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Generating punctured surface triangulations
with degree at least 4

Maŕıa-José Chávez and Seiya Negami and Antonio Quintero and
Maŕıa Trinidad Villar-Liñán

Abstract

As a sequel of a previous paper by the authors, we present here
a generating theorem for the family of triangulations of an arbitrary
punctured surface with vertex degree ≥ 4. The method is based on a
series of reversible operations termed reductions which lead to a minimal
set of triangulations in such a way that all intermediate triangulations
throughout the reduction process remain within the family. Besides con-
tractible edges and octahedra, the reduction operations act on two new
configurations near the surface boundary named quasi-octahedra and
N -components. It is also observed that another configuration called
M -component remains unaltered under any sequence of reduction oper-
ations. We show that one gets rid of M -components by flipping appro-
priate edges.

1 Introduction

By a triangulation of a surface F 2 we mean a simple graph G (i.e., a graph
without loops and multiple edges) embedded in F 2 so that each face is bounded
by a 3-cycle and any two faces share at most one edge. In other words, the
vertices, edges and faces of G form a simplicial complex whose underlying
space is F 2. Two triangulations G and G′ of F 2 are equivalent if there is a
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homeomorphism ϕ : F 2 → F 2 with ϕ(G) = G′. In this paper surfaces are
supposed to be compact and connected and possibly with boundary. Surfaces
without boundary will be termed closed surfaces. Here, we distinguish between
triangulations only up to equivalence.

The enumeration of triangulated surfaces with and without boundary is ap-
plied to computation and physics (see [12] and the references therein). Three
major methods to generate triangulations are presently available in the lit-
erature (see [22]). One of these methods is based on finding out a family of
irreducible triangulations and obtaining from them all triangulations under
the desired conditions by means of generating theorems.

A variety of generating theorems can be found in the literature (see [15,
16, 17, 18, 20, 21] among others), these theorems provide certain sets of op-
erations deviced to construct all triangulations in a given class M from a
subclass M0 ⊆ M by sequences of such operations. The subclass M0 can be
regarded a generating set for all triangulations in M. The operations which
yield the whole class M from M0 are generally termed expansions. Most of
the generating theorems also give operations, termed reductions, which act
as the inverses of expansions, so that by sequences of reductions we get the
”minimal” subclass M0 starting with the class M (see [2]).

The classical reduction operation is a contraction of edges and its inverse a
vertex splitting. Recall that an edge of a triangulation G of F 2 is contractible
if the vertices of the edge can be identified and the result is still a triangulation
of F 2. A triangulation is said to be irreducible if it has no contractible edges
(see [1] and [3]).

As a contribution to this research area, we state and prove here a gener-
ating theorem for punctured surfaces (i.e., surfaces obtained by deleting the
interior of a disk in closed surfaces). It is well known that any irreducible trian-
gulation of a non-spherical closed surface has minimum degree ≥ 4, [19]. This
is no longer true for punctured surfaces; in fact, it is readily checked that all
irreducible triangulations of a punctured surface (other than the disk) F 2 are
elements of the class F2

◦(4) consisting of all triangulations of F with minimum
degree ≥ 3 on the boundary and degree≥ 4 for all inner vertices. Particular
examples of irreducible triangulations with 3-valent boundary vertices can be
found in [4] and [13].

A generating theorem for the class F2
◦(4) is given in [6]. As a sequel, in this

paper we introduce a set of six reversible internal operations in the subfamily
F2(4) ⊆ F2

◦(4) consisting of all triangulations with minimum degree ≥ 4.
The minimum degree at least 4 condition is particularly relevant in order

to obtain 4-connected triangulations of surfaces. Several works concerning this
property on closed surfaces can be found (see [15, 17], for instance).

Moreover, the 4-connectivity of a triangulation is also closely related to the
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hamiltonicity property. This fact has been shown by many papers since the
seminal Whitney’s result [24] and Grümbaun’s conjecture [9] appeared (see
[8, 10, 23] and the references therein).

