compatible tests on a four-state quantum system

encoded in the polarization and path of a single photon.

Introduction.—Quantum contextuality [1–3] refers to 
the fact that the predictions of quantum mechanics (QM) 
cannot be reproduced assuming noncontextuality of results 
(i.e., that the results are predefined and independent of 
other compatible tests) or, equivalently, noncontextual 
hidden variable theories. By compatible tests we mean 
those satisfying the following theory-independent defini-
tion: ‘‘If a physical system is prepared in such a way that 
the result of test xi is predictable and repeatable, and if a 
compatible test xj is then performed (instead of test xi) a  
subsequent execution of test xi shall yield the same result 
as if test xj had not been performed’’ [4] (see [5] for other 
definitions of compatibility). In QM, two tests represented 
by self-adjoint operators A and B are compatible when A 
and B commute. This guarantees that the quantum predic-
tions for compatible tests are given by a single probability 
measure on a single probability space. Compatibility im-

plies that the probability PðaijxiÞ of obtaining the result ai 
for the test xi is independent of other compatible tests 
x1; . . .  ; xi�1, xiþ1; . . .  ; xn, i.e.,

PðaijxiÞ ¼
X

a1;...;ai�1;aiþ1;...;an

Pða1; . . . ; anjx1; . . . ; xnÞ; (1)

for all sets x1; . . . ; xn of compatible tests, and where
Pða1; . . . ; anjx1; . . . ; xnÞ is the joint probability of obtain-
ing the results a1; . . . ; an for the compatible tests
x1; . . . ; xn, respectively. Assumption (1) is formally equiva-
lent to the no-signaling principle, but involves compatible
tests instead of spacelike separated tests.

The assumption of the noncontextuality of results states
that the result ai of test xi is the same regardless of other
compatible tests being performed; it only depends on xi
and some hidden variables �. This implies that the corre-
lation among the results of compatible tests can be ex-
pressed as

Pða1; . . . ; anjx1; . . . ; xnÞ ¼
X

�

Pð�ÞY
n

i¼1

Pðaijxi; �Þ; (2)

for some common distribution Pð�Þ.
Noncontextuality inequalities are expressions of the

form

S�X
Ta1;...;an;x1;...;xnPða1; . . . ;anjx1; . . . ;xnÞ�NC�NC; (3)

where Ta1;...;an;x1;...;xn are real numbers and �NC �NC de-

notes that the maximum value of S for any noncontextual
correlations [therefore satisfying (2)] is �NC. Quantum
contextuality is experimentally observed through the vio-
lation of noncontextuality inequalities [6–9].
Quantum nonlocality [10] is a particular form of quan-

tum contextuality which occurs when the tests are not only
compatible but also spacelike separated. In this case, non-
contextuality inequalities are called Bell inequalities [10].
In addition to applications such as device-independent
quantum key distribution [11,12] and random number
generation [13], which require spacelike separation, quan-
tum contextuality also offers advantages in scenarios with-
out spacelike separation. Examples are communication
complexity [14], parity-oblivious multiplexing [15], zero-
error classical communication [16], and quantum cryptog-
raphy secure against specific attacks [17,18].
The goal of this work is to identify and perform an

experiment with sequential quantum compatible tests,
which produces correlations with the largest contextuality
allowed under the assumption (1), which is assumed to be
valid also for postquantum theories. For this purpose, we
first introduce a measure of contextuality of the correla-
tions, the noncontextual content WNC, so that WNC ¼ 0
corresponds to the maximum contextuality. Then, we
show how to experimentally obtain testable upper bounds
to WNC. Next, we show how graph theory allows us
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to identify experiments in which the upper bound to
WNC predicted by QM is zero, and apply this method to
single out an experiment for which WNC ¼ 0. Finally, we
perform this experiment and obtain correlations in which
WNC < 0:06.

