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Abstract

We characterize the relatively compact subsets of the order continuous part Ea of a quasi-
Banach function space E showing that the strong connection between compactness, uniform 
absolute continuity, uniform integrability, almost order boundedness and L-weak compact-
ness that appears in the classical setting of Lebesgue spaces remains almost invariant in this 
new context under mild assumptions. We also present a de la Vallée–Poussin type theorem 
in this context that allows us to locate each compact subset of Ea as a compact subset of a 
smaller quasi-Banach Orlicz space EΦ . Our results generalize the previous known results 
for the Banach function spaces L1(m) and L1

w(m) associated to a vector measure m and 
moreover they can also be applied to the quasi-Banach function space L1 (‖m‖) associated 
to the semivariation of m.
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1 Introduction

Different kinds of spaces of scalar integrable functions associated to a vector measure m,

with values in a Banach space, have become basic tools in several aspects of the study of
function spaces and operators among them, as the representation of Banach lattices by using
function spaces or the description of the optimal domain of certain operators between function
spaces. One of these function spaces is the quasi-Banach space L1 (‖m‖) of integrable scalar
functions (in the Choquet sense) with respect to the semivariation ‖m‖ of the vector measure
m.This semivariation is an special type of what is known as a capacity, for which the Choquet
integrationwas built. The space L1 (‖m‖) is the cornerstone in the construction of the Lorentz
spaces with respect to the vector measure m (see [4,11]) and plays a similar role to the one
made by the Lebesgue space L1 for classical Lorentz spaces in the case of a positive scalar
measure.

Some properties as reflexivity, σ -order continuity, sequential Fatou property or denseness
of simple functions have been already studied in [5] for the space L1 (‖m‖) and its p-th
powers L p (‖m‖) ,with p > 1,when the measure m is defined over a δ-ring of subsets. Here
we will deal with the characterization of the relatively compact subsets of L1 (‖m‖) , where
the measure m is defined now over a σ -algebra of subsets.

The first major goal of this work (see Corollary 3.3) is the characterization of the rel-
ative compactness on L1 (‖m‖) by means of the relative compactness in the topology of
convergence in measure together with another additional property that can be the almost
order boundedness, the L-weak compactness, the uniform integrability or the uniform abso-
lute continuity. This result will be obtained as a consequence of a more general study (see
Proposition 3.2 and Corollary 3.1) that we will do about the characterization of the relative
compactness in general quasi-Banach function spaces. As it is well known, relative com-
pactness in metric spaces is characterized by convergence of sequences. Therefore, the basis
of this study consists of characterizing the convergence of sequences by means of a weaker
convergence (convergence in measure) together with an additional property such as those
mentioned above. This is what we do in Proposition 3.2 that can be considered as an abstract
version of the classical Vitali convergence theorem that characterizes the convergence in
Lebesgue L p-spaces, with 1 ≤ p < ∞, in terms of the convergence in measure (or even
pointwise μ-a.e.) and some additional conditions. In particular, for a positive finite measure
μ, this result (see [10, Theorem III.3.6]) states that, for a sequence of functions ( fn)n in
L p(μ) and a function f : Ω −→ R, the following two conditions are equivalent:

i) f ∈ L p(μ) and ‖ fn − f ‖L p(μ) → 0, as n → ∞,

ii) ( fn)n converges in measure to f and limμ(A)→0 supn≥1 ‖ fnχA‖L p(μ) = 0.

Also we would like to note that equivalence 1) ⇔ 5) in Proposition 3.2 and Corollary 3.1 
has been proved by Caetano et al. (see [3, Lemma 3.15 and Theorem 3.17]) under some 
different conditions. They adopt the Bennett–Sharpley definition for a quasi-Banach function 
space for a σ -finite measure (see [3, Definition 3.2]). Consequently its ambient space always 
has implicitly the sequential Fatou property (see [3, Lemma 3.5]). It is worth noting that we 
do not use this property as an hypothesis in our results to establish that equivalence.

Probably one of the first results that relates compactness to uniform absolute continuity 
in a Banach function space appeared in [16, Theorem 7.1] (see also [2, Chap. 1 Exercise 8]). 
At the same time, it is well known the relationship between weak compactness of a set and the 
notion of uniform integrability provided by the Dunford–Pettis theorem (see, for example,
[8]). Note that weak compactness may not make sense in the context of quasi-Banach spaces, 
but it can be replaced by L-weak compactness in a broad class of spaces. In this context, the



equivalence between L-weak compactness and uniform integrability can be as useful as the
Dunford–Pettis theorem. This equivalence and some others are presented in Proposition 3.1
which is the key to obtain Proposition 3.2 and Corollary 3.1.

The secondmajor goal of this work is to locate the relatively compact subsets of L1 (‖m‖)
inside another smaller Orlicz-type spaces (see Corollary 5.3). To accomplish this it would be
necessary to obtain a de la Vallée–Poussin type theorem characterizing (from another point
of view) uniformly integrable subsets of L1 (‖m‖) similar to [6, Theorem 4.1]. Recall that the
classical result of the de la Vallée–Poussin states that a set H ⊆ L1(μ) is uniformly integrable
(for a positive finite measure μ) if and only if there is a non-decreasing convex function
Φ : [0,∞) −→ [0,∞) with limx→∞ Φ(x)

x = ∞ such that sup f ∈H ‖Φ (| f |)‖L1(μ) < ∞ or,
equivalently, if and only if H is (norm) bounded in some classical Orlicz space LΦ(μ). In
fact, we will establish this result for a general quasi-Banach function space E (see Theorem
5.1). In our case the main spaces taking part now are the Orlicz spaces EΦ associated to E
instead of LΦ(μ) that have been considered and studied in [7] (see also [13] and [17]). Some
results on compactness and inclusions of these Orlicz spaces will be also necessary for our
study and they will be considered in Sect. 4.

As far as we know our Theorem 5.1 is the first completely general de la Vallée–Poussin
type result for quasi-Banach function spaces, even in the framework of Banach function
spaces. However, its connection with similar results which can be found in the literature, as
[12, Proposition 6.6] and [15, Theorem 4], is clear. These two quoted results are particular
cases of our theorem.

2 Notation and preliminaries

Throughout this paper, we will always assume that Ω is a nonempty set, Σ is a σ -algebra of
subsets ofΩ, andμ is a positive finitemeasure defined onΣ.Let L0(μ) be the space of (μ-a.e.
equivalence classes of) real valued measurable functions defined onΩ. The natural topology
on L0(μ) is given by the complete metric d( f , g) := ∫

Ω
| f −g|

1+| f −g| dμ, for all f , g ∈ L0(μ).

It is folklore that convergence of sequences in this topology is exactly the convergence in
measure, that is, a sequence ( fn)n ofmeasurable functions converges under d to ameasurable
function f if and only if limn→∞ μ ({w ∈ Ω : | fn(w) − f (w)| ≥ ε}) = 0 for all ε > 0.

In what follows we will denote by [| fn − f | ≥ ε] the measurable set

{w ∈ Ω : | fn(w) − f (w)| ≥ ε} .