The main result of this paper (Theorem 3) states that, given a punctured
surface F , any triangulation of F in F2(4) can be obtained from a 4-minimal
triangulation by a sequence of operations that preserve the degree 4 condition
during the whole procedure. This result can be regarded as an extension to
punctured surfaces of the main theorems by Nakamoto and Negami for closed
surfaces [18]. In fact, the operations termed 4-contractions and removals of
octahedra in [18] coincide, respectively, with the operations R1 and R2 in
this paper. Recently, the operation R2 has been used in [20] under the name
of R-reduction for even triangulations of closed surfaces. Furthermore, the
other three operations in [20], called (P,T,Q)-reductions, are the composite of
4-contractions and their inverses. The configurations on which Q-reductions
act are termed N -components in this paper. Notwithstanding N -components
here always involve the boundary of a punctured surface.

In contrast with the case of closed surfaces, the minimal triangulations
of a punctured surface F obtained by the use of such operations in F2(4)
may contain contractible edges whose contraction produce 3-valent boundary
vertices. We prove that such contractible edges are necessarily located in
two particular configurations (see Theorem 1), that persist during the whole
reduction process. In order to achieve the irreducible triangulation within
F2(4), we consider diagonal flips of edges and state another generating theorem
(Theorem 6).

Recently, irreducible triangulations of the Möbius band from [4] have been
used in [7] to give a hint of the width of the gap between the simplicial
Lusternik-Schnirelmann (L-S) category of a triangulated surface and the min-
imum number of critical elements of its Morse functions. The width of such
a gap is far from being estimated yet. It might be expected that the present
work jointly with its companion [6] enlighten the ongoing research concerning
this problem.

2 New reductions/expansions for the family F2(4)

With the same terminology as used in [2], in this section we introduce the re-
duction/expansion operations involved in the main results of the paper (The-
orems 1 and 3) others than classical edge contraction and octahedron removal
and its inverses, vertex splitting and octahedron addition, respectively.

Throughout this paper F 2 will denote a surface with connected (possibly
empty) boundary. If G is a triangulation of the surface F 2, let ∂G ⊂ G denote
the subgraph triangulating the boundary ∂F 2. The vertices and edges of ∂G



GENERATING PUNCTURED SURFACE TRIANGULATIONS WITH
DEGREE AT LEAST 4 132

will be called boundary vertices and boundary edges of G, respectively. The
vertices and edges of G − ∂G will be called inner vertices and inner edges of
G, respectively. The link of a vertex x ∈ G, denoted link(x) = x1x2...xn, is
the set of edges xixi+1 in G which jointly with the vertex x form a triangle
xixi+1x in G for 1 ≤ i ≤ n− 1. Observe that if x is an inner vertex, xn = x1.

In addition, let us introduce further terminology concerning edge contrac-
tion. Henceforth, G/e will denote the contraction of the edge e = v1v2
in the graph G. Notice that the new vertex v = v1 = v2 in G/e satis-
fies deg(v) = deg(v1) + deg(v2) − 3 when e is a boundary edge of G, and
deg(v) = deg(v1)+deg(v2)−4 otherwise. Besides, if xv1v2 is a face of G, then
deg(x) diminishes by one after the contraction of e. Here deg(v) denotes the
degree of the vertex v.

The vertex v is said to be k-valent if deg(v) = k. Given a triangulation
G with minimum degree ≥ k, an edge e is said to be k-contractible (kc-edge
for short) if the minimum degree of G/e is at least k. The contraction of such
an edge is termed a k-contraction.The corresponding vertex splitting will be
called a k-splitting. In this paper by a cn4c-edge we mean a contractible edge
which is not 4-contractible.

Remark 1. Notice that for any interior 4c-edge e, the vertices in G sharing
a face with e have degree ≥ 5.

Remark 2. The two following locations of edge e are obstructions to con-
tractibility of e. By a critical 3-cycle we mean a 3-cycle whose three edges do
not bound a face of G.

(1) e belongs to a critical cycle of G. This is the case when e lies on a
boundary of length 3.

(2) e is an inner edge but its two vertices belong to ∂G.

Since F2(4) is a subfamily of F2
◦(4) results from [6] also apply to surfaces in

F2(4). In particular, we will use [6], Proposition 3.3. Recall that the distance
from an edge e to ∂G, denoted d(e, ∂G), is defined to be the minimum number
of edges needed to connected e and ∂G.

