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1. Introduction. The interpolation of operators acting in Banach function
spaces has become a classic tool in mathematical analysis, and many important
theorems have been obtained in functional analysis using interpolation techniques.
Concerning real interpolation of Banach spaces, some relevant results involving
operators acting in the classical Lebesgue Lp-spaces have been extended to their
corresponding natural class of real interpolation spaces: the Lorentz spaces. In this
paper, the vector measure version of the Lp-spaces and the associated class of oper-
ators factoring through them are considered. Some effort has been made in recent
years to improve the knowledge on these spaces, concretely to investigate the role
of the Lp spaces of a vector measure in the factorization theorems for operators,
in comparison with the one played by the classical Lebesgue spaces, mainly in the
so-called Maurey-Rosenthal factorization theorems (see [7]).

In the vector valued context and after the work developed by several authors
(see [20, 12] and the references therein) we learned that the canonical operators
that factor through an Lp-space of a vector measure coincide with the operators
that can be extended to the p-th power of the Banach function space where the
operator acts. These operators are called p-th power factorable operators. For
example, for 1 ≤ p ≤ r an operator T : Lr[0, 1] −→ E is p-th power factorable if it
can be extended to an operator T̂ : L

r
p [0, 1] −→ E.

Consequently, the analysis of the vector valued version of these classical fac-
torization results is the study of the real interpolation of p-th power factorable
operators. That is, to analyze to what extent the analogies from the classical set-
ting of interpolation of operators and factorizations through Lorentz spaces can
be translated into the framework of spaces of vector measure integrable functions.
Motivated by the extension of some classical interpolation results to the vector
measure context, we will provide new factorization theorems through a new class
of (quasi-)Banach function spaces. As an application, we will use them to produce
some new results on factorization and extensions of operators acting on real inter-
polation spaces of classical Lebesgue Lp and Lorentz spaces with different weights.

Regarding the available tools, a concrete representation of the real interpolation
spaces of the spaces of p-integrable functions with respect to a vector measure has
been recently obtained (see [9]). The new relevant Lorentz space Lp,q(∥m∥) ap-
pears in it. This space is defined following the classical construction of the Lorentz
space, but the distribution function is defined by the (real valued) capacity ∥m∥
— the semivariation of the vector measure m. Since these spaces are in fact the
cornerstone of our construction, we will give more results on their geometric prop-
erties, and a characterization of what kind of Banach lattices can be represented as
Lorentz spaces of the semivariation of a vector measure. This will provide a new
representation theorem for this particular class of Banach lattices, which is one of
the main outcomes of the present paper.

2. Preliminaries and notation. Let (Ω,Σ, µ) be a finite measure space. A
Banach function space X over µ (B.f.s. for short) is an ideal of the space of
(equivalence classes of) measurable functions L0(µ) endowed with a complete norm
∥ · ∥X that is compatible with the µ-a.e. order and such that L∞(µ) ⊆ X ⊆ L1(µ)
(see [17, p. 28]). The topological dual is denoted by X∗. A B.f.s. X is order



continuous if for every sequence (fn)n in X such that 0 ≤ fn ↓ 0 pointwise we have
that ∥fn∥X ↓ 0. Let us show in this section several analytical concepts and tools
that will be used in the paper.

2.1. Lp-spaces of a vector measure. Let (Ω,Σ) be a measurable space and E
a real Banach space. Let m : Σ −→ E be a countably additive vector measure. For
every x∗ in the dual E∗ of E, let ⟨m,x∗⟩ be the scalar signed measure defined by
⟨m,x∗⟩(A) := ⟨m(A), x∗⟩, for all A ∈ Σ. The semivariation of m is the subadditive
real bounded set function ∥m∥ : A ∈ Σ −→ ∥m∥(A) ∈ [0,∞) defined by

∥m∥(A) = sup {|⟨m,x∗⟩| (A) : ∥x∗∥E∗ ≤ 1} ,

where |⟨m,x∗⟩| is the variation measure of ⟨m,x∗⟩. It is well-known that

1

2
∥m∥(A) ≤ sup{∥m(B)∥E : B ⊆ A,B ∈ Σ} ≤ ∥m∥(A),

for every set A ∈ Σ. A Rybakov (control) measure for m is a measure defined
as |⟨m,x∗⟩| for some x∗ ∈ E∗, satisfying that |⟨m,x∗⟩|(A) = 0 if and only if
∥m∥(A) = 0. Such a measure always exists (see [8, Theorem IX.2.2]).

Let us introduce now the basic notions of integration with respect to a vector
measure. The reader can find a complete analysis of these spaces in [20, Chapter 3].
A measurable function f : Ω −→ R is scalarly integrable if f ∈ L1(|⟨m,x∗⟩|) for all
x∗ ∈ E∗. The space consisting of all (equivalence classes of ∥m∥-a.e. equal) scalarly
integrable functions with respect to m is L1

w(m), which is a Banach function space
over every Rybakov (control) measure for m, with the sequential Fatou property,
and a weak unit, when equipped with the norm

∥f∥L1
w(m) := sup

{∫
Ω

|f | d|⟨m,x∗⟩| : ∥x∗∥E∗ ≤ 1

}
.

A function f ∈ L1
w(m) is said to be integrable with respect to m if for every A ∈ Σ

there exists an element of E denoted by

∫
A

f dm, such that⟨∫
A

f dm, x∗
⟩

=

∫
A

f d⟨m,x∗⟩, x∗ ∈ E∗.