This notation and similar ones will be used frequently throughout this work.
Recall that a (real) quasi-Banach space E is a completemetrizable real vector spacewhose

topology is given by a quasi-norm ‖ · ‖E satisfying

‖x‖E > 0 (x ∈ E, x 
= 0)

‖ax‖E = |a|‖x‖E (a ∈ R, x ∈ E)

‖x + y‖E ≤ K
(‖x‖E + ‖y‖E

)
(x, y ∈ E), (2.1)

where K ≥ 1 is a constant depending only of E . The smallest of all those constants will
be denoted by KE and is called the quasi-norm constant of E . If in addition E is a vector
lattice and ‖x‖E ≤ ‖y‖E whenever |x | ≤ |y| we say that E is a quasi-Banach lattice. A
quasi-Banach space E ⊆ L0(μ) is called a quasi-Banach function space with respect to μ if
it has the following properties:



(a) E is an order ideal of L0(μ) and a quasi-Banach lattice with respect to the μ-a.e. order,
that is, if f ∈ L0(μ), g ∈ E and | f | ≤ |g| μ-a.e., then f ∈ E and ‖ f ‖E ≤ ‖g‖E .

(b) The characteristic function of Ω, denoted by χΩ, belongs to E .

If E is a Banach space instead of a quasi-Banach space we say that E is a Banach function
space with respect to μ (see [20, p. 23]). For a quasi-Banach space E we will denote by
BE := {x ∈ E : ‖x‖E ≤ 1} its unit ball.

The following result will be useful in the sequel. It proof can be found in [20, Lemma
2.7].

Lemma 2.1 Let E be a quasi-Banach function space with respect to μ. Then the inclusion
E ⊆ L0(μ) is continuous. In particular, lim‖χA‖E →0 μ(A) = 0, that is, for every ε > 0
there exists δ > 0 such that μ(A) < ε whenever ‖χA‖E < δ.

Aquasi-Banach lattice E is said to beσ -order continuous if, for every decreasing sequence
(xn)n in E with infn xn = 0we have ‖xn‖E → 0. If the above condition holds for nets instead
of sequences, then E is said to be order continuous. In the case of quasi-Banach function
spaces both concepts coincide (see [20, Remark 2.5]). Note that a quasi-Banach function
space E is σ -order continuous if and only if for any positive increasing sequence ( fn)n in
E such that fn → f ∈ E, μ-a.e., then ‖ f − fn‖E → 0. Besides, we say that a quasi-
Banach function space E has the sequential Fatou property if for any positive increasing
sequence ( fn)n in E with supn ‖ fn‖E < ∞ and fn → f ∈ L0(μ) μ-a.e., then f ∈ E and
‖ f ‖E = supn ‖ fn‖E .

An element x of a quasi-Banach lattice E is σ -order continuous if it has the property
that ‖xn‖E → 0 for any decreasing sequence (xn)n ⊆ E satisfying that infn xn = 0 and
0 ≤ xn ≤ |x |. The collection of all σ -order continuous elements of E is denoted by Ea and it
is the (closed) maximal σ -order continuous order ideal of E . It is called the order continuous
part of E .

3 Compactness in quasi-Banach function spaces

In the first part of this sectionwepresent general results about the characterization of relatively
compact subsets of a quasi-Banach function space E over a finite positive measure μ. In
the second part we introduce the space L1 (‖m‖) associated to a vector measure m and
particularize these compactness results for this space.

Now we recall the definitions of the four main concepts that we will use to characterize
relative compact subsets of a quasi-Banach function space. It is well known that uniform
absolute continuity and uniform integrability are closely connected in the setting of Banach
function spaces. Moreover these two notions have their counterpart (namely, almost order
bounded and L-weak compactness, see [18, Definition 3.6.1]) in the context of Banach and
quasi-Banach lattices.

Definition 3.1 Let E be a quasi-Banach function space over a finite positive measure μ.

(1) A subset H ⊆ E is said to be uniformly absolutely continuous if

lim
μ(A)→0

sup
f ∈H

‖ f χA‖E = 0,

that is, for every ε > 0 there exists δ > 0 such that ‖ f χA‖E < ε for all f ∈ H and
A ∈ Σ, with μ(A) < δ.



(2) A subset H ⊆ E is said to be uniformly integrable if limc→∞ sup f ∈H

∥
∥ f χ[| f |>c]

∥
∥

E = 0.

Let E be a quasi-Banach lattice.

(3) A (quasi-norm) bounded subset H ⊆ E is said to be L-weakly compact if ‖ fn‖E → 0
for every disjoint sequence ( fn)n in the solid hull of H .

(4) A subset H ⊆ E is said to be almost order bounded if for every ε > 0 there exists an
element 0 < g ∈ Ea such that H ⊆ [−g, g] + εBE .

Remark 3.1 Note that every almost order bounded subset of E is also (quasi-norm) bounded,
and by definition, an L-weakly compact subset is (quasi-norm) bounded too. Also, every
uniformly integrable set H is (quasi-norm) bounded. In fact, for a large enough c such that∥
∥ f χ[| f |>c]

∥
∥

E ≤ 1 for every f ∈ H we have

‖ f ‖E = ∥
∥ f χ[| f |>c] + f χ[| f |≤c]

∥
∥

E ≤ KE
∥
∥ f χ[| f |>c]

∥
∥

E + K E
∥
∥ f χ[| f |≤c]

∥
∥

E

≤ KE + cK E
∥
∥χ[| f |≤c]

∥
∥

E ≤ KE
(
1 + c ‖χΩ‖E

)
.

The fact that uniform absolute continuity does not imply (quasi-norm) boundedness belongs
to the folklore and, in fact, one atom suffices to construct an example. If Ω is a singleton,
Σ := {Ω, ∅} and μ is defined by μ(Ω) = 1 and μ(∅) = 0, then L1(μ) ≡ R is uniformly
absolutely continuous. On the other hand, let E be a quasi-Banach function space over a
non-atomic (finite) measure μ. Then every uniformly absolutely continuous set H ⊆ E is
(quasi-norm) bounded. Indeed, choose δ > 0 such that sup f ∈H ‖ f χA‖E ≤ 1 whenever
μ(A) ≤ δ. Since μ is non-atomic, there is a finite partition {A1, . . . , An} of Ω such that
Ar ∈ Σ and μ(Ar ) ≤ δ for all r = 1, . . . , n. Now, for f ∈ H we have

‖ f ‖E =
∥
∥
∥
∥
∥

n∑

r=1

f χAr

∥
∥
∥
∥
∥

E

≤
n∑

r=1

K r
E

∥
∥ f χAr

∥
∥

E ≤ M :=
n∑

r=1

K r
E .

Remark 3.2 If E is a Banach lattice, then a set H ⊆ E is L-weakly compact if and only
if H is almost order bounded. This equivalence is not known to be true in the context of
quasi-Banach lattices. As far as we know, its proof for Banach lattices (see [18, Proposition
3.6.2] and [19, Satz II.2]) does not seem to be easily adaptable for quasi-Banach lattices.
However, as we will see in the next Proposition 3.1, this equivalence ends up being true for
subsets of a σ -order continuous quasi-Banach function space.