Lemma 1. [6] Let G ∈ F2
◦(4) be a triangulation of the punctured surface F 2.

Assume that ab is a cn4c-edge in G, and let abx be a face with deg(x) ≤ 4.
If G is different from the disk and d(ab, ∂G) ≤ 1, then either a 4c-edge or a
subgraph H ⊆ G in the family

A = {octahedron component, triode detecting edge, flag}

can be found at distance at most 1 from ab.
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Figure 1: Flags.

In this lemma the following terminology from [6] is used.

Definition 1. A 3c-edge e of G is said to be a triode detecting edge if the
posible vertices of degree 3 in G/e belong to the boundary.

The configurations termed flags in Lemma 1 are ruled out in the family
F2(4) since they contain two vertices of degree 3 on ∂G.

It readily follows from Definition 1 that ab is a triode detecting edge when-
ever abx is a face such that ab is a contractible boundary edge, x lies in the
boundary and deg(x) = 4.

However triode detecting edges can appear. By focusing on this possibility
we find new subgraphs involving triode detecting edges on G that give rise to
new configurations and therefore the necessity of new reduction operations to
remove then within the class F2(4).

The first configuration, termed a quasi-octahedron component, is a varia-
tion of the well known notion of octahedron given in [18] and [6]. Let us start
by recalling the latter.

Definition 2. A graph H ⊆ G (possibly H ∩ ∂G 6= ∅) of vertices set
{a1, a2, a3, v1, v2, v3} is said to be an octahedron component centered at the
3-cycle v1v2v3 if deg(vi) = 4 in G (for 1 ≤ i ≤ 3) and the edges set of H is
{vivj , aiaj for 1 ≤ i, j ≤ 3} ∪ {viaj for i 6= j}. Octahedron components are
denoted by O.

An octahedron component of G is said to be external if two edges aiaj ,
ajak lie in ∂G (in particular, deg(aj) = 4). Notice that any edge of O − ∂G
is a cn4c-edge. If G ∈ F2(4) and G′ = G − {v1, v2, v3} remains in F2(4) (or
equivalently deg(ai) ≥ 6, for 1 ≤ i ≤ 3), we say that O is 4-removable (or,
alternatively that G is the addition of O to G′).

Remark 3. Let us first suppose that O is not 4-removable and let us consider
deg(a2) = 5. If no edge of O lies in the boundary, then deg(a1), deg(a3) ≥ 6
and there exist the two faces a1a2v and a2a3v in G such that the common
edge a2v is a 4c-edge and lies in G− F2(4).
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The previous reasoning is similar to the case of closed surfaces although
some vertices ai may lie in the ∂G (see [18]).

Notice that some face v1v2v3 in G with its three vertices of degree 4 may
have some triode detecting edges and not be the center of an octahedron
component. This occurs in the configuration defined as follows.

Definition 3. The subgraph H in Definition 2 will be termed a quasi-oc-
tahedron component of G centered at v1v2v3 and remaining vertices a1, a2, a3
if precisely one vi belongs to ∈ ∂G and either the edge ajak (j, k 6= i) does
not exist or, otherwise, the cycle a1a2a3 is not a face in G and ∂G 6= a1a2a3.
Quasi-octahedron components will be denoted by Ô (see Figure 3 (right)).

Let us remark that the edges aia3 (for i = 1, 2) necessarily are inner edges.
Moreover, deg(a3) ≥ 5 since otherwise, this quasi-octahedron becomes an
octahedron. If, in addition, a3 ∈ ∂G, it is clear that deg(a3) ≥ 6.

For the sake of simplicity, we henceforth assume that v3 ∈ ∂G in any
quasi-octahedron component.

Remark 4. Let us consider a quasi-octahedron component Ô. If deg(ai) = 4,
for some i = 1, 2, then there exists a boundary vertex t such that ait is a
boundary 4c-edge.

If a3 ∈ G − ∂G and deg(a3) = 5, since aia3 is an inner edge for i = 1, 2,
there must exist a vertex t defining two faces aia3t (i = 1, 2) and the edge a3t is
4-contractible. In both cases after contracting the 4c-edge ait (for i = 1, 2), we
observe that the quasi-octahedron remains unaltered and deg(a3) ≥ 6 becomes
after a finite number of similar edge contractions in the new triangulation.