The space of all (∥m∥-a.e. equivalence classes of) integrable functions with the
norm of L1

w(m) is denoted by L1(m). It is an order continuous ideal of L1
w(m),

and the integration map Im : f ∈ L1(m) −→ Im(f) :=

∫
Ω

f dm ∈ E is linear

and continuous. The definition of the corresponding Lp(m) spaces (1 < p < ∞)
is done in the natural way. A function f ∈ L1

w(m) is called scalarly p-integrable
with respect to m if |f |p ∈ L1

w(m), and p-integrable with respect to m whenever
|f |p ∈ L1(m). We denote by Lpw(m) and Lp(m) the corresponding spaces of (∥m∥-
a.e. equal equivalence classes of) scalarly p-integrable and p-integrable functions
with respect to m. These spaces are equipped with the norm

∥f∥Lp
w(m) = sup

{(∫
Ω

|f |p d|⟨m,x∗⟩|
) 1

p

: ∥x∗∥E∗ ≤ 1

}
.



Both spaces are p-convex (for the definition of p-convexity of Banach lattices see
[17, 1.d.3]). Finally L∞(m) denotes the Banach function space of the (∥m∥-a.e.
equal equivalence classes of) measurable functions that are ∥m∥-a.e. essentially
bounded.

2.2. Lorentz spaces of the semivariation of a vector measure. Let us
present here some fundamental known properties of the Lorentz space of the semi-
variation of a vector measure m. The reader can find a complete explanation of
these properties in [9, Section 4]. Suppose that 1 ≤ p, q ≤ ∞. The Lorentz space
Lp,q(∥m∥) is defined by all (∥m∥-a.e. equivalence classes of) measurable functions
f : Ω −→ R for which

∥f∥Lp,q(∥m∥) :=

(∫ ∞

0

(
s

1
p f∗(s)

)q ds
s

) 1
q

<∞, 1 ≤ q <∞, (2.1)

or ∥f∥Lp,∞(∥m∥) := sup
{
s

1
p f∗(s) : s > 0

}
< ∞, for q = ∞. In these formulas, f∗

is the decreasing rearrangement of the function f with respect to the semivaria-
tion ∥m∥. These functions (2.1) provide quasi-norms on the corresponding spaces
Lp,q(∥m∥), but they are equivalent to a norm for p > 1 and 1 ≤ q ≤ ∞. In this case,
more can be said: Lp,q(∥m∥) is a Banach lattice, that is reflexive (and then order
continuous) if 1 < p, q <∞ (see [9, Corollary 14] and [9, Corollary 18]). Moreover,
[9, Proposition 2] provides the following equivalent formula for the quasi-norm of
the Lorentz spaces. For 1 ≤ p, q <∞,

∥f∥Lp,q(∥m∥) =

(
p

∫ ∞

0

tq−1(∥m∥f (t))
q
p dt

) 1
q

, (2.2)

and ∥f∥Lp,∞(∥m∥) = sup
{
t∥m∥f (t)

1
p : t > 0

}
, for the case q = ∞. Here ∥m∥f ,

defined for t > 0 by the equality ∥m∥f (t) := ∥m∥([|f | > t]), is the distribution
function of the function f with respect to the semivariation ∥m∥, where [|f | > t]
denotes the measurable set {w ∈ Ω : |f(w)| > t}.

For a given vector measure m, the inclusions between the different Lorentz
spaces Lp,q(∥m∥) follow the same rule that for the case of finite scalar measures.
In particular Lp,q(∥m∥) ⊆ L1(m) for every 1 < p < ∞ and 1 ≤ q ≤ ∞. However,
the following inclusions are characteristic of the vector valued measure case (see [9,
Proposition 7]). For 1 ≤ p <∞, we have the continuous inclusions

Lp,1(∥m∥) ⊆ Lp,p(∥m∥) ⊆ Lp(m) ⊆ Lpw(m) ⊆ Lp,∞(∥m∥). (2.3)

To finish this summary, let us write the main real interpolation result for Lp-spaces
of a vector measure m (see [9, Corollary 17]), which is the main tool for much of
this paper.

Theorem 2.1. Suppose 0 < θ < 1 ≤ q ≤ ∞ and let 1 ≤ p0 ≠ p1 ≤ ∞. Then

(Lp0(m), Lp1(m))θ,q = (Lp0w (m), Lp1(m))θ,q = (Lp0w (m), Lp1w (m))θ,q = Lp,q(∥m∥),

where
1

p
=

1 − θ

p0
+

θ

p1
. All above equalities are topological.



3. Real interpolation and optimal domains. Let T : X −→ E be a Banach
space valued operator acting in an order continuous B.f.s. X. The expression
mT (A) := T (χA) defines a vector measure mT : Σ −→ E which is called the
vector measure associated to T. The operator T is said to be µ-determined if the
measures µ and mT have exactly the same null sets. When T is µ-determined,
the space L1(mT ) is an order continuous Banach function lattice on (Ω,Σ, µ), X
is continuously included into L1(mT ) via the natural inclusion

JT : f ∈ X −→ JT (f) := f ∈ L1(mT )

and the integration operator ImT
: L1(mT ) −→ E is the unique continuous linear

extension of T satisfying T = ImT ◦JT (see [5] or [20, Proposition 4.4]). Therefore,
if Y is another order continuous B.f.s such that X ⊆ Y ⊆ L0(µ) and T : Y −→ E
is a continuous linear extension of T, then Y ⊆ L1(mT ) continuously. In this sense,
it is said that L1(mT ) is the (order continuous) optimal domain for the operator
T.

Let us consider now an interpolation couple (X0, X1) of order continuous Banach
function spaces on the same finite measure space (Ω,Σ, µ), and an interpolation
couple (E0, E1) of Banach spaces. Take and admissible µ-determined operator T
between the couples (X0, X1) and (E0, E1), that is, an operator T : X0 + X1 −→
E0 + E1 such that its restrictions T0 := T |X0

: X0 −→ E0 and T1 := T |X1
:

X1 −→ E1 are continuous. Moreover, let Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q be
the interpolated operator for 0 < θ < 1 ≤ q < ∞, where (·, ·)θ,q denotes the real
interpolation method, and set mθ,q := mTθ,q

for all 0 < θ < 1 ≤ q < ∞. In this
situation we have the optimal domains L1(m0), L1(m1), and L1(mθ,q) correspond-
ing to the restricted µ-determined operators T0 : X0 −→ E0, T1 : X1 −→ E1

and Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q . The following result relates the real inter-

polation space
(
L1(m0), L1(m1)

)
θ,q

of the optimal domains of T0 and T1 with the

optimal domain L1(mθ,q) of the interpolated operator Tθ,q. The case of the complex
interpolation method was considered in [2, Theorem 3.1].

