
Towards the Use of Hypergraphs
in Multi-adjoint Logic Programming

Juan Carlos Díaz-Moreno, Jesús Medina and José R. Portillo

Abstract The representation of a logic program by a graph is a useful procedure in
order to obtain interesting properties of the program and in the computation of the
least model, when it exists. In this paper, we consider hypergraphs for representing
multi-adjoint logic programs and, based on this representation, the hypotheses of an
interesting termination result have been weakened.

1 Introduction

One of themost important problems in logic programmingwith non-decreasing oper-
ators is the computation of the least model of a given program. In order to obtain
such a model the fix-point semantics is usually considered. This semantics is based
on the iteration of the immediate consequence operator from the least interpreta-
tion. Since this iteration can be infinite, one important goal is to get termination
properties of this iteration. In [3, 4], different termination theorems were introduced
in the multi-adjoint logic programming. This logic programming framework was
introduced in [10] as a generalization of different non-classical logic programming
frameworks, such as the residuated logic programming [5] and the fuzzy logic pro-
gramming framework presented in [11].

This paper considers directed hypergraphs [1, 8] in order to represent a multi-
adjoint logic program and, based on this representation, introduce a termination
result, which generalizes one of the most important termination theorems given
in [4].

J. C. Díaz-Moreno · J. Medina
Department of Mathematics, University of Cádiz, Cádiz, Spain
e-mail: juancarlos.diaz@uca.es

J. Medina
e-mail: jesus.medina@uca.es

J. R. Portillo (B)
Department of Applied Mathematics I, University of Sevilla, Sevilla, Spain 
e-mail: josera@us.es

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00485-9_6&domain=pdf


2 Basic Definitions on Hypergraphs

This section recalls the notions we will need throughout the paper related to hyper-
graphs. For basic notions of graph theory see [2].

A graph is a pair of sets (V, E). V is the set of vertices or nodes. E is a set of
2-element subsets of V, named edges. The edges may be directed or undirected (the
pairs are ordered or not). Directed edges are called arcs. A cycle in a graph is a path
of edges and vertices wherein a vertex is reachable from itself. I.e., a ordered set of
vertices {u1, . . . , ui , . . . u p} such that uiui+1 is an edge of the graph and u1 = u p.

The first notion for hypergraphs is the definition, which is a generalization of a
graph in which an edge is a non-empty subset of vertices. Specifically, a hypergraph
H is a pair H = (V, E) where V is a set of elements called nodes or vertices, and
E is a set of non-empty subsets of V called hyperedges or edges, see [2] for more
details. Therefore, E is a subset of P(V ) \ {∅}, where P(V ) is the power set of V .
Note that, when the cardinal of all hyperedges is 2, the hypergraph is a standard
graph.

The generalization of a directed graph is called directed hypergraph and contains
directed hyperedges.Adirected hyperedgeorhyperarc is an ordered pair, e = (X, Y ),
of (possibly empty) disjoint subsets of vertices; X is called the tail of e and Y is its
head. From now on, the tail and the head of an hyperarc e will be denoted by T (e)
and H(e), respectively.

Hence, a directed hypergraph is a hypergraph with directed hyperedges [1, 8].
A backward hyperarc, or simply B-arc, is a hyperarc e = (T (e), H(e)), where the
head exactly has one vertex. When all the hyperarcs of a hypergraph are B-arcs,
then the hypergraph is called B-graph (or B-hypergraph) [8]. For example, the
hypergraph H = (V, E) introduced on the left of Fig. 1, where V = {a, b, c, d}
and E = {({a}, {b}), ({b, c}, {a}), ({c, d}, {a})} is a B-graph. This paper will only
consider this kind of hypergraphs.

B-graphs (and the dually defined F-graphs) are a useful tool in different appli-
cations [1, 8, 9]. As a consequence, they have been introduced many times in the
literature with various names. For example, the labelled graphs, used in [6, 7] to
represent Horn formulae, are B-graphs.

b

c

d

a

b

c

d

a

Fig. 1 Left: Example of B-graph H = (V, E). Right: Directed graph subjacent to H



In contrast with ordinary graphs for which there is a single natural notion of cycles
and acyclic graphs, there are multiple natural non-equivalent definitions of acyclicity
for hypergraphs which collapse to ordinary graph acyclicity for the special case of
ordinary graphs.

In this paper, we only need to consider the cycles on the subjacent directed graph
of a B-graph. Given any directed hypergraph H = (V, E), the subjacent directed
graph G(H) = (V (G), E(G)) has the same nodes thatH, i.e. V (G) = V and an arc
exists in E(G) from the node u to the node v if and only if it exists a hyperedge
e ∈ E such that u ∈ T (e) and v ∈ H(e). For example, Fig. 1 shows on the right the
subjacent graph to the hypergraph on the left. The vertices a and b form a cycle in
that graph, but the hypergraph has not hypercycles under the common definitions [2].