After the previous observations, without loss of generality, if no edge inci-
dent with ai, (i = 1, 2, 3) is 4-contractible, we may suppose that deg(ai) ≥ 5
for i = 1, 2 and deg(a3) ≥ 6.

The new reduction operations needed to deal with configurations contain-
ing triode detecting edges will be defined in the following subsections.

2.1 New reduction/expansion operations involving octahedron and
quasi-octahedron components

In order to ease the reading, in an external octahedron component the ver-
tex a3 will be assumed to be of degree 4. Similarly in any quasi-octahedron
component the vertex v3 will be assumed to be the only vertex vi in ∂G.

Let O be an external octahedron component such that deg(a1) = 6 or
deg(a2) = 6. Then O is not 4-removable although it is redundant from the
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topological point of view (see Figure 2(left)). To get rid of such components we
introduce the following operation. By folding the octahedron O onto the face
a1a2v we mean the removal of vertices a3, v1, v2, v3 from G followed by the
addition of an octahedron to the face a1a2v (Figure 2). The inverse operation
is called unfolding an octahedron with respect to the boundary of G.

a1

v

a2

a3

v3

v1v2

a1

v

a2v3

v2 v1

∂G

∂G

Figure 2: Folding the octahedron O onto the face a1a2v.

Another obstruction to reduce an octahedron component O within the class
F2(4) arises when O hits the boundary in exactly one edge a1a2 and such that
no edge aiv is 4-contractible, and deg(a2) = 5. For this configurations we will
introduce a further reduction operation as follows. Let v be the only neighbour
of a2 outside O (Figure 3). The replacement of the boundary octahedron O by

a quasi-octahedron Ô is defined to be the removal of the edge a1a2 followed
by the contraction of the edge a2v in G. The inverse operation is called the
replacement of the quasi-octahedron Ô by a boundary octahedron O.

a1 a2

a3

v
v3

v1v2

a1 v3 a2

v2 v1

a3

∂G ∂G

Figure 3: A replacement of a boundary octahedron by a quasi-octahedron Ô.

The replacement of O by Ô can be regarded as removing the edge a1a2
and them contracting the edge a2v. Notice that the edge a1a2 turns to be a
4c-edge after deleting a1a2.
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Definition 4. A quasi-octahedron component of G, Ô, is said to be removable
in F2(4) (or 4-removable, for short) if one of the following conditions holds:

(1) The graph G′ = G− {v1, v2, v3} yields a triangulation in F2(4).

(2) If replacing the quasi-octahedron component O by the face a1a2a3 yields
a triangulation in F2(4).

In both cases, we will simply say that G′ is obtained by removing a quasi-
octahedron from G. Conversely, if (1) happens, we say that G is obtained from
G′ by adding a quasi-octahedron along two consecutive boundary edges of G′.
In (2) we say that G is obtained from G′ by embedding a quasi-octahedron in
a face of G′ sharing one edge with ∂G′.

Non removable quasi-octahedra Removable quasi-octahedron

a3

a1a2

v1 v2

v3

v2

a1v3
a2

v1

a3

Removable quasi-octahedra

v2

a1v3a2

v1

a3
a2

a3

a2

a3

a2

Figure 4: Triangulations for the Möbius strip with some quasi-octahedra com-
ponents.

In both cases G′ is obtained from G by a sequence of three successive edge
contractions. As a consequence, if G contains a quasi-octahedron component
Ô, then G is reducible. Indeed, the interior edges vivj and aivj of Ô are readily
checked to be cn4c-edges. Let us observe other facts with regard to removing
quasi-octahedra. Conditions (1) and (2) above are not mutually exclusive.
Indeed, in Figure 3 (right) both ways of removing the quasi-octahedron can
be carried out whenever a3 is an inner vertex, the edge a1a2 does not exist and
deg(ai) ≥ 6 for i = 1, 2, 3. Other possibilities for removing a quasi-octahedron
may appear as it is illustrated in Figure 4. The removable quasi-octahedron
in Figure 4 (center) verifies only condition (2), while the removable quasi-
octahedron in Figure 4 (right) verifies only condition (1).