Theorem 3.1. If 0 < θ < 1 ≤ q < ∞, then
(
L1(m0), L1(m1)

)
θ,q

⊆ L1(mθ,q).

Moreover, this inclusion is continuous.

Proof. For i = 0, 1, the space Xi is continuously included into L1(mi), and
there exists a unique extension of Ti to L1(mi) given by the integration map Imi :
L1(mi) −→ Ei (see [5] or [20, Theorem 4.14]). Since Im0(φ) = Im1(φ) for every
simple function φ and the set of simple functions are dense in both spaces L1(m0)
and L1(m1), the map

T̂ : L1(m0) + L1(m1) −→ E0 + E1

given by T̂ (f) := Im0(f0) + Im1(f1) for f0 ∈ L1(m0), f1 ∈ L1(m1) is well-defined,
linear and continuous, that is, it is an operator.

The interpolated spaces (X0, X1)θ,q and
(
L1(m0), L1(m1)

)
θ,q

are both order

continuous, sinceX0, X1, L
1(m0) and L1(m1) are all order continuous (see Remarks



1.9 and 1.10 in [6, page 17]). The simple functions are also dense in both interpo-
lated spaces since they are dense in each intersection, X0∩X1 and L1(m0)∩L1(m1).
Moreover, the following inclusion (X0, X1)θ,q ⊆

(
L1(m0), L1(m1)

)
θ,q

holds. The

restriction of the interpolated operator T̂θ,q :
(
L1(m0), L1(m1)

)
θ,q

−→ (E0, E1)θ,q

to the space (X0, X1)θ,q clearly coincides with Tθ,q. In other words, T̂θ,q is a con-
tinuous linear extension of Tθ,q to the order continuous Banach function space(
L1(m0), L1(m1)

)
θ,q

. The optimality of the domain L1(mθ,q) for Tθ,q (see again

[5] or [20, Theorem 4.14]) gives the continuous inclusion
(
L1(m0), L1(m1)

)
θ,q

⊆
L1(mθ,q). 2

Remark 3.2. In general the inclusion
(
L1(m0), L1(m1)

)
θ,q

⊆ L1(mθ,q) is proper.

The example considered in [2, Remark 3.3] for the complex interpolation method,
also works in this case.

Next result is a consequence of the above theorem combined with the estimates
of the K-functional of p-convexifications of Banach function spaces obtained by
Maligranda in [19, Lemma 1 and Theorem 1].

Corollary 3.3. If 0 < θ < 1 ≤ q <∞, and 1 ≤ p <∞, then

(Lp(m0), Lp(m1))θ,q ⊆ Lp(mθ,q).

Proof. Since q ≤ p q, we have (Lp(m0), Lp(m1))θ,q ⊆ (Lp(m0), Lp(m1))θ,p q . Then

it is enough to prove that (Lp(m0), Lp(m1))θ,p q ⊆ Lp(mθ,q). We have to see that

|f |p ∈ L1(mθ,q) for a given f ∈ (Lp(m0), Lp(m1))θ,p q . By Theorem 3.1 we need

to prove |f |p ∈
(
L1(m0), L1(m1)

)
θ,q
. In order to obtain that, we use Maligranda’s

estimates. If f ∈ (Lp(m0), Lp(m1))θ,p q , then∫ ∞

0

(
K(t, |f |p, L1(m0), L

1(m1))

tθ

)q
dt

t
= p

∫ ∞

0

(
K(sp, |f |p, L1(m0), L

1(m1))

sp θ

)q
ds

s

by [19, Theorem 1] ≈
∫ ∞

0

(
K(s, |f |, Lp(m0), L

p(m1))
p

sp θ

)q
ds

s

=

∫ ∞

0

(
K(s, |f |, Lp(m0), L

p(m1))

sθ

)p q
ds

s
.

The last integral is finite, and so the proof is over. 2

4. Real interpolation of p-th power factorable operators. Let us start
with the real interpolated factorization theorems for p-th power factorable opera-
tors. Let X be an order continuous Banach function space over a finite measure µ
and T : X −→ E an operator on a Banach space E. The formula mT (A) := T (χA)
provides a (countably additive) vector measure in E associated to the operator T.
In order to avoid some technicalities, throughout the paper, every operator T will



be assumed to be µ-determined whenever a factorization is established, although
in most of the results this property is not needed.

As we said in the Introduction, the class of operators that factor through spaces
Lp(mT ) (for 1 ≤ p <∞) is the class of the so called p-th power factorable operators
(see [20, Chapter 5]). Recall that an operator T : X −→ E is said to be p-th power
factorable if there is a constant K > 0 such that

∥T (f)∥E ≤ K
∥∥∥|f | 1p ∥∥∥p

X
, f ∈ X. (4.1)

The expression (without constant) on the right hand side of inequality (4.1) is
in fact the quasi-norm on the space X[p] defined as the space of all f such that

|f |
1
p ∈ X. It is well-known that X ⊆ X[p] (see [20, Chapter 2]), and so it means

that the requirement given by the inequality (4.1) is more restrictive as p increases.
It is well-known that an operator T is p-th power factorable if and only if it factors
through Lp(mT ) as

X
T - E

JT

Lp(mT )

?
�
�
�
�

��3

ImT

See [20, Chapter 5] and also [2, 13, 14] for general information on these opera-
tors. Our aim is to analyze which additional information can be obtained by the
factorization of the operators through the corresponding Lorentz spaces of their
semivariations, that is obtained in a natural way when two p-th power factorable
operators are interpolated (see [2] for some related results for the complex inter-
polation method). Our main results provide factorizations through well described
Banach function spaces, that are the corresponding Lorentz spaces of their semi-
variations.