Remark 3.3 On the other hand, an extremely special case of the equivalence between L-weak
compactness and almost order boundedness of subsets of a general quasi-Banach lattice E
is known to be true. Indeed, for every 0 < x ∈ E, the following assertions are equivalent:

i) Every order increasing sequence in [0, x] is convergent.
ii) Every disjoint sequence in [0, x] converges to 0.

The proof of i) ⇔ i i) follows (up to some changes) the same argument of the well-known
case of Banach lattices proved first by Fremlin and Meyer–Nieberg (see [1, Theorem 12.12]
and [1, Theorem 12.13]).

In any case, every element 0 < x ∈ E satisfying i) or i i) must belong to Ea . This allows
to deduce that if H is an L-weakly compact subset of E, then H ⊆ Ea . Indeed, if 0 
= x ∈ H
and H is L-weakly compact, then [0, |x |] is L-weakly compact and hence i i) is satisfied.

Uniform absolute continuity can be thought as a kind of uniform σ -order continuity in
quasi-Banach function spaces. In fact, the (uniform) absolute continuity of a singleton {g} is
equivalent to the σ -order continuity of the element g. Moreover, it can be also described in
terms of decreasing sequences or disjoint sequences of sets.



Lemma 3.1 Let E be a quasi-Banach function space with respect to μ and g ∈ E . The
following conditions are equivalent.

1) g ∈ Ea .

2) limμ(A)→0 ‖gχA‖E = 0.
3) limn→∞

∥
∥gχAn

∥
∥

E = 0 for every decreasing sequence (An)n ⊆ Σ with μ(An) → 0.
4) limn→∞

∥
∥gχBn

∥
∥

E = 0 for every disjoint sequence (Bn)n ⊆ Σ.

Proof 1) ⇒ 2) Suppose that 2) is false. Then there exist ε > 0 and a sequence (Cn)n ⊆ Σ

with μ(Cn) < 1
2n and

∥
∥gχCn

∥
∥

E ≥ ε for all n = 1, 2, . . . Take the subsets An := ⋃
k≥n Ck

and the functions gn := |g|χAn for all n = 1, 2, . . . Note that (An)n is decreasing and
μ(An) ≤ 1

2n−1 → 0, as n → ∞. Therefore, (gn)n is decreasing, gn → 0 μ-a.e. and
gn ≤ |g|, but ‖gn‖E = ∥

∥gχAn

∥
∥

E ≥ ∥
∥gχCn

∥
∥

E ≥ ε for all n = 1, 2, . . . which contradicts
1).
2) ⇒ 3) Evident.
3) ⇒ 4) Let (Bn)n ⊆ Σ a disjoint sequence. Take An := ⋃

k≥n Bk for all n = 1, 2, . . . Thus
(An)n is a decreasing sequence in Σ and μ(An) → 0 as n → ∞. Moreover

∥
∥gχBn

∥
∥

E ≤∥
∥gχAn

∥
∥

E → 0, and the conclusion follows.
4) ⇒ 1)Let (gn)n be a disjoint sequence in [0, |g|]. Put Bn := [|gn | 
= 0] for all n = 1, 2, . . .
Evidently (Bn)n is a disjoint sequence and 0 ≤ gn = gnχBn ≤ |g|χBn for all n = 1, 2, . . .
Thus ‖gn‖E ≤ ∥

∥gχBn

∥
∥

E → 0, which implies that ‖gn‖E → 0. According to Remark 3.3
this means that g ∈ Ea . �

Actually, uniform absolute continuity can be described in terms of decreasing sequences
or disjoint sequences of sets for any set H and not only for singletons.

Lemma 3.2 Let E be a quasi-Banach function space with respect to μ and H ⊆ E . The
following conditions are equivalent.

1) H is uniformly absolutely continuous.
2) limn→∞ sup f ∈H

∥
∥ f χAn

∥
∥

E = 0 for every decreasing sequence (An)n ⊆ Σ with
μ(An) → 0.

3) limn→∞ sup f ∈H

∥
∥ f χBn

∥
∥

E = 0 for every disjoint sequence (Bn)n ⊆ Σ.

Moreover, if any of the above conditions is satisfied, then H ⊆ Ea .

Proof First, note that Lemma 3.1 guarantees that H ⊆ Ea provided it satisfies any of the
above conditions.
1) ⇒ 2) Evident.
2) ⇒ 1) Suppose that 1) is false. Then there exist ε > 0, a sequence ( fn)n ⊆ H and
another sequence (Cn)n ⊆ Σ with μ(Cn) < 1

2n and
∥
∥ fnχCn

∥
∥

E ≥ ε for all n = 1, 2, . . .
Take An := ⋃

k≥n Ck for all n = 1, 2, . . . Note that (An)n is decreasing and μ(An) ≤
1

2n−1 → 0, as n → ∞. On the other hand, | fn | χAn ≥ | fn | χCn for all n = 1, 2, . . . and then∥
∥ fnχAn

∥
∥

E ≥ ∥
∥ fnχCn

∥
∥

E ≥ ε for all n = 1, 2, . . . which contradicts 2).
2) ⇒ 3) Proceed as in the implication 3) ⇒ 4) of Lemma 3.1.
3) ⇒ 2) Assume that 2) is false. Then, there exist ε > 0, a sequence ( fn)n ⊆ H and
a decreasing sequence (An)n ⊆ Σ with μ(An) → 0, such that

∥
∥ fnχAn

∥
∥

E > ε for all
n = 1, 2, . . . By Lemma 3.1,

∥
∥ f1χAn

∥
∥

E → 0. Then there exists n1 ≥ 1 such that

∥
∥
∥ f1χAn1

∥
∥
∥

E
<

1

KE

(∥∥ f1χA1

∥
∥

E − ε
)

> 0.



Put B1 := A1�An1 . Then f1χB1 = f1χA1 − f1χAn1
and having in mind that K E is the

quasi-norm constant of E we get

∥
∥ f1χB1

∥
∥

E ≥ 1

KE

∥
∥ f1χA1

∥
∥

E −
∥
∥
∥ f1χAn1

∥
∥
∥

E
>

ε

KE
.

Again, Lemma 3.1 says that
∥
∥ fn1χAn

∥
∥

E → 0. Then there exists n2 > n1 such that
∥
∥
∥ fn1χAn2

∥
∥
∥

E
<

1

KE

(∥
∥
∥ fn1χAn1

∥
∥
∥

E
− ε

)
> 0.

Put B2 := An1�An2 . Then fn1χB2 = fn1χAn1
− fn1χAn2

, and consequently

∥
∥ fn1χB2

∥
∥

E ≥ 1

KE

∥
∥
∥ fn1χAn1

∥
∥
∥

E
−

∥
∥
∥ fn1χAn2

∥
∥
∥

E
>

ε

KE
.

By continuing in this way we construct a sequence ( fnk )k ⊆ H and a disjoint sequence
(Bk)k ⊆ Σ such that

∥
∥ fnk χBk+1

∥
∥

E > ε
KE

for all k = 1, 2, . . . which contradicts the
hypothesis 3). �

We are now in a position to clarify the relationships that the four concepts introduced in
Definition 3.1 possess in quasi-Banach function spaces.