We can establish the following characterization of a non-removable quasi-
octahedron.

Proposition 1. Let G ∈ F2(4) be a triangulation of the surface F 2 and Ô be

a quasi-octahedron component of G. Then, Ô is not removable in F2(4) if and
only if one of the following conditions holds:
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(a.1) a3 ∈ G− ∂G and deg(ai) = 4 for some i = 1, 2.

(a.2) a3 ∈ G− ∂G and deg(a3) ≤ 5.

(b.1) a3 ∈ ∂G and a1a2 is an inner edge of G, (or, equivalently, v3a1 and v3a2
are non-contractible edges).

(b.2) a3 ∈ ∂G and deg(ai) = 4 for some i = 1, 2.

Proof. If a3 is an inner vertex, deleting the quasi-octahedron via (1) provides
a triangulation of the same surface. Hence, (1) holds if and only if deg(ai) ≥ 6
(i = 1, 2, 3). Otherwise, condition (2) holds if and only if a1 and a2 are not
adjacent and deg(ai) ≥ 5 (i = 1, 2) and deg(a3) ≥ 6.

Therefore, in this case, Ô is not removable in F2(4) if and only if (a.1) or
(a.2) is verified.

If a3 is a boundary vertex, then by Remark 4 deg(a3) ≥ 6 holds. If
a1a2 is an inner edge (or, equivalently, the edges v3a1 and v3a2 are non-
contractible), the quasi-octahedron is not removable since by removing it by
condition (1) a singular boundary point occurs and removing it by condition
(2) provides a double edge a1a2. Therefore, if a3 ∈ ∂G (2) holds if and only if
deg(a1), deg(a2) ≥ 5 and the edges v3a1 and v3a2 are contractible.

Hence, in this case, Ô is not removable in F2(4) if and only if (b.1) or (b.2)
is verified.

2.2 A new reduction/expansion operations involving triode detect-
ing edges

Quasi-octahedron components do not exhaust all possible appearance of triode
detecting edges in triangulations in F2(4) (see Figure 5, left and center).

Pursuing our goal of finding minimal triangulation in the family F2(4), we
detect a new configuration in G and define a new operation to reduce it within
F2(4) to reach a minimum number of unavoidable triode detecting edges in G.

Definition 5. An N-component of a triangulation G ∈ F2(4) of the surface
F 2 consists of a subgraph N of G determined by two faces sharing an edge,
where at least two non-incident edges are cn4c-edges and at least one of them
lies in ∂G (Figure 5).

An N -component N ⊂ G is termed contractible if both non-incident con-
tractible edges lie in the boundary or else some inner vertex in N has degree
≥ 5. In such configurations, the simultaneous contractions of the two non-
incident contractible edges in N yields a triangulation in F2(4). This double
contraction will be called contracting an N-component.
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a1

a2

a3A B

B A

a1 a3 a5

a2 a4

x ya

zv

∂G

Figure 5: Two N−components on the left and center. The double contraction
of the edges a2a4, a3a5 in the triangulation of the Möbius strip on the center
provides the triangulation on the right.

Remark 5. Observe that an N -component is contractible if and only if it is
not contained in a quasi-octhaedron component because of the degree condi-
tion of its inner vertices.

3 A generating theorem for the class F2(4)

In this section we state and prove a generating theorem (Theorem 3) for tri-
angulations of degree at least 4 of a punctured surface. The reduction /
expansion operations involved in the theorem are summarized in Table 1. The
two operations introduced by Nakamoto and Negami in [18] are among reduc-
tions and they are the only ones which are defined in absence of boundary.
In particular, the triangulations of closed surfaces which are minimal for such
reductions coincides with the irreducible triangulations in [18]. This way we
generalize Theorems 1 and 2 in [18]. In sharp contrast with the class of closed
surfaces, for a punctured surface, the minimal triangulations obtained by such
reductions may contain contractible edges whose contraction produce 3-valent
vertices. For this case, we prove in Theorem 1 that those possible contractible
edges are located in two particular configurations, the quasi-octahedron com-
ponent and the M -component given in Definition 7 below. The special case
of the disk is also considered in Theorem 2.