A consequence of Corollary 3.3 is that the real interpolated operator of two p-th
power factorable operators is also p-th power factorable.

Corollary 4.1. If T0 and T1 are p-th power factorable for some 1 < p <∞, then
Tθ,q is p-th power factorable for each 0 < θ < 1 ≤ q <∞.

Proof. Recall that an operator T : X −→ E is p-th power factorable if and only
if X ⊆ Lp(mT ). Then it is enough to check that (X0, X1)θ,q ⊆ Lp(mθ,q). But this
is clear taking into account that T0 and T1 are p-th power factorable by applying
Corollary 3.3. 2

Remark 4.2. Suppose as in the previous corollary that the operators T0 and T1
are both p-th power factorable for some 1 < p <∞. Since Lp(mθ,q) ⊆ Lr,q(∥mθ,q∥)
for all 1 < r < p and all 1 ≤ q <∞, we obtain the following commutative diagram



(X0, X1)θ,q
Tθ,q - (E0, E1)θ,q

JT

Lp(mθ,q) ⊆ Lr,q(∥mθ,q∥) ⊆ L1(mθ,q)

?

6ImΣ

Here mΣ denotes the measure associated to the operator T with values into the
sum space E0 + E1. Note that the restriction of the integration operator ImΣ :
L1(mΣ) −→ E0 + E1 to each L1(mθ,q) is just the integration operator Imθ,q

:
L1(mθ,q) −→ (E0, E1)θ,q.

Let us consider now the general situation. It is given by the case in which T0 is
p0-th power factorable and T1 is p1-th power factorable. For the aim of simplicity,
we will assume in this case that the range space is the same for both operators.
That is, we have a µ-determined operator T : X0 + X1 −→ E. Note that we have
only one vector measure

m : A ∈ Σ −→ m(A) := T (χA) ∈ E

associated to every restriction of T to any order continuous Banach function space
included into the sum X0+X1. The following result can be obtained by using direct
arguments of real interpolation of function spaces together with Theorem 2.1.

Theorem 4.3. Let 1 ≤ p0 ≠ p1 < ∞. If T0 is p0-th power factorable and T1 is
p1-th power factorable, then for each 0 < θ < 1 ≤ q <∞, the interpolated operator
Tθ,q factors through the following commutative diagram

(X0, X1)θ,q
Tθ,q - E,

JT

Lp,q(∥m∥)

?
�
�
�

�
��>

Im

where p > 1 is given by
1

p
=

1 − θ

p0
+

θ

p1
.

Proof. Using the hypothesis, we directly obtain the continuous inclusions Xk ⊆
Lpk(m) for k = 0, 1. Then we get that (X0, X1)θ,q ⊆ (Lp0(m), Lp1(m))θ,q for all
0 < θ < 1 ≤ q < ∞. Now, Theorem 2.1 gives (Lp0(m), Lp1(m))θ,q = Lp,q(∥m∥),

where
1

p
=

1 − θ

p0
+

θ

p1
, so we obtain the commutative diagram

(X0, X1)θ,q
Tθ,q - E,

JT

(Lp0(m), Lp1(m))θ,q = Lp,q(∥m∥) ⊆ L1(m)

?

6Im



and the proof is over. 2

Remark 4.4. Since p0 ̸= p1, we can assume for example that p0 < p1. Then
Lp1(m) ⊆ Lp,q(∥m∥) ⊆ Lp0(m). Thus, as a consequence of Theorem 4.3 we obtain
a factorization for the interpolated operator Tθ,q that is weaker than being p1-
th power factorable but stronger than being p0-th power factorable. In the next
section we will look specifically at operators with this property.

5. Lorentz factorable operators. Motivated by the results of the previous
section, we say that an operator T : X −→ E with values on a Banach space E
and acting in an order continuous Banach function space X over a finite measure
µ is (p, q)-Lorentz factorable, with 1 < p <∞, and 1 ≤ q <∞, if it factors through
the following commutative diagram

X
T - E,

JT

Lp,q(∥mT ∥)

? �
�
�
�

��3

ImT

where mT : Σ −→ E is the vector measure associated to T. This section is devoted
to study this kind of operators.

Remark 5.1. According to (2.3) we know that Lp,q(∥m∥) ⊆ Lp,p(∥m∥) ⊆ Lp(m),
for all 1 ≤ q ≤ p < ∞, and these inclusions are in general strict. Thus, to be
(p, q)-Lorentz factorable is stronger than being p-th power factorable.

In what follows we will need the following

Lemma 5.2. Let m : Σ −→ E be a vector measure and let φ be a simple function
taking values α0 = 0 < α1 < · · · < αn. Then, for 1 ≤ p, q <∞,

∥φ∥qLp,q(∥m∥) =
p

q

n∑
k=1

(
αqk − αqk−1

)
(∥m∥ ([φ ≥ αk]))

q
p . (5.1)

Proof. A simple computation shows that the distribution function with respect
to ∥m∥ of a simple function φ taking values α0 := 0 < α1 < · · · < αn is given by

∥m∥φ =
n∑
k=1

∥m∥ ([φ ≥ αk])χ[αk−1,αk). Since Lp,q(∥m∥) contains the simple func-



tions, we can compute its quasi-norm according to (2.2) as

∥φ∥qLp,q(∥m∥) = p

∫ ∞

0

tq−1 (∥m∥φ(t))
q
p dt

= p

∫ ∞

0

tq−1

(
n∑
k=1

∥m∥ ([φ ≥ αk])χ[αk−1,αk)(t)

) q
p

dt

= p

∫ ∞

0

tq−1
n∑
k=1

(∥m∥ ([φ ≥ αk]))
q
p χ[αk−1,αk)(t)dt

= p
n∑
k=1

(∥m∥ ([φ ≥ αk]))
q
p

∫ αk

αk−1

tq−1dt

=
p

q

n∑
k=1

(
αqk − αqk−1

)
(∥m∥ ([φ ≥ αk]))

q
p .