Noncontextual content.—Every correlation among com-
patible tests [therefore satisfying (1)] can be expressed as

Pða1;...;anjx1;...;xnÞ¼wNCPNCða1;...;anjx1;...;xnÞ
þð1�wNCÞPCða1;...;anjx1;...;xnÞ;

(4)

where 0 � wNC � 1, PNCða1; . . . ; anjx1; . . . ; xnÞ can be ex-
pressed as (2), and PCða1; . . . ; anjx1; . . . ; xnÞ satisfies (1)
but cannot be expressed as (2). We define the noncontex-
tual contentWNC of the correlations as the maximum value
of wNC over all possible decompositions as (4), i.e.,

WNC � max
fPNC;PCg

wNC: (5)

This definition is parallel to the definition of local content
introduced in [19]. In fact, for correlations generated
through spacelike separated tests, the noncontextual con-
tent equals the local content.

�NC, �Q, and �C will denote, respectively, the maxi-

mum value of S for noncontextual correlations [i.e., which
can be expressed as (2)], quantum correlations, and corre-
lations satisfying (1). Now consider correlations satisfying
(1) and saturating�Q. Then, given a decomposition of such

correlations as (4), withwNC ¼ WNC,�Q can be expressed

as �Q¼
P
Ta1;...;an;x1;...;xn½WNCPNCða1; . . . ;anjx1;. . . ;xnÞþ

ð1�WNCÞPCða1;. . . ;anjx1; . . . ;xnÞ�¼WNC

P
Ta1;...;an;x1;...;xn�

PNCða1; . . . ;anjx1;. . . ;xnÞ þ ð1�WNCÞ
P
Ta1;...;an;x1;...;xn �

PCða1;. . . ;anjx1;. . . ;xnÞ. The first sum can be expressed in a
noncontextual form, so it is upper bounded by �NC. The
second sumcannot be expressed in a noncontextual form, so
it can only be upper bounded by �C. Hence, �Q �
WNC�NC þ ð1�WNCÞ�C, and, taking into account that
�NC � �Q � �C, then

WNC � �C ��Q

�C ��NC

: (6)

Any experimental violation Sexp of a noncontextuality in-

equality indicates that �C >�NC and, therefore, provides
an upper bound on WNC, namely WNC � ð�C �
SexpÞ=ð�C ��NCÞ. Assuming that the maximum Sexp in

an ideal experiment is given by�Q, to observe correlations

with zero noncontextual content, here called fully contex-
tual correlations, one has to test a noncontextuality inequal-
ity such that its maximum quantum violation equals its
maximum possible violation under the assumption (1),
i.e., an inequality for which �NC <�Q ¼ �C.

However, even if �Q ¼ �C, inherent imperfections of

actual experiments will prevent the observation of
WNC ¼ 0. In general, the more complex the experiment

to produce the required quantum correlations is, the higher
the probability that experimental imperfections lead to a
higher upper bound for the noncontextual content.
Therefore, the task is to identify the simplest noncontex-
tuality inequality violated by QM and such that�Q ¼ �C.

Graph approach.—We addressed this problem by using
a connection between graph theory and noncontextuality
inequalities noticed in [20]: For any graph there is a non-
contextuality inequality for which �NC, �Q, and �C are

given, respectively, by the independence number, the
Lovász number, and the fractional packing number of the
graph [21]. We calculated these three numbers for all
nonisomorphic graphs with less than 11 vertices, and found
that there are no graphs with less than 10 vertices with
�NC <�Q ¼ �C, and there are only four 10-vertex

graphs with these properties [21]. The maximum quantum
violation of noncontextuality inequalities associated with
three of them requires quantum systems of dimension
higher than four, while dimension four is enough for the
graph in Fig. 1. The inequality associated with the graph is
constructed by looking for propositions involving compat-
ible tests, such that each vertex represents one proposition
in the inequality and the edges only link propositions that
cannot be simultaneously true. Then, the inequality is
simply given by the sum of all the probabilities of the
propositions represented in the graph.
For the graph in Fig. 1, it can be easily seen that the

following noncontextuality inequality is in one-to-one cor-
respondence with the graph:

S � Pð010j012Þ þ Pð111j012Þ þ Pð01j02Þ þ Pð00j03Þ
þ Pð11j03Þ þ Pð00j14Þ þ Pð01j25Þ þ Pð010j345Þ
þ Pð111j345Þ þ Pð10j35Þ �NC 3; (7)

where Pð10j35Þ is the probability of obtaining result 1
when test 3 is performed and result 0 when test 5 is
performed. In this case, the coefficients Ta1;...;an;x1;...;xn in