Proposition 3.1 (see [20, Lemma 2.37]) Let E be a quasi-Banach function space with respect
to μ and let H ⊆ E . Consider the following conditions:

1) H is almost order bounded.
2) H is (quasi-norm) bounded and uniformly absolutely continuous.
3) H is L-weakly compact.
4) H is uniformly integrable.

Then 1) ⇒ 2) ⇔ 3) ⇒ 4). Moreover, if L∞(μ) ⊆ Ea, then 4) ⇒ 1). In particular, if E is
σ -order continuous then all conditions 1) − 4) are equivalent.

Proof 1) ⇒ 2) As we have said in Remark 3.1, H is a (quasi-norm) bounded set. To show
that it is also uniformly absolutely continuous take any ε > 0 and let 0 < g ∈ Ea be
such that H ⊆ [−g, g] + ε

2KE
BE . Now, by using Lemma 3.1, there exists δ > 0 such that

‖gχA‖E < ε
2KE

for all A ∈ Σ with μ(A) < δ. On the other hand, for every f ∈ H there

exists h ∈ BE such that
∣
∣
∣ f − ε

2KE
h
∣
∣
∣ ≤ g. Thus, if A ∈ Σ and μ(A) < δ, we have

‖ f χA‖E ≤ KE

∥
∥
∥
∥ f χA − ε

2KE
hχA

∥
∥
∥
∥

E
+ K E

∥
∥
∥
∥

ε

2KE
hχA

∥
∥
∥
∥

E

≤ KE ‖gχA‖E + K E
ε

2KE
‖hχA‖E ≤ ε.

2) ⇒ 3) Let ( fn)n be a disjoint sequence in the solid hull of H . Then there exist gn ∈ H
such that | fn | ≤ |gn | for all n = 1, 2, . . . Put Bn := [| fn | 
= 0] for all n = 1, 2, . . . We have
| fn | = | fn |χBn ≤ |gn |χBn for all n = 1, 2, . . . and hence

‖ fn‖E ≤ ∥
∥gnχBn

∥
∥

E ≤ sup
g∈H

∥
∥gχBn

∥
∥

E → 0

by Lemma 3.2, which proves 3).
3) ⇒ 2) Take a disjoint sequence (Bn)n in Σ. For every n = 1, 2, . . . choose fn ∈ H
such that sup f ∈H

∥
∥ f χBn

∥
∥

E ≤ ∥
∥ fnχBn

∥
∥

E + 1
n . Then the conclusion follows by Lemma 3.2



because the disjoint sequence
(

fnχBn

)
n belongs to the solid hull of H and so,

∥
∥ fnχBn

∥
∥

E → 0
as n → ∞.

2) ⇒ 4) Suppose that H is (quasi-norm) bounded and uniformly absolutely continuous.
Let us put M := sup f ∈H ‖ f ‖E < ∞. Now, by taking into account that the inequality
cχ[| f |>c] ≤ | f |χ[| f |>c] holds for all c > 0 and f ∈ E, we get

c
∥
∥χ[| f |>c]

∥
∥

E ≤ ∥
∥ f χ[| f |>c]

∥
∥

E ≤ ‖ f ‖E ≤ M

for all c > 0 and all f ∈ H . Therefore

∥
∥χ[| f |>c]

∥
∥

E ≤ M

c
(3.1)

for all c > 0 and all f ∈ H .Moreover, given ε > 0 there exists δ > 0 such that ‖ f χA‖E < ε

for all f ∈ H and A ∈ Σ, with μ(A) < δ. Then, taking into account Lemma 2.1, for this
δ > 0 there exists δ1 > 0 such that μ(A) < δ for all A ∈ Σ with ‖χA‖E < δ1. Now choose
c1 > 0 such that M

c1
< δ1. If c ≥ c1, according to (3.1), for each f ∈ H we have

∥
∥χ[| f |>c]

∥
∥

E ≤ M

c
≤ M

c1
< δ1,

and accordingly μ ([| f | > c]) < δ. Thus
∥
∥ f χ[| f |>c]

∥
∥

E < ε for all f ∈ H and c ≥ c1 and
4) is proved.
4) ⇒ 1) Let us suppose now that L∞(μ) ⊆ Ea . If H is uniformly integrable, given ε > 0
there exists c > 0 such that

∥
∥ f χ[| f |>c]

∥
∥

E < ε for all f ∈ H . Then, for any f ∈ H we have
f = f χ[| f |≤c] + f χ[| f |>c]. But f χ[| f |≤c] ∈ [−cχΩ, cχΩ ] and f χ[| f |>c] ∈ εBE . Thus H is
almost order bounded because χΩ ∈ Ea . �

Now we are going to relate the four concepts mentioned above to compactness. The first
link is a direct consequence of the concept of relative compactness in quasi-Banach lattices.

Lemma 3.3 Let E be a quasi-Banach lattice. Every relatively compact set H in Ea is almost
order bounded.

Proof Let ε > 0. There exist x1, . . . , xn in H such that H ⊆ ⋃n
i=1(xi + εBE ). Taking

x := max{|x1|, . . . , |xn |}, it follows that H ⊆ [−x, x] + εBE and x ∈ Ea since Ea is an
order ideal. Therefore H is almost order bounded. �

The next Proposition 3.2 and Corollary 3.1 are partially inspired by [3]. In particular,
the equivalence 1) ⇔ 5) was proved there (see [3, Lemma 3.15 and Theorem 3.17]) under
the implicit assumption that E has the sequential Fatou property. In the context of Banach
function spaces with the Fatou property, the equivalence 1) ⇔ 5) is also described in [2,
Chap. 1, Exercise 8].

Proposition 3.2 Let E be a quasi-Banach function space with respect to μ. Let ( fn)n ⊆ Ea,

and f ∈ L0(μ). Consider the following conditions:

1) f ∈ E, and ‖ fn − f ‖E → 0.
2) fn converges to f in L0 (μ) and { fn : n ≥ 1} is almost order bounded.
3) fn converges to f in L0 (μ) and { fn : n ≥ 1} is L-weakly compact.
4) fn converges to f in L0 (μ) and { fn : n ≥ 1} is uniformly integrable.
5) fn converges to f in L0 (μ) and { fn : n ≥ 1} is uniformly absolutely continuous.

Then 5) ⇒ 1) ⇒ 2) ⇒ 3) ⇒ 4). Moreover, if L∞(μ) ⊆ Ea, then all conditions 1) − 5) are 
equivalent.



Proof 5) ⇒ 1) It is enough to prove the following

Fact. Any subsequence of ( fn)n has another Cauchy subsequence.