2

The next theorem is the main result of this section and provides a characteriza-
tion of the class of (p, q)-Lorentz factorable operators. In addition, it describes an
optimality property of Lorentz spaces of the semivariation Lp,q(∥m∥) associated to
this class of operators.

Theorem 5.3. Let X be an order continuous Banach function space over a finite
measure µ and let T : X −→ E be a Banach space valued operator. The following
assertions are equivalent.

(i) T is (p, q)-Lorentz factorable.

(ii) There is a constant K > 0 such that

(
n∑
k=1

(
αqk − αqk−1

) ∥∥T (χBk∩[|f |≥αk]

)∥∥ q
p

E

) 1
q

≤ K ∥f∥X (5.2)

for each f ∈ X and each pair of finite sequences α0 := 0 < α1 < · · · < αn
and B1, . . . , Bn in Σ, for all n ∈ N.

Moreover, in this case the space Lp,q(∥mT ∥) is optimal in the following sense: if
there is another Banach function space Z over µ such that X ⊆ Z and T can be ex-
tended as a (p, q)-Lorentz factorable operator T̃ : Z −→ E, then Z ⊆ Lp,q(∥mT ∥).

Proof. (ii)⇒(i) By Lemma 5.2 we know that for a simple function φ taking values
α0 := 0 < α1 < · · · < αn, its quasi-norm in the space Lp,q (∥mT ∥) is given by

∥φ∥qLp,q(∥mT ∥) =
p

q

n∑
k=1

(
αqk − αqk−1

)
(∥mT ∥ ([φ ≥ αk]))

q
p .



Then

∥φ∥qLp,q(∥mT ∥) =
p

q

n∑
k=1

(
αqk − αqk−1

)
(∥mT ∥ ([φ ≥ αk]))

q
p

≤ p

q

n∑
k=1

(αqk − αqk−1)2
q
p sup
Bk∈Σ

∥∥T (χBk∩[φ≥αk])
∥∥ q

p

E

=
p

q
2

q
p sup
Bk∈Σ

n∑
k=1

(αqk − αqk−1)
∥∥T (χBk∩[φ≥αk])

∥∥ q
p

E
≤ p

q
2

q
pKq∥φ∥qX .

The last inequality follows from (5.2). Now, if f ∈ X, there exists a sequence (φn)n
of simple function such that 0 ≤ φn ↑ |f | pointwise µ-a.e. In particular 0 ≤ φn ↑ |f |

pointwise ∥mT ∥-a.e. and ∥φn∥Lp,q(∥mT ∥) ≤
(
p
q

) 1
q

2
1
pK∥φn∥X ≤

(
p
q

) 1
q

2
1
pK∥f∥X .

Since Lp,q(∥mT ∥) has the sequential Fatou property (see [3, Proposition 3.1]) we

conclude that ∥f∥Lp,q(∥mT ∥) = sup
n

∥φn∥Lp,q(∥mT ∥) ≤
(
p

q

) 1
q

2
1
pK∥f∥X , and X ⊆

Lp,q(∥mT ∥). The commutativity of the diagram follows from the known facts that

Lp,q(∥mT ∥) ⊆ L1(mT ), and T (f) =

∫
Ω

fdmT , for all f ∈ X.

(i)⇒(ii) Take a function f ∈ X, a finite sequence α0 := 0 < α1 < · · · < αn, and a
finite sequence B1, . . . , Bn in Σ. From the inclusion X ⊆ Lp,q(∥mT ∥) there exists a
constant M > 0 such that ∥f∥Lp,q(∥mT ∥) ≤M∥f∥X . Consider the simple function

φ :=

n∑
k=1

αk−1χ[αk>|f |≥αk−1] + αnχ[|f |≥αn].

Note that 0 ≤ φ ≤ |f | and [|f | ≥ αk] = [φ ≥ αk] for all k = 1, . . . , n. Then

n∑
k=1

(
αqk − αqk−1

) ∥∥T (χBk∩[|f |≥αk]

)∥∥ q
p

E
=

n∑
k=1

(
αqk − αqk−1

) ∥∥T (χBk∩[φ≥αk]

)∥∥ q
p

E

=

n∑
k=1

(
αqk − αqk−1

)
∥mT (Bk ∩ [φ ≥ αk])∥

q
p

E

≤
n∑
k=1

(
αqk − αqk−1

)
(∥mT ∥ (Bk ∩ [φ ≥ αk]))

q
p

≤
n∑
k=1

(
αqk − αqk−1

)
(∥mT ∥ ([φ ≥ αk]))

q
p

=
q

p
∥φ∥qLp,q(∥mT ∥) ≤

q

p
∥f∥qLp,q(∥mT ∥)

≤ q

p
Mq ∥f∥qX ,

as we wanted to prove.



Let us show now the optimality of the extension provided by Lp,q(∥mT ∥). Sup-
pose that T can be extended to another Banach function space Z, with X ⊆ Z,
as T̃ : Z −→ E. Then we have that the vector measure mT̃ : Σ −→ E asso-

ciated to T̃ coincides with mT because mT̃ (A) = T̃ (χA) = T (χA) = mT (A)

for all A ∈ Σ. Since T̃ preserves the (p, q)-Lorentz factorability, we have that
Z ⊆ Lp,q(∥mT̃ ∥) = Lp,q(∥mT ∥), as desired. 2

Remark 5.4. 1) It is not difficult to see that an operator T : X −→ E is (p, q)-
Lorentz factorable if and only if there is a constant K > 0 such that

n∑
k=1

(αk − αk−1)
∥∥T (χBk∩[|f |≥αk]

)∥∥ q
p

E
≤ K

∥∥∥|f | 1q ∥∥∥q
X

(5.3)

for each f ∈ X, each finite increasing sequence α0 := 0 < α1 < · · · < αn and each
finite sequence B1, . . . , Bn in Σ. As we noted before, X ⊆ X[q], for q ≥ 1, and

consequently |f |
1
q ∈ X for all f ∈ X. This inequality (5.3) can be compared with

the definition of q-th power factorable operator given by the inequality (4.1).