3 Multi-adjoint Logic Programming

This section recalls the algebraic structure considered in this framework, the notion
of multi-adjoint logic program, and one of the most interesting termination theorems
introduced in [4]. The basic operators considered in this framework are adjoint pairs.

Definition 1 Given a partially ordered set (P,≤), the pair (& ,←) is an adjoint pair
with respect to (P,≤) if the mappings & ,←: P × P → P satisfy that:

1. & is order-preserving in both arguments.
2. ← is order-preserving in the first argument (the consequent) and order-reversing

in the second argument (the antecedent).
3. The equivalence x ≤ y ← z if and only if x & z ≤ y holds, for all x, y, z ∈ P .

The algebraic structure considered in this logic programming framework is called
multi-adjoint lattice.

Definition 2 Amulti-adjoint lattice is a tuple (L ,�,←1,&1, . . . ,←n,&n) verify-
ing the following properties:

1. (L ,�) is bounded lattice, i.e. it has bottom (⊥) and top (	) elements;
2. (&i ,←i ) is an adjoint pair in (L ,�), for all i ∈ {1, . . . , n};
3. 	&i ϑ = ϑ &i 	 = ϑ , for all ϑ ∈ L and for all i ∈ {1, . . . , n}.

Given a multi-adjoint lattice, a set of propositional symbols Π , a given language
denoted as F and different monotonic operators defined on L , the notion of program
(set of rules) is introduced in this framework.

Definition 3 Given a multi-adjoint lattice (L ,�,←1,&1, . . . ,←n,&n). A multi-
adjoint logic program P is a set of rules of the form 〈(A ←i B), ϑ〉 such that:



1. The rule (A ←i B) is a formula of F;
2. The confidence factor ϑ is an element (a truth-value) of L;
3. The head of the rule A is a propositional symbol of Π .
4. Thebody formulaB is a formula ofFbuilt frompropositional symbols B1, . . . , Bn

(n ≥ 0) by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k , disjunctors
∨1, . . . ,∨l , aggregators @1, . . . ,@m and elements of L .

5. Facts are rules with body 	.

This paper will be focused on one of the most important theorems introduced
in [4]. Before recalling this result we need different definitions.

Definition 4 Let P be a multi-adjoint program, and A ∈ Π . The set RI
P
(A) of rele-

vant values for A with respect to an interpretation I is the set of maximal values of
the set {ϑ&i Î (B) | 〈A ←i B, ϑ〉 ∈ P}.

The immediate consequences operator, given by van Emden and Kowalski, is
defined in this framework as follows.

Definition 5 Given a multi-adjoint logic program P. The immediate consequences
operator TP maps interpretations to interpretations, and for an interpretation I and
an arbitrary propositional symbol A is defined by

TP(I )(A) = sup{ϑ&i Î (B) | 〈A ←i B, ϑ〉 ∈ P}

The main feature of TP is that its least fix-point coincides with the least model of
the program P [10]. Since the least fix-point is computed iterating the TP operator
from the least interpretation, Δ, it is important to know when this iteration finishes
in a finite number of steps.

The termination theorem in [4] was introduced for sorted and local multi-adjoint
logic programs. In order to simplify the notation, we have adapted it for (uni-sorted)
multi-adjoint logic programs.

Theorem 1 Given a multi-adjoint logic program P with finite dependences and
where the operators @ : Lm → L in the body of the rules satisfy the boundary
condition with the 	 element, that is,

@(	, . . . ,	
︸ ︷︷ ︸

k

, x,	, . . . ,	
︸ ︷︷ ︸

m−k−1

) � x

for all x ∈ L. If for every iteration n and propositional symbol A the set of relevant
values for A with respect to T n

P
(�) is a singleton, then TP terminates for every query.

This result will be weakened in the following section.



 4 Representing Programs by Hypergraphs

This section presents a simple example which does not satisfy the hypotheses of
Theorem 1, but the least model of the program is obtained after finitely many itera-
tions. Then, in order to extend this result to a bigger number of programs, a straight-
forward mechanism for representing a logic program by a B-graph is introduced.
Finally, based on this representation, the hypotheses of Theorem 1 will be weak-
ened.

Example 1 Consider the following program P:

〈a ←P b &G c, 0.8〉 〈b ←P a, 0.7〉
〈a ←P @(d, c), 1.0〉 〈c ←P 1.0, 1.0〉

〈a ←P 1.0, 0.5〉

where the aggregator @ : [0, 1] × [0, 1] → [0, 1] is the weighted sum defined as
@(x, y) = (x + 3y)/4, for all x, y ∈ [0, 1].