(3) are all 1. The noncontextual bound, �NC ¼ 3, can be
obtained from the independence number of the graph in

01|0210|35

010|012111|345

11|0300|03

111|012010|345

01|25

00|14

1 1... | ...n n

1... : testsn

1... : resultsn

FIG. 1. Graph corresponding to inequality (7). Vertices repre-
sent propositions. For example, 01j25 means ‘‘result 0 is ob-
tained when test 2 is performed, and result 1 is obtained when
test 5 is performed.’’ Edges link propositions that cannot be
simultaneously true. For example, 01j25 and 01j02 are linked,
since in the first proposition the result of test 2 is 0, while in the
second proposition the result of test 2 is 1.



Fig. 1. The maximum quantum violation of inequality (7)
and its maximum possible violation under the assumption
(1) can be obtained from the Lovász and the fractional
packing numbers of the graph in Fig. 1, respectively [21].
This gives

�Q ¼ �C ¼ 3:5: (8)

The maximum quantum violation can be achieved by
preparing a four-state quantum system in the state

jc i ¼ 1ffiffiffi
2

p ðj0i þ j3iÞ; (9)

where h0j ¼ ð1; 0; 0; 0Þ, h1j ¼ ð0; 1; 0; 0Þ, h2j ¼ ð0; 0; 1; 0Þ,
and h3j ¼ ð0; 0; 0; 1Þ, and with the tests represented by the
following tensor products of Pauli matrices �i and the
2� 2 identity matrix 1:

0 ¼ �x � 1; 1 ¼ 1 � �z; 2 ¼ �x � �z;

3 ¼ 1 � �x; 4 ¼ �z � 1; 5 ¼ �z � �x:
(10)

The results 0 and 1 correspond to the eigenvalues �1 and
þ1, respectively, of the operators in (10). Notice that every
probability in (7) includes only pairs or trios of mutually
compatible tests.

Experiment.—The experiment required two-test sequen-
ces [for instance, to obtain Pð00j14Þ], and three-test se-
quences [for instance, to obtain Pð010j012Þ]. We built six
devices for the six dichotomic tests defined in (10). The
sequential tests were performed using cascade setups [9]
like the one shown in Fig. 2. We tested inequality (7) using
the spatial path and polarization of a single photon carrying
a four-state quantum system with the following encoding:

j0i¼jt;Hi; j1i¼jt;Vi; j2i¼jr;Hi; j3i¼jr;Vi; (11)

where t, r, H, and V denote the transmitted path, reflected
path, horizontal, and vertical polarization of the photon,
respectively.

The cascade setup used to implement two sequential
tests on a single photon consists of three parts: state
preparation, testing devices, and detectors. The preparation
of the polarization-spatial path-encoded single-photon
state jc i is achieved using a source of H-polarized single
photons. This single-photon source consists on an attenu-
ated stabilized narrow bandwidth diode laser emitting at
the wavelength of 780 nm. This laser offers a long coher-
ence length. The two-photon coincidences were set to a
negligible level by attenuating the laser to a mean photon
number of 0.06 per time coincidence window. This source
is followed by a half-wave plate (HWP) set at 22.5� and a
polarizing beam splitter (PBS), allowing the photon to be
distributed with equal probability between the two paths t
and r with the right polarization H and V, respectively
[see Fig. 2].

Then, the photon in the two paths enters the device for
testing x1 through the device’s input and follows one of the

two possible outputs, which correspond to the values þ1
and �1. After each of the two outputs, we placed a device
for testing x2. We used two identical devices for testing x2.
Finally, we placed a single-photon detector (D) at the
output of the two devices x2. The same idea is used for
sequences of three tests x1, x2, and x3, by adding four
devices for measuring x3 and using eight single-photon
detectors.
Devices for measuring the six tests defined in (10) are

given in Fig. 3. Measurements 1 and 3 are standard polar-
ization measurements using a PBS and a HWP which map
the polarization eigenstate of the operator to jt; Hi and
jr; Vi. The mapping to the eigenstates of test 0, namely