Let us take a subsequence (gn)n of ( fn)n . Then gn converges to f in L0 (μ) and therefore it
has another subsequence (hn)n such that hn converges to f μ-a.e. Let us check that (hn)n is
a Cauchy sequence in E . Note that the set {hn : n ≥ 1} is uniformly absolutely continuous.
Then, given ε > 0, there exists δ > 0 such that

‖hnχA‖E <
ε

3K 2
E

(3.2)

for all n = 1, 2, . . . and all A ∈ Σ, with μ(A) < δ. Since μ is a finite measure, the Egoroff
theorem ensures that there exists a measurable set Aδ, with μ(Aδ) < δ, such that hn → f
uniformly on Ω�Aδ. Then there exists n0 ≥ 1 such that

|hn − hk | χΩ�Aδ ≤ ε

3KE ‖χΩ‖E
χΩ�Aδ for all n, k ≥ n0. (3.3)

Now, if n, k ≥ n0, by using (3.2) and (3.3) we obtain

‖hn − hk‖E ≤ KE
∥
∥(hn − hk) χAδ

∥
∥

E + K E
∥
∥(hn − hk) χΩ�Aδ

∥
∥

E

≤ K 2
E

∥
∥hnχAδ

∥
∥

E + K 2
E

∥
∥hkχAδ

∥
∥

E + K E
ε

3KE ‖χΩ‖E

∥
∥χΩ�Aδ

∥
∥

E < ε.

From the Fact and Lemma 2.1 it follows that f ∈ E and also that any subsequence (gn)n of
( fn)n has another subsequence (hn)n such that ‖hn − f ‖E → 0 as n → ∞. This is enough
to prove that ‖ fn − f ‖E → 0 as n → ∞.

1) ⇒ 2)The convergence of ( fn)n to f in E implies that the set { fn : n ≥ 1} in Ea is relatively
compact in E and hence almost order bounded by Lemma 3.3. Moreover, Lemma 2.1 ensures
that fn → f in L0(μ).

The implications 2) ⇒ 3) ⇒ 4) ⇒ 5) follow fromProposition 3.1. Todeduce the implication
4) ⇒ 5) from Proposition 3.1 we need to assume that L∞(μ) ⊆ Ea . �

Corollary 3.1 Let E be a quasi-Banach function space with respect to μ, and let H ⊆ Ea .

Consider the following conditions:

1) H is relatively compact in E .

2) H is relatively compact in L0 (μ) and almost order bounded.
3) H is relatively compact in L0 (μ) and L-weakly compact.
4) H is relatively compact in L0 (μ) and uniformly integrable.
5) H is relatively compact in L0 (μ) and uniformly absolutely continuous.

Then 5) ⇒ 1) ⇒ 2) ⇒ 3) ⇒ 4). Moreover, if L∞(μ) ⊆ Ea, then all conditions 1) − 5) are
equivalent.

Proof 5) ⇒ 1) Take a sequence ( fn)n ⊆ H . Since H is relatively compact in L0 (μ) there
exists a subsequence ( fnk )k of ( fn)n and a function f ∈ L0(μ) such that fnk → f in L0(μ).

Clearly this sequence ( fnk )k is uniformly absolutely continuous. Then, Proposition 3.2 tells
us that f ∈ E and

∥
∥ fnk − f

∥
∥

E → 0. That is, H is relatively compact in E .

1) ⇒ 2) Apply Lemmas 2.1 and 3.3.
The implications 2) ⇒ 3) ⇒ 4) ⇒ 5) follow fromProposition 3.1. Todeduce the implication
4) ⇒ 5) from Proposition 3.1 we need to assume that L∞(μ) ⊆ Ea . �



Let m : Σ → X be a countably additive vector measure with values in a real
Banach space X . The semivariation of m is the subadditive set function defined on Σ by
‖m‖(A) := sup{|〈m, x∗〉|(A) : x∗ ∈ BX∗ }, where |〈m, x∗〉| denotes the variation of the
scalar measure 〈m, x∗〉 : Σ → R given by 〈m, x∗〉(A) := 〈m(A), x∗〉 for all A ∈ Σ,

and X∗ is the continuous dual of X . A set A ∈ Σ is called m-null if ‖m‖(A) = 0. On
the space L0(m) of (m-a.e. equivalence classes of) measurable functions f : Ω −→ R

we will consider the topology of convergence in measure with respect to ‖m‖, that is, a
sequence ( fn)n of measurable functions converges to a measurable function f if and only
if limn→∞ ‖m‖ ([| fn − f | > ε]) = 0 for all ε > 0. A measure μ := |〈m, x∗〉| , where
x∗ ∈ BX∗ , that is equivalent to m (in the sense that ‖m‖(A) → 0 if and only if μ(A) → 0)
is called a Rybakov control measure for m. Such a measure always exists (see [9, Theorem
2, p. 268]). Note that L0 (m) = L0(μ) holds, and also that the corresponding topologies of
convergence in measure coincide.

Given a measurable function f : Ω −→ R, we will consider its distribution function
(with respect to the semivariation ‖m‖)

‖m‖ f : t ∈ [0,∞) −→ ‖m‖ f (t) := ‖m‖ ([| f | > t]) ∈ [0,∞).

This distribution function ‖m‖ f has similar properties as the distribution function with
respect to a positive scalar measure (see [11]). For instance, it is bounded, non-increasing
and right-continuous. Denote by L1(‖m‖) the space of all functions f ∈ L0(m) such that
the (Lebesgue) integral

∫ ∞
0 ‖m‖ f (t)dt < ∞. Then L1(‖m‖), with the lattice quasi-norm

given by

‖ f ‖L1(‖m‖) :=
∫ ∞

0
‖m‖ f (t)dt

and the usual m-a.e. order, becomes a quasi-Banach function space with respect to any
Rybakov control measure of m. Moreover L1(‖m‖) has the sequential Fatou property (see
[5, Proposition 3.1]), and is σ -order continuous (see [5, Proposition 3.6]). It is straightforward
to see that the quasi-norm constant of L1(‖m‖) is less than or equal to two. Finally note that
the following inclusions

L∞(m) ⊆ L1 (‖m‖) ⊆ L0 (m) (3.4)

are both continuous.
We finish this section by collecting together all the information that our general Proposi-

tions 3.1 and 3.2 provide about relatively compact subsets of L1(‖m‖).
Corollary 3.2 Let m : Σ → X be a vector measure. The following assertions are equivalent
for every subset H ⊆ L1 (‖m‖) :
1) H is almost order bounded.
2) H is (quasi-norm) bounded and uniformly absolutely continuous.
3) H is L-weakly compact.
4) H is uniformly integrable.

Corollary 3.3 Let m : Σ → X be a vector measure. The following assertions are equivalent
for every subset H ⊆ L1 (‖m‖) :
1) H is relatively compact in L1 (‖m‖) .

2) H is relatively compact in L0 (m) and almost order bounded.
3) H is relatively compact in L0 (m) and L-weakly compact.
4) H is relatively compact in L0 (m) and uniformly integrable.
5) H is relatively compact in L0 (m) and uniformly absolutely continuous.



4 Orlicz spaces associated to a quasi-Banach function space

The Orlicz spaces associated to a quasi-Banach function space were introduced and studied
in [7]. In this section we investigate inclusions between such spaces. They possess a certain
compactness property which will be very useful in the next section.