2) Let us remark that if E is a Banach lattice and T is a positive operator, then∥∥T (χB∩[|f |≥α]
)∥∥
E
≤
∥∥T (χ[|f |≥α]

)∥∥
E
, f ∈ X, α > 0, B ∈ Σ,

and therefore the measurable sets Bk can be dropped in the inequalities (5.2) and
(5.3).

The (p, q)-Lorentz factorability of the identity map of a Banach function space
X over a finite measure µ defines a concavity-type lattice geometric property for
Banach lattices of measurable functions. Let us finish this section by analyzing
this property.

Definition 5.5. Let 1 < p < ∞ and 1 ≤ q < ∞ be. We say that a Banach
function space X of measurable functions over a finite measure µ is (p, q)-Lorentz

concave if there is a constant K > 0 such that
n∑
k=1

(αk − αk−1)
∥∥χ[|f |≥αk]

∥∥ q
p

X
≤

K
∥∥∥|f | 1q ∥∥∥q

X
, for every function f ∈ X and each finite sequence α0 := 0 < α1 <

· · · < αn.

Remark 5.6. Note that Theorem 5.3 together with Remark 5.4 imply that an
order continuous Banach function space is (p, q)-Lorentz concave if and only if the
identity map in X is (p, q)-Lorentz factorable.

Theorem 5.7. (Representation Theorem)
1) Letm : Σ −→ E a vector measure. Then Lp,q(∥m∥) is (p, q)-Lorentz concave.
2) If X is a (p, q)-Lorentz concave order continuous Banach function space with

a weak order unit, there is a Banach space valued vector measure m : Σ −→ X
such that X is topologically and order isomorphic to Lp,q(∥m∥).



Proof. 1) Consider a vector measure m and take a function f ∈ Lp,q(∥m∥), and
a finite sequence α0 := 0 < α1 < · · · < αn. Consider the simple function

φ :=
n∑
k=1

αk−1χ[αk>|f |≥αk−1] + αnχ[|f |≥αn].

Note that 0 ≤ φ ≤ |f | and [|f | ≥ αk] = [φ ≥ αk] for all k = 1, . . . , n. Also, being

p > 1, we have the continuous inclusion Lp
2,q(∥m∥) ⊆ Lp,q(∥m∥). Then

n∑
k=1

(
αq
k − αq

k−1

) ∥∥χ[|f|≥αk]

∥∥ q
p

Lp,q(∥m∥) =

n∑
k=1

(
αq
k − αq

k−1

) ∥∥χ[φ≥αk]

∥∥ q
p

Lp,q(∥m∥)

=
n∑

k=1

(
αq
k − αq

k−1

)(p

q

) 1
p

(∥m∥ ([φ ≥ αk]))
q

p2

=

(
p

q

) 1
p q

p2
p2

q

n∑
k=1

(
αq
k − αq

k−1

)
(∥m∥ ([φ ≥ αk]))

q

p2

=

(
p

q

) 1
p q

p2
∥φ∥q

Lp2,q(∥m∥)

≤ K∥φ∥qLp,q(∥m∥) ≤ K∥f∥qLp,q(∥m∥).

This shows that the space Lp,q(∥m∥) is (p, q)-Lorentz concave.
2) By [4, Theorem 8] we know that X is order and topologically isometric to

L1(m) for a certain vector measure m : Σ −→ X. Moreover, this isometry is ex-
actly the identity map and then it is (p, q)-Lorentz factorable, which means that
L1(m) ⊆ Lp,q(∥m∥). But we know that the reverse inclusion Lp,q(∥m∥) ⊆ L1(m)
always holds, and so the proof is over. 2

6. Lattice geometric properties of Lp,q of the semivariation. Let us
center now our attention in the lattice geometric properties of our class of spaces.
According to the terminology for Banach lattices (see [17, 1.f.4] for example), a
quasi-Banach lattice X is said to satisfy an upper, respectively lower, p-estimate,
for some 1 ≤ p < ∞, if there exists a constant M > 0 such that, for every choice
of pairwise disjoint elements x1, . . . , xn in X we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
p

≤M
n∑
i=1

∥xi∥p, respectively
n∑
i=1

∥xi∥p ≤M

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
p

.

Let us note that if a quasi-Banach lattice is normable, that is, there exists a norm
equivalent to the quasi-norm, then it satisfies an upper 1-estimate. In order to
analyze when the Lorentz spaces Lp,q(∥m∥) satisfy a lower estimate, we introduce
the following terminology. We say that the semivariation ∥m∥ of a vector measure
m has a lower r-estimate (1 ≤ r <∞) if there exists M > 0 such that

∥m∥ (A1 ∪ · · · ∪An) ≥M ((∥m∥(A1))
r

+ · · · + (∥m∥(An))
r
)

1
r



for every choice of pairwise disjoint sets A1, . . . , An in Σ. Note that this condition
implies that m has finite r-variation. That is, we have that

sup

{∑
A∈π

∥m(A)∥rE : π ∈ Pf (Ω)

}
<∞,

where Pf (Ω) is the family of all finite partitions of Ω by means of measurable
subsets.

Proposition 6.1. Let m be a Banach space valued vector measure.

(i) If 1 ≤ p ≤ q < ∞, then the space Lp,q(∥m∥) has an upper p-estimate. In
particular, it has an upper 1-estimate.

(ii) If 1 ≤ q < p <∞, then the space Lp,q(∥m∥) is a q-convex Banach lattice. In
particular, it has an upper q-estimate.