ðjti � jriÞ= ffiffiffi
2

p
, was accomplished by interfering the two

paths in a 50=50 beam splitter (BS). Awedge (W) is placed
in one of the paths to set the phase between both paths [see
Fig. 3]. Tests 2 and 5 are represented by the tensor product
of a spatial path and a polarization operator so they have a
four-dimensional eigenspace. However, since the tests
need to be rowwise and columnwise compatible, only their
common eigenstates can be used for distinguishing the
eigenvalues. Measurement 4 requires us only to distinguish
between paths t and r. We needed to recreate the eigen-
states of the performed tests after each mapping and before
entering the next test, since our single-test devices map
eigenstates to a fixed spatial path and polarization.
All interferometers in the experimental setup were based

on a displaced Sagnac configuration. The stability of these
interferometers is very high. We obtained visibilities over
99% for phase insensitive interferometers, and ranging
between 90% and 95% for phase sensitive interferometers.
We used silicon avalanche photodiodes calibrated to have

FIG. 2 (color online). (a) Scheme for sequential tests of x1 and
x2. The two possible results of each test are assigned the values
þ1 and �1, and are represented by whichever lamp is flashing.
(b) Cascade setup used to implement two sequential tests on a
single photon. It consists of three parts: state preparation, testing
devices, and detectors. The preparation part produces the
polarization-spatial path-encoded single-photon state jc i. The
two outputs of the device for testing x1 correspond to the two
possible results. After each of these two outputs, we placed a
device for testing x2. Single-photon detectors are placed at each
of the four outputs of the two devices x2 (see the main text for
details).



the same detection efficiency for single-photon detection.
All single counts were registered using an eight-channel
coincidence logic with a time window of 1.7 ns. The raw
detection events were gathered in a 10-second time period
for each of the six experimental configurations.

The experimental results are presented in Table I. The
errors in the results were deduced from the standard de-
viation of 50 samples in the 10-second time period. The
main sources of systematic errors were the small imper-
fections in the interferometers and in the overlapping of the
light modes and the polarization components. These are
the causes of the deviation of the experimental results from
the ideal case observed in Table I. The fact that some of the
experimental results exceeded the corresponding ideal pre-
dictions was due to the lack of perfect compatibility be-
tween the sequential tests caused by the nonperfect
visibilities of the interferometers. Reference [5] explains
how to deal with this loophole.

From the results in Table I, we can establish the follow-
ing experimental upper bound to the noncontextual content
of the correlations:

WNC � 0:0658� 0:0019: (12)

This is the lowest experimental bound on the noncontex-
tual content ever reported in any Bell or noncontextuality
inequalities experiment. The previous lowest experimental
upper bound on the noncontextual (local) content was
0:218� 0:014 [22].
As in most experiments of Bell and noncontextuality

inequalities with photons, we assumed that the detected
photons were an unbiased sample of the prepared photons.
This assumption is necessary, since the detection effi-
ciency, without taking into account the losses in the setup,
was 0.50 (a value obtained considering that the detection
efficiency of the single-photon detectors was 55% and the
efficiency of the fiber coupling was 90%). Future experi-
ments using heralded sources and single-photon detectors
of very high efficiency [23,24] may close this loophole.
Our experiment was intended to be a proof-of-principle
experiment to illustrate the power of the graph approach
[20] to single out experiments with properties on demand
(in our case, �NC <�Q ¼ �C), and to experimentally

observe fully contextual correlations.
Conclusions.—By using a new technique based on graph

theory [20], we have identified and performed an experi-
ment in which no hypothetical postquantum correlations
satisfying (1) can outperform the contextuality of quantum
correlations. Assuming that the detected photons are a fair
sample of those emitted by the source and assuming that
the compatibility of the sequential tests is perfect, the
correlations observed in our experiment exhibit the largest
contextuality ever reported in any experiment of Bell or
noncontextuality inequalities, and provide compelling evi-
dence of the existence of fully contextual correlations (i.e.,
those without noncontextual content) in nature.
Moreover, we have demonstrated the usefulness of the

approach to quantum correlations based on graph theory
[20] in identifying experiments with properties on demand.
We expect that further developments along these lines will
provide better tools to identify and observe phenomena of
physical interest.
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Research Council of Norway, the Spanish Projects
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