We recall that a Young function is any function Φ : [0,∞) −→ [0,∞) which is strictly
increasing, convex, Φ(0) = 0, and limx→∞ Φ(x) = ∞. A Young function Φ satisfies the
following useful inequalities: for x ≥ 0, we have

Φ(αx) ≤ α Φ(x) if 0 ≤ α ≤ 1, (4.1)

Φ(αx) ≥ α Φ(x) if α ≥ 1. (4.2)

We call a Young functionΦ anN-function (in that case we will writeΦ ∈ N ) if it satisfies
the limit conditions limx→0

Φ(x)
x = 0 and limx→∞ Φ(x)

x = ∞. Note that Φp(x) := x p are
Young functions for all p ≥ 1, but they are N-functions only if p > 1.

A Young function Φ has the Δ2-property if and only if there exists a real number C > 0
such that Φ(2x) ≤ CΦ(x) for all x ≥ 0. In such a case we will write Φ ∈ Δ2. Note that
Φp(x) = x p has trivially the Δ2-property for all p ≥ 1.

LetΦ be a Young function and E be a quasi-Banach function space with respect toμ. The
Orlicz space EΦ consists of those functions f ∈ L0(μ) for which the Luxemburg quasi-norm
‖ f ‖EΦ < ∞, where

‖ f ‖EΦ := inf

{

c > 0 : Φ

( | f |
c

)

∈ E with

∥
∥
∥
∥Φ

( | f |
c

)∥
∥
∥
∥

E
≤ 1

}

. (4.3)

TheOrlicz space EΦ equippedwith the Luxemburg quasi-norm is actually a quasi-Banach
function spacewith respect toμ. Itsmain properties have been studied in [7]. For our purposes
we only need to remind the following ones:

Proposition 4.1 (see [7]) Let E be a quasi-Banach function space with respect to μ and let
Φ be a Young function.

1) For all A ∈ Σ with μ(A) > 0, ‖χA‖EΦ = 1

Φ−1
(

1
‖χA‖E

) .

2) If f ∈ EΦ with ‖ f ‖EΦ < 1, then Φ(| f |) ∈ E and ‖Φ(| f |)‖E ≤ ‖ f ‖EΦ .

3) If Φ ∈ Δ2 and E is σ -order continuous, then EΦ is σ -order continuous.

Using Lemma 3.1 and Proposition 4.1, we can establish the relationships between the
order continuous parts of E and EΦ.

Proposition 4.2 Let E be a quasi-Banach function space with respect to μ and let Φ be a
Young function.

1) L∞(μ) ⊆ (
EΦ

)
a if and only if L∞(μ) ⊆ Ea .

2) If L∞(μ) ⊆ Ea, then
(
EΦ

)
a ⊆ (Ea)Φ .

3) If L∞(μ) ⊆ Ea and Φ ∈ Δ2, then
(
EΦ

)
a = (Ea)Φ .

Proof 1) We have to check that χΩ ∈ (
EΦ

)
a if and only if χΩ ∈ Ea, or equivalently (see

Lemma 3.1) that limμ(A)→0 ‖χA‖EΦ = 0 if and only if limμ(A)→0 ‖χA‖E = 0. But this is
immediate from 1) of Proposition 4.1 since limx→∞ Φ−1(x) = limx→∞ Φ(x) = ∞.

2) First, note that L∞(μ) ⊆ Ea guarantees that Ea is a quasi-Banach function space.
If f ∈ (

EΦ
)

a , then limμ(A)→0 ‖ f χA‖EΦ = 0 by applying Lemma 3.1. Keeping



in mind 2) of Proposition 4.1, it follows that limμ(A)→0 ‖Φ(| f |χA)‖E = 0, that is,
limμ(A)→0 ‖Φ(| f |)χA‖E = 0. Thus, by applying again Lemma 3.1, we have Φ(| f |) ∈ Ea

which implies that f ∈ (Ea)Φ.

3) First note that by 2) it only remains to check the inclusion (Ea)Φ ⊆ (
EΦ

)
a and that (Ea)Φ

is a (closed) order ideal of EΦ. Evidently (Ea)Φ ⊆ EΦ. Moreover, by 3) of Proposition 4.1,
(Ea)Φ is σ -order continuous. Hence, (Ea)Φ ⊆ (

EΦ
)

a . �
It is possible to consider different partial ordering relations between Young functions and

they are useful in dealing with embeddings of Orlicz spaces. Here are some of these relations
(see [21, Section 2.2]).

Definition 4.1 We will write for any two Young functions Φ0 and Φ1

a) Φ1 ≺ Φ0 if there exist ε > 0 and x0 ≥ 0 such that Φ1(x) ≤ Φ0(εx), for all x ≥ x0.
b) Φ1 ≺≺ Φ0 if for each ε > 0, there exists xε ≥ 0 such that Φ1(x) ≤ Φ0(εx), for all

x ≥ xε.

Observe that if Φ is an N-function, then Φ ≺ Φ is always satisfied but Φ ≺≺ Φ is never
possible (see [21, §2.2 Theorem 2] for complete characterizations of relations ≺ and ≺≺ ).
The following inclusion result will be crucial in what follows.

Proposition 4.3 Let E be a quasi-Banach function space with respect to μ and let Φ0 and
Φ1 be two Young functions.

1) If Φ1 ≺ Φ0, then EΦ0 ⊆ EΦ1 and this inclusion is continuous.
2) If Φ1 ≺≺ Φ0 and L∞(μ) ⊆ Ea, then EΦ0 ⊆ EΦ1 and this inclusion is L-weakly

compact, that is, every (quasi-norm) bounded subset of EΦ0 is an L-weakly compact
subset of EΦ1 .

Proof 1) By hypothesis, there exist ε > 0 and x0 ≥ 0 such that Φ1(x) ≤ Φ0(εx), for all
x ≥ x0. We are going to prove that

‖ f ‖EΦ1 ≤ 2Mε ‖ f ‖EΦ0

for all f ∈ EΦ0 , where M := K E (Φ1(x0)‖χΩ‖E + 1) ≥ 1, whereby the continuous
inclusion EΦ0 ⊆ EΦ1 follows.

Take f ∈ EΦ0 and let c > 0 such that
∥
∥
∥Φ0

( | f |
c

)∥
∥
∥

E
≤ 1. Consider the measurable set

A := [| f | < εx0c] and note that | f |χA
εc ≤ x0 and similarly | f |χΩ�A

εc ≥ x0χΩ�A. It follows
that

Φ1

( | f | χA

εc

)

≤ Φ1 (x0) , (4.4)

Φ1

( | f | χΩ�A

εc

)

≤ Φ0

( | f | χΩ�A

c

)

≤ Φ0

( | f |
c

)

. (4.5)

Then, by using the convexity of Φ1 and according to the inequalities (4.1), (4.4) and (4.5),
we obtain

∥
∥
∥
∥Φ1

( | f |
2Mεc

)∥
∥
∥
∥

E
≤ 1

M

∥
∥
∥
∥Φ1

( | f |
2εc

)∥
∥
∥
∥

E
= 1

M

∥
∥
∥
∥Φ1

( | f | χA

2εc
+ | f | χΩ�A

2εc

)∥
∥
∥
∥

E

≤ K E

2M

∥
∥
∥
∥Φ1

( | f | χA

εc

)∥
∥
∥
∥

E
+ KE

2M

∥
∥
∥
∥Φ1

( | f | χΩ�A

εc

)∥
∥
∥
∥

E



≤ K E

2M
Φ1(x0)‖χΩ‖E + KE

2M

∥
∥
∥
∥Φ0

( | f |
c

)∥
∥
∥
∥

E

≤ K E

2M
(Φ1(x0)‖χΩ‖E + 1) = 1

2
≤ 1.