(iii) If the semivariation has a lower r-estimate for some r ≥ 1, then the space
Lp,pr(∥m∥) has a lower pr-estimate for each 1 ≤ p < ∞. In this case it is
s-concave for each s > pr.

Proof. (i) Take a finite sequence of pairwise disjoint functions f1, . . . , fn ∈
Lp,q(∥m∥). Taking into account that [|f1 + · · · + fn| > t] = [|f1| > t]∪· · ·∪[|fn| > t]
for every t > 0, we obtain ∥m∥f1+···+fn(t) ≤ ∥m∥f1(t) + · · · + ∥m∥fn(t), for each
t > 0. Now using the triangle inequality (for the norm of the weighted Lebesgue

space L
q
p (ptq−1dt)) we get

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
p

Lp,q(∥m∥)

=

(
p

∫ ∞

0

tq−1 (∥m∥f1+···+fn(t))
q
p dt

) p
q

≤
n∑
i=1

(
p

∫ ∞

0

tq−1(∥m∥fi(t))
q
p dt

) p
q

=
n∑
i=1

∥fi∥pLp,q(∥m∥).

(ii) In this case q
p < 1, and taking θ = 1 − q

p in Theorem 2.1 we have that

L
p
q ,1(∥m∥) =

(
L1(m), L∞(m)

)
θ,1
.

Since L1(m) and L∞(m) are Banach spaces, the real interpolated space L
p
q ,1(∥m∥)

is a normable (equivalently 1-convex), quasi-Banach lattice. Thus, its q-convexifica-
tion Lp,q(∥m∥) is q-convex.



(iii) Let us assume that the semivariation ∥m∥ of m has a lower r-estimate for
r ≥ 1. Take a finite pairwise disjoint sequence f1, ..., fn ∈ Lp,pr(∥m∥). Then

n∑
i=1

∥fi∥prLp,pr(∥m∥) =

n∑
i=1

p

∫ ∞

0

tpr−1(∥m∥fi(t))rdt = p

∫ ∞

0

tpr−1
n∑
i=1

(∥m∥fi(t))rdt

= p

∫ ∞

0

tpr−1
n∑
i=1

(∥m∥ ([|fi| > t]))
r
dt

≤ p

Mr

∫ ∞

0

tpr−1 (∥m∥ ([|f1| > t] ∪ · · · ∪ [|fn| > t]))
r
dt

=
p

Mr

∫ ∞

0

tpr−1 (∥m∥f1+···+fn(t))
r
dt =

1

Mr

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
pr

Lp,pr(∥m∥)

.

The second statement follows from a result by Maurey and Pisier (see for instance
[17, 1.f.7]). 2

Remark 6.2. In connection with Remark 4.2, if in addition we suppose there
that the semivariation ∥mθ,q∥ also has a lower q

r -estimate for some q ≥ r, then
Proposition 6.1 tells us that the interpolated operator Tθ,q can be extended to
a reflexive Banach function space that has an upper r-estimate and a lower q-
estimate, that is, the space Lr,q(∥mθ,q∥).

7. Final examples and applications. In order to show some applications of
our technique in its natural context, we will show now some results on operators
from different classical Lebesgue weighted Lp-spaces and Lorentz spaces. Let us
apply again Corollary 3.3 to another class of operators. Consider a Banach function
space X over a finite measure µ. For 1 ≤ p, q < ∞, a µ-determined operator
T : X −→ E, with values into a Banach space E, is said to be bidual (p, q)-
power-concave if there exists a weight 0 < w ∈ L1(µ) such that the inclusions
X ⊆ Lq(w dµ) ⊆ Lp(mT ) are continuous. Here Lq(w dµ) denotes the Lebesgue Lq-
space for the finite measure with density w given by A 7→

∫
A
w dµ (see [20, Theorem

6.9] for other characterizations of such operators). Bidual (1, q)-power-concave
operators are of particular relevance. They are known also as bidual q-concave
operators. Recall that a bidual q-concave operator is, in particular, q-concave (see
[12, Proposition 6.2 (i)] with p = 1).

Proposition 7.1. Suppose that T is an admissible µ-determined operator be-
tween the couples (X0, X1) and (E0, E1) such that the restrictions T0 and T1 are
bidual (p, q)-power-concave for some 1 ≤ p < ∞ and 1 ≤ q < ∞. Then for each
0 < θ < 1 the interpolated operator Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q is bidual
(p, q)-power-concave.

Proof. Since T0 and T1 are bidual (p, q)-power-concave, there exist two weights
w0 > 0 and w1 > 0 in L1(µ) such that X0 ⊆ Lq(w0 dµ) ⊆ Lp(m0) and X1 ⊆



Lq(w1 dµ) ⊆ Lp(m1). Then we have the inclusions

(X0, X1)θ,q ⊆ (Lq(w0 dµ), Lq(w1 dµ))θ,q ⊆ (Lp(m0), Lp(m1))θ,q .

Now, by the Stein-Weiss’s interpolation theorem (see [23] or [1, Theorem 5.4.1]) the
following equality (Lq(w0 dµ), Lq(w1 dµ))θ,q = Lq

(
w1−θ

0 wθ1 dµ
)

holds with equiva-
lence of norms. From Corollary 3.3 we know that (Lp(m0), Lp(m1))θ,q ⊆ Lp(mθ,q),

and then (X0, X1)θ,q ⊆ Lq
(
w1−θ

0 wθ1 dµ
)
⊆ Lp(mθ,q) as we wanted to prove. 2

Corollary 7.2. Let (X0, X1) be a couple of q-convex order continuous B.f.s. and
T an admissible operator. If T0 and T1 are q-concave, then Tθ,q is q-concave for all
0 < θ < 1.