4-reductions 4-expansions Figure
R1 edge 4-contraction E1 vertex 4-splitting
R2 octahedron removal E2 octahedron addition
R3 folding an octahedron E3 unfolding an octahedron Figure 2
R4 quasi-octahedron removal E4 quasi-octahedron addition Figure 4
R5 boundary octahedron replacement E5 quasi-octahedron replacement Figure 3
R6 contracting a N -component E6 double splitting of vertices Figure 5

Table 1: Reduction / expansion operations in F2(4).
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By a 4-reduction (4-expansion, respectively) we mean any reduction (ex-
pansion, respectively) in Table 1. Operations R1, R2 and E1, E2 were intro-
duced in [18].

By the use of the operations of Table 1 we eventually get a class which is
minimal in F2(4) in the following sense.

Definition 6. A triangulation G ∈ F2(4) of the surface F 2 is said to be
minimal in F2(4) (or 4-minimal∗, for short) if G does not admit any further
4-reduction.

Some 4-minimal triangulations of punctured surfaces can be found in [5]
(Example 32, Figures 13, 14 and 15).

Unfortunately, for punctured surfaces not all cn4c-edges can be removed
from a 4-minimal triangulation. Notwithstanding such edges can be located
in two special components of any triangulation G which reduces to G0.

Given any triangulation G ∈ F2(4), a configuration H ⊆ G is termed 4-
fixed if it remains unaltered under any sequence of 4-reduction performed on
G.

Next we will show that there exist exactly two families of 4-fixed compo-
nents: a special type of quasi-octahedron component described in Proposition
3 below and the M -component defined as follows.

Definition 7. Let G ∈ F2(4) be a triangulation of the surface F 2. Let abx be
a face with x a 4-valent vertex and ab a boudary cn4c-edge. An M-component
centered at abx in G consists of a subgraph M ⊆ G determined by three faces
{xab, xax1, xbx2} such that xx1, xx2 lie in the boundary and x1x2 is an inner
edge. Notice that xx1x2x is a critical 3-cycle (see Figure 6).

xx1 x2

x1x2 a b

∂G

∂G

Figure 6: M -component centered at abx.

Remark 6. In any M -component centered at abx in a triangulation G ∈
F2(4), the boundary edge ab is a triode detecting edge and deg(xi) ≥ 5 for

∗This term appears in [14] with a different meaning.
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i = 1, 2. Hence there are vertices p, q so that apx1 and bqx2 are faces in
G. This way, {q, x2, p, a, x} ⊆ V (link(x1)) and {p, x1, q, b, x} ⊆ V (link(x2)).
Moreover,

(1) If deg(a) = 4 (or deg(b) = 4), then, ap (bq respectively) is a boundary
4c-edge.

(2) Otherwise, there are faces apw, bqr. If deg(a) = 5 (or deg(b) = 5) then
the edge aw ⊂ ∂G and it is not a triode detecting edge although aw may
be contractible.

Let us observe that in case that all 3-cycles x1x2p, x1ap, x1x2q and x2bq
are faces of the triangulation, the M -component centered at abx coincides with
the triangulation obtained by the splitting of a 5-valent boundary vertex in
the irreducible triangulation of the Möbius strip M2 collected in [4].

On the other hand, it is not difficult to see that the set of vertices {a, b, x1,
x2, x} in the M -component are principal vertices of a subdivision of the com-
plete graph K5 in G. Hence, M is not present in any triangulation of the
disk.

The interest of the M -component is pointed out by the following proposi-
tion.

Proposition 2. Let G ∈ F2(4) be a triangulation of the punctured surface F 2.
Any M -component M ⊂ G remains unaltered after performing any reduction
Ri (i = 1, . . . , 6).

Proof. Let M be an M -component centered at abx. The edge ab is the only
contractible one in M (in fact, it is a cn4c-edge), hence no reduction R1 can
be applied to M.

Furthermore, the only possible octahedron or quasi-octahedron compo-
nents containing ab must be centered at abx (since deg(xi) ≥ 5 for i = 1, 2,
by Remark 6 (1)). However, such a quasi-octahedron component cannot exist
since a, b ∈ ∂G. Similarly no octahedron components exists since otherwise
∂G reduces to abx. Therefore, no reduction R2 to R5 may be performed to
M.