Thus, from definition (4.3), we conclude that ‖ f ‖EΦ1 ≤ 2Mεc and hence

‖ f ‖EΦ1 ≤ 2Mε ‖ f ‖EΦ0 ,

as we wanted to see.
2) Let H be a (quasi-norm) bounded subset of EΦ0 and let M := sup f ∈H ‖ f ‖EΦ0 < ∞.

We must show that H is an L-weakly compact subset of EΦ1 or, equivalently, almost order
bounded by Proposition 3.1 and 1) of Proposition 4.2. Of course, it is enough to prove

that H ′ :=
{

h
M+1 : h ∈ H

}
is almost order bounded, that is, for every ε > 0 there exists

0 < g ∈ (
EΦ1

)
a such that H ′ ⊆ [−g, g] + εBEΦ1 .

Thus, given ε > 0, by applying the hypothesis Φ1 ≺≺ Φ0 there exists yε > 0 such that
Φ1

( y
ε

) ≤ Φ0(y), for all y ≥ yε. Take g := yεχΩ and note that

0 < g ∈ L∞(μ) ⊆ (
EΦ1

)
a

by1) ofProposition4.2.Now, let us take any f ∈ H ′, inwhich case,wehave‖Φ0 (| f |)‖E ≤ 1
by 2) of Proposition 4.1. Moreover, we can write

f = f χ[| f |≤yε] + f χ[| f |>yε]. (4.6)

On one hand,
∣
∣ f χ[| f |≤yε]

∣
∣ ≤ yεχ[| f |≤yε] ≤ g, and so

f χ[| f |≤yε] ∈ [−g, g]. (4.7)

On the other hand, Φ1

( | f |χ[| f |>yε ]
ε

)
≤ Φ0

(| f |χ[| f |>yε]
) ≤ Φ0 (| f |) , and so

∥
∥
∥
∥
∥
Φ1

(∣
∣ f χ[| f |>yε]

∣
∣

ε

)∥
∥
∥
∥
∥

E

≤ ‖Φ0 (| f |)‖E ≤ 1.

Definition (4.3) tells us that
∥
∥ f χ[| f |>yε]

∥
∥

EΦ1 ≤ ε and so

f χ[| f |>yε] ∈ εBEΦ1 . (4.8)

Finally, from (4.6), (4.7) and (4.8) the conclusion follows. �
Remark 4.1 We already knew that the inclusion EΦ ⊆ E was continuous for every quasi-
Banach function space E and every Young function Φ (see [7, Proposition 4.4 and Remark
4.7]). Furthermore, if L∞(μ) ⊆ Ea and Φ ∈ N , this inclusion is in fact L-weakly compact.
Indeed, since Φ is an N -function, given ε > 0 there exists xε > 0 such that Φ(εx)

εx ≥ 1
ε
for

all x ≥ xε, which means Ψ ≺≺ Φ, where Ψ is the Young function given by Ψ (x) := x for
all x ≥ 0. By applying 2) of Proposition 4.3 we conclude that the inclusion EΦ ⊆ EΨ = E
is L-weakly compact.

5 A de la Vallée–Poussin theorem for quasi-Banach function spaces

We start this section by establishing a de la Vallée–Poussin theorem for general quasi-Banach
function spaces. This version generalizes the one obtained in [6, Theorem 4.1] when applied



to the Banach function space L1
w(m) of scalarly integrable functions with respect to a vector

measure m (see [7, Proposition 5.1]). Moreover, it can also be applied to the quasi-Banach
function space L1 (‖m‖) with respect to the semivariation of m. We need a previous result
borrowed from [7] about (quasi-norm) boundedness.

Proposition 5.1 (see [7, Lemma 4.9 and 4.10]) Let E be a quasi-Banach function space with
respect to μ and let H ⊆ L0 (μ) .

1) If Φ is a Young function and {Φ (| f |) : f ∈ H} is (quasi-norm) bounded in E, then H
is (quasi-norm) bounded in EΦ.

2) If Ψ is a Young function and H is (quasi-norm) bounded in EΨ , then there exists a Young
function Φ such that {Φ (| f |) : f ∈ H} is (quasi-norm) bounded in E .

Note that the Young function Φ of the previous item 2) can be chosen in N whenever
Ψ ∈ N , as it follows immediately from the proof of [7, Lemma 4.10].

Theorem 5.1 (de la Vallée–Poussin) Let E be a quasi-Banach function space with respect
to μ and let H ⊆ E . The following conditions are equivalent:

1) H is uniformly integrable in E .

2) There exists a non-decreasing, convex function Φ : [0,∞) −→ [0,∞) with
limx→∞ Φ(x)

x = ∞, such that {Φ(| f |) : f ∈ H} is a (quasi-norm) bounded subset
of E .

3) There exists an N-function Ψ such that H is a (quasi-norm) bounded subset of EΨ .

Proof 2) ⇒ 1) Let M := sup f ∈H ‖Φ(| f |)‖E < ∞. For a given ε > 0 let c ≥ 0 be such

that Φ(x) ≥ M
ε

x for x > c. Then for every f ∈ H

Φ (| f |) ≥ Φ(| f |χ[| f |>c]) ≥ M

ε
| f |χ[| f |>c],

that is, | f |χ[| f |>c] ≤ ε
M Φ(| f |). By taking quasi-norm, we get

∥
∥ f χ[| f |>c]

∥
∥

E ≤ ε

M
‖Φ(| f |)‖E ≤ ε

for every f ∈ H . Note that the convexity of Φ is not needed in this implication.
1) ⇒ 2) From the hypothesis we can select an increasing sequence 0 < c1 < c2 < · · · ↑ ∞
such that

∥
∥ f χ[| f |>cn ]

∥
∥

E ≤ 1

K n+1
E 2n

, (5.1)

for all n ≥ 1, and all f ∈ H . Let us define Φ(x) := ∑∞
k=1(x − ck)

+ for x ≥ 0, where

(x − c)+ =
{

x − c, x > c,

0, x ≤ c.

Then Φ : [0,∞) −→ [0,∞) is convex, non-decreasing and for x ≥ 2cn we have

Φ(x)

x
≥

n∑

k=1

(
1 − ck

x

)+ ≥ n

2
,

and so Φ meets the requirements of 2). We will check that Φ(| f |) ∈ E and ‖Φ(| f |)‖E ≤ 1 
for every f ∈ H . Note that, for all n ≥ 1 and every function f ∈ H we have

(| f | − cn)+ ≤ | f |χ[| f |>cn ] ∈ E .