Proof. Since X0 and X1 are q-convex and T0 and T1 are q-concave, then applying
[20, Proposition 6.2 (iv) and (6.6)] it follows that T0 and T1 are bidual q-concave
operators. Then so is Tθ,q, by Proposition 7.1 with p = 1. Thus, [20, Proposition
6.2 (i)] guarantees that Tθ,q is q-concave. 2

The real interpolation spaces (Lr0(w0 dµ), Lr1(w1 dµ))θ,q , with different weights

0 < w0, w1 ∈ L1(µ), have been extensively treated in the literature in the last fifty
years for different cases depending on the parameters 0 < θ < 1 ≤ q < ∞, and
1 ≤ r0, r1 < ∞. The obtained results depend on whether r0 and r1 are equal or

not, and if
1

q
=

1 − θ

r0
+
θ

r1
(the diagonal case) or

1

q
̸= 1 − θ

r0
+
θ

r1
(the off-diagonal

case). In the diagonal case, the classical real interpolation result of Peetre (see
[1, Theorem 5.5.1]) states the well-known formula (Lr0(w0 dµ), Lr1(w1 dµ))θ,q =

Lq(w1−θ
0 wθ1 dµ). In the off-diagonal case, the equation that is known as the

Lizorkin-Freitag formula describes, for r0 ≠ r1, the interpolation space
(Lr0(w0 dµ), Lr1(w1 dµ))θ,q as a weighted Lorentz space associated to a certain
measure (see [11, 18] for the details). In the off-diagonal case with r = r0 = r1,
the interpolation spaces are related to Beurling-Hertz’s spaces and have been de-
scribed by Peetre and Gilbert as unions, if r > q, or intersections, if r < q, of
weighted Lr-spaces, see [15, 21]. See also Persson [22] for spaces of vector-valued
functions. However, in the general case there is not a satisfactory description of
the interpolated space (Lr0(w0 dµ), Lr1(w1 dµ))θ,q .

Now suppose that T : Lr0(w0 dµ) + Lr1(w1 dµ) −→ E is an admissible µ-
determined operator with values into a Banach space E. Denote by m its associated
vector measure. Assume that the restrictions T0 and T1 are p0-th and p1-th power
factorable respectively, with 1 < p0 ≠ p1 < ∞. Note that being p-th power fac-
torable depends strongly on the weights. Then Theorem 4.3 tells us that the inter-
polated operator T : (Lr0(w0 dµ), Lr1(w1 dµ))θ,q −→ E is (p, q)-Lorentz factorable

for
1

p
=

1 − θ

p0
+

θ

p1
, which means that (Lr0(w0 dµ), Lr1(w1 dµ))θ,q ⊆ Lp,q(∥m∥)

continuously. This inclusion, together with the lattice geometrical properties of
the space Lp,q(∥m∥) obtained in Section 6, provide additional information about
the interpolation space (Lr0(w0 dµ), Lr1(w1 dµ))θ,q .



Finally we analyze the properties of the convolution operators defined by mea-
sures on topological groups, giving more information about the geometric and
topological properties of some Banach lattices through which convolution oper-
ators given by Lq-improving measures can be factored. These operators provide a
source of examples of canonical p-th power factorable operators.

Consider a regular Borel probability measure λ on an Abelian compact topo-
logical group G. Let 1 ≤ r <∞ and consider the convolution operator

C : f ∈ Lr(G) −→ C(f) := f ∗ λ ∈ Lr(G),

where f ∗ λ(x) :=
∫
G
f(x − y) dλ(y) for all x ∈ G. See [20, Chapter 7] for

more information. Recall that for the classical Lorentz spaces, we have that

(Lr0(G), Lr1(G))θ,q = Lr,q(G), where
1

r
=

1 − θ

r0
+

θ

r1
, and 0 < θ < 1 ≤ q < ∞.

Moreover, the restriction C : Lr,q(G) −→ Lr,q(G) of the convolution operator to
the Lorentz space Lr,q(G) is continuous. Let us denote by mr,q the vector measure
associated to the restriction to Lr,q(G) of the convolution operator.

The measure λ is said to be Lq-improving, for some 1 ≤ q < ∞, if there is
r ∈ (q,∞) such that λ ∗ f ∈ Lr(G) for every f ∈ Lq(G) (see [16]). In other
words, the corresponding convolution operator has a smaller range than the one
that is originally given by the measure λ. The following corollary (see [20, Corollary
7.103]), that is known for Lq-improving measures, is the key of our results.

Corollary 7.3. With the above notation, the following statements are equiva-
lent.

(i) λ is an Lq-improving measure.

(ii) For each 1 < r < ∞, the convolution operator C : Lr(G) −→ Lr(G) is p-th
power factorable for some p ∈ (1,∞).

Let us assume that the convolution operators C : Lr0(G) −→ Lr0(G) and
C : Lr1(G) −→ Lr1(G) are p-th power factorable for some 1 < p < ∞. Note that,
if an operator is p-th power factorable, then it is s-th power factorable for every
1 ≤ s ≤ p. According to Remark 4.2, for each 0 < θ < 1 ≤ q < ∞, the operator

C : Lr,q(G) −→ Lr,q(G), where
1

r
=

1 − θ

r0
+
θ

r1
, factors through the Lorentz space

Ls,q(∥mr,q∥), for each 1 ≤ s < p, as

Lr,q(G)
C - Lr,q(G).

JT

Lp(mr,q) ⊆ Ls,q(∥mr,q∥) ⊆ L1(mr,q)

?

6Imr,q

Under some further requirements, the properties of the factorization space
Ls,q(∥mr,q∥) that have been explained in Proposition 6.1 provide the following
result.



Corollary 7.4. Assume that the requirements in (any of) the statements (i) and
(ii) of Corollary 7.3 hold. Suppose in addition that the semivariation ∥mr,q∥ has a
lower q

s -estimate. Then the convolution operator C : Lr,q(G) −→ Lr,q(G) can be
extended to a reflexive Banach function space that has an upper s-estimate and a
lower q-estimate.
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