Although the minimum operator&G satisfies the boundary condition with the 1
element (hypothesis in Theorem 1), the aggregator @ does not verify it and so, we
cannot apply this theorem in order to know whether the computation of the least
model terminates in a finite number of iterations. However, in this case, only 3
iterations are needed, as we show below:

a b c d
TP0 = 0.0 0.0 0.0 0.0
TP1 = 0.75 0.0 1.0 0.0
TP2 = 0.75 0.525 1.0 0.0
TP3 = 0.75 0.525 1.0 0.0

This example shows that the hypotheses in Theorem 1 should be weakened. For
that, we will represent a program by a B-graph and we will relate the termination of
the iterations to the existence of cycles in the subjacent directed graph and whether
aggregator operators,which do not satisfy the hypotheses of the theorem, are involved
in these cycles.

Note that, it has been possible to compute the least model in a finite number of
iterations because the aggregator operator@ is not in a cycle of the subjacent digraph
of the associated B-graph.

The associated B-graphHP associated with a programP is constructed as follows:
the vertex set of the hypergraph is the propositional symbol set Π of the program.
Hence, for the programP in Example 1, we have V (HP) = {a, b, c, d}. One hyperarc
will be obtained from each rule as follows: Given a rule, the propositional symbols
of the antecedent of the rule will be the tail T (e) of the associated hyperarc and the
propositional symbol of the head of the rule will be the only element of the head
H(e) of the associated hyperarc. This hyperarc is labeled with the aggregator in the
body of the rule.When no aggregator operator appears in the body of the rule, wewill



b

c

d

a&G

@

ld

b

c

d

a
&G

@

@

&
G

ld

Fig. 2 Left: (Labelled) B-graph associated with the program given in Example 1. Right: (Labelled)
Subjacent directed graph from the B-graph on the left

consider the identity mapping. For example, from the rule 〈a ←P b &G c, 0.8〉 for
the program P in Example 1, we obtain the hyperarc ({b, c}, {a}) with the label &G .
Due to the considered mechanism, the hypergraph resultant is always a (labelled)
B-graph. Figure2 (left) shows the associated B-graph of the program P given in
Example 1.

Finally, a weak version of Theorem 1 is introduced:

Theorem 2 Given a multi-adjoint logic program P with finite dependences and the
B-graphHP associated withP. If the operators involved in the cycles of the subjacent
directed graph ofHP satisfy the boundary conditionwith the	 element and, for every
iteration n and propositional symbol A, the set of relevant values for A with respect
to T n

P
(�) is a singleton, then TP terminates for every query.

Note that this result only needs that the aggregators operators involved in the
cycles of the subjacent directed graph of the B-graph associated with the program
satisfy the boundary condition. Therefore, this result is notably more general than
Theorem 1 and can be applied, for example, to the program given in Example 1.

5 Conclusions and Future Work

This paper has presented a procedure in order to represent a multi-adjoint logic
program as a hypergraph. As a first consequence, we have generalized one of the
most important termination results introduced in [4]. This representationwill provide
more interesting properties in the future. We will study other efficient termination
results andwewill analyze analogies between different notions in logic programming
and in graph theory in order to create synergies between both theories. The obtained
results will also be compared with the existent ones in the literature.



 References

1. Ausiello, G., Laura, L.: Directed hypergraphs: introduction and fundamental algorithms—a
survey. Theor. Comput. Sci. 658, 293–306 (2017)

2. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)
3. Damásio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination

results and applications. In: Lecture Notes in Artificial Intelligence, vol. 3229, pp. 252–265
(2004)

4. Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect
information: applications and query procedure. J. Appl. Log. 5, 435–458 (2007)

5. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2001. Lecture Notes in
Artificial Intelligence, vol. 2143, pp. 748–759 (2001)

6. Dowling,W.F.,Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional
Horn formulae. J. Log. Program. 1(3), 267–284 (1984)

7. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae. J. Log.
Program. 7(1), 45–61 (1989)

8. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Dis-
crete Appl. Math. 42(2–3), 177–201 (1993)

9. Jeroslow, R.G., Martin, R.K., Rardin, R.L., Wang, J.: Gainfree Leontief substitution flow prob-
lems. Math. Program. 57, 375–414 (1992)

10. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous
semantics. In: Lecture Notes in Artificial Intelligence, vol. 2173, pp. 351–364 (2001)

11. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)


	Towards the Use of Hypergraphs in Multi-adjoint Logic Programming
	1 Introduction
	2 Basic Definitions on Hypergraphs
	3 Multi-adjoint Logic Programming
	4 Representing Programs by Hypergraphs
	5 Conclusions and Future Work
	References