Therefore, (| f | − cn)+ ∈ E and by taking into account (5.1), we get that

∞∑

n=1

K n
E

∥
∥(| f | − cn)+

∥
∥

E ≤
∞∑

n=1

K n
E

∥
∥ f χ[| f |>cn ]

∥
∥

E ≤ 1

KE

∞∑

n=1

1

2n
= 1

KE
< ∞.

According to [7, Theorem 3.1] the series
∑∞

n=1 (| f | − cn)+ converges in the quasi-norm
topology of E to some g ∈ E and

‖g‖E ≤ KE

∞∑

n=1

K n
E

∥
∥(| f | − cn)+

∥
∥

E ≤ 1.

By Lemma 2.1, the series
∑∞

n=1 (| f | − cn)+ also converges in measure to g. But by the
definition of Φ one has

∑∞
n=1 (| f | − cn)+ = Φ (| f |) μ-a.e. and so g = Φ (| f |) .

2) ⇒ 3) We know by applying [14, Theorem 3.3] that Φ is the principal part of some
N-function Ψ , which means that there exists x0 ≥ 0 such that Φ(x) = Ψ (x), for all
x ≥ x0. To prove that H is a (quasi-norm) bounded subset of EΨ it is enough to check that
{Ψ (| f |) : f ∈ H} is a (quasi-norm) bounded subset of E, by 1) of Proposition 5.1. Note that
Ψ (| f |) ≤ Φ(| f |)χ[| f |≥x0] + Ψ (x0)χ[| f |<x0], and then

‖Ψ (| f |)‖E ≤ KE
∥
∥Φ(| f |)χ[| f |≥x0]

∥
∥

E + K E
∥
∥Ψ (x0)χ[| f |<x0]

∥
∥

E

≤ KE ‖Φ(| f |)‖E + K E Ψ (x0) ‖χΩ‖E .

Thus, {Ψ (| f |) : f ∈ H} is (quasi-norm) bounded because {Φ(| f |) : f ∈ H} so is by hypoth-
esis.
3) ⇒ 2) It follows from 2) of Proposition 5.1. �

We present now some consequences of the above result. They ensure that any compact or
L-weakly compact subset of the order continuous part of a quasi-Banach function space E
is located into the space EΦ, for a certain N-function Φ ∈ Δ2. A key point in the arguments
is the next lemma which follows from Propositions 3.3, 3.4 and 3.7 of [6].

Lemma 5.1 For every N-function Ψ there exists another N-function Φ with the Δ2-property
such that Φ ≺≺ Ψ .

Corollary 5.1 Let E be a quasi-Banach function space with respect to μ such that L∞(μ) ⊆
Ea . A subset H ⊆ Ea is relatively compact if and only if there exists an N-function Φ ∈ Δ2

such that H is relatively compact in EΦ.

Proof One implication is trivial because the inclusion EΦ ⊆ E is continuous. On the other
hand, if H ⊆ Ea is relatively compact, then H is uniformly integrable in E and relatively
compact in measure by Corollary 3.1. Thus, the de la Vallée–Poussin Theorem 5.1 produces
an N-function Ψ such that H is (quasi-norm) bounded in EΨ . Now by applying Lemma 5.1
we know that there exists another N-function Φ ∈ Δ2 such that Φ ≺≺ Ψ and so EΨ ⊆ EΦ

and moreover this inclusion is L-weakly compact by 2) of Proposition 4.3. Thus H is L-
weakly compact in EΦ and relatively compact in measure. Note that L∞(μ) ⊆ (

EΦ
)

a by
Proposition 4.2 and H ⊆ (

EΦ
)

a by Remark 3.3. Hence, Corollary 3.1 guarantees that H is
relatively compact in EΦ. �
Corollary 5.2 Let E be a quasi-Banach function space with respect to μ such that L∞(μ) ⊆
Ea . A subset H ⊆ E is L-weakly compact if and only if there exists an N-function Φ ∈ Δ2

such that H is L-weakly compact in EΦ.



Proof The if part follows from Remark 4.1 because the inclusion EΦ ⊆ E is L-weakly
compact. In fact, it is enough to assume that H is (quasi-norm) bounded in E for this
implication. The assumption that Φ ∈ Δ2 is not needed for the above implication. On the
other hand, if H ⊆ E is L-weakly compact, then H is uniformly integrable byProposition 3.1.
Now, the argument of the proof of Corollary 5.1 ensures the existence of an N-function
Φ ∈ Δ2 such that H is an L-weakly compact subset of EΦ. �

Note that Corollary 5.1 extends [6, Corollary 4.7]. Moreover, when particularized to the
quasi-Banach function space L1(‖m‖), it provides the promised location of the relatively
compact subsets of L1(‖m‖) in a suitable Orlicz space

LΦ (‖m‖) := L1 (‖m‖)Φ

and the same occurs with Corollary 5.2 and L-weak compactness.

Corollary 5.3 Let m : Σ → X be a vector measure and H ⊆ L0(m).

1) H is relatively compact in L1 (‖m‖) if and only if there exists an N-function Φ ∈ Δ2

such that H is relatively compact in LΦ (‖m‖) .

2) H is L-weakly compact in L1 (‖m‖) if and only if there exists an N-function Φ ∈ Δ2

such that H is L-weakly compact in LΦ (‖m‖) .

By applying Corollary 5.1 to singletons we have

E =
⋃

Φ∈Δ2∩N
EΦ

for any quasi-Banach function space E such that L∞(μ) ⊆ Ea . In particular, this yields [6,
Corollary 4.2] and furthermore

L1 (‖m‖) =
⋃

Φ∈Δ2∩N
LΦ (‖m‖) .
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15. Leśnik, K., Maligranda, L., Tomaszewski, J.: Weakly compact sets and weakly compact pointwise mul-
tipliers in Banach function lattices. Preprint arXiv:1912.08164 [math.FA]

16. Luxemburg, W.A., Zaanen, A.C.: Compactness of integral operators in Banach function spaces. Math.
Ann. 149, 150–180 (1963)

17. Maligranda, L.: Orlicz Spaces and Interpolation, Seminários deMatemmática (Seminars inMathematics),
vol. 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989)

18. Meyer-Nieberg, P.: Banach Lattices. Springerz, Berlin (1991)
19. Meyer-Nieberg, P.: Zur schwachen Kompaktheit in Banachverbänden. Math. Z. 134, 303–315 (1973)
20. Okada, S., Ricker, W.J., Pérez, E.A.S.: Optimal Domain and Integral Extension of Operators Acting in

Function Spaces, Operator Theory: Advances andApplications, vol. 180. Birkhäuser Verlag, Basel (2008)
21. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Math-

ematics, 146. Marcel Dekker Inc, New York (1991)

http://arxiv.org/abs/1912.08164

	Compactness in quasi-Banach function spaces with applications to L1 of the semivariation of a vector measure
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 Compactness in quasi-Banach function spaces
	4 Orlicz spaces associated to a quasi-Banach function space
	5 A de la Vallée–Poussin theorem for quasi-Banach function spaces
	Acknowledgements
	References