Finally, the existence of an N -component containing ab is ruled out by
the existence of the edge x1x2. Then, reduction R6 does not affect M. This
finishes the proof.

Next proposition gives a sufficient condition for a quasi-octahedron com-
ponent to be 4-fixed.
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Proposition 3. Let G ∈ F2(4) be a triangulation of the punctured surface F 2.
Any quasi-octahedron component in G under conditions (b.1) in Proposition
1 is 4-fixed.

Besides, if G is 4-minimal, any quasi-octahedron component Ô in G verifies
conditions (b.1) in Proposition 1.

Proof. In Proposition 1 (b.1) a3 ∈ ∂G and a1a2 is an inner edge, and therefore
the quasi-octahedron is not removable.

Since a1a2 is an inner edge, a1a2a3 and a1v3a2 are critical 3-cycles and
none of their edges is contractible. Although other edges incident to ai may
be contractible, their contractions do not alter the quasi-octahedron, hence it
is 4-fixed.

Next, let us consider a non-removable quasi-octahedron component Ô in
a 4-minimal triangulation G. Observe that, from Remark 4, deg(ai) ≥ 5 for
i = 1, 2 and deg(a3) ≥ 6. Then, (a.1) and (a.2) are ruled out if a3 ∈ G− ∂G
and so is (b.2) if a3 ∈ ∂G

Moreover Propositions 2 and 3 provide the only 4-fixed components for
punctured surfaces. This is proved in the following theorem.

Theorem 1. Let F 2 be a punctured surface different from the disk. Then a
triangulation G ∈ F2(4) is 4-minimal if and only if each contractible edge in
G (if any) is located in either an M -component or a 4-fixed quasi-octahedron.

Theorem 2. The only 4-minimal triangulation of the disk is the octahedron.

Let us observe that irreducible triangulations within F2(4) form a subset
of 4-minimal triangulations family, as the following resut shows.

Proposition 4. Let G be a 4-minimal triangulation of a punctured surface
different from the disk. Then G is irreducible if and only if G contains neither
quasi-octahedron component nor M -component.

Proof. As quasi-octahedron components and M -components have contractible
edges, if G is irreducible no such components appear in G. Conversely, if G
is reducible, it has a contractible edge, which must be placed at a quasi-
octahedron component or a M -component, by Theorem 1.

As a corollary we can state the following generating theorem.

Theorem 3. Let F 2 be a punctured surface. Any triangulation in F2(4) can
be obtained from a 4-minimal triangulation by a sequence of 4-expansions.
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Theorems 1 and 2 are the versions for punctured surfaces of Theorems 1
and 2 in [18]. In fact, for the non-spherical closed surface F 2, the 4-minimal
triangulations in F2(4) coincide with the usual irreducible ones since opera-
tions Ri and Ei, for i ≥ 3 in Table 1 make sense only when F 2 has boundary.
This way, Theorems 1 and 2 in [18] can be restated jointly as follows.

Theorem 4. Let F 2 be a closed surface. Any triangulation in F2(4) can be ob-
tained from a 4-minimal triangulation by a sequence of 4-expansions (namely,
4-splittings and addition of octahedra). In particular, if F 2 is the sphere the
only 4-minimal triangulation of F 2 is the octahedron.

In order to prove Theorems 1 and 2 we will need the following technical
lemma where the operations Ri in Table 1 are used.

Lemma 2. Any octahedron component of a triangulation in F2(4) of the sur-
face F 2 can be removed by applying R2 after one of the reductions R1 or R3

or else by applying reduction R5 of Table 1.

Proof. Let G ∈ F2(4) be a triangulation of the surface F 2 such that G contains
an octahedron component O.

First of all, observe that V (O) ∩ ∂G = {a1, a2, a3} and E(O) ∩ ∂G = ∅
implies that O is 4-removable (since deg(ai) ≥ 6 for i = 1, 2, 3).

Next, let us consider O to be non-4-removable, then deg(ai) ≤ 5 for some
i = 1, 2, 3. We distinguish several cases according to E(O)∩∂G and V (O)∩∂G.

1. If E(O)∩ ∂G = ∅ and ∂G∩V (O) = ∅, let us suppose deg(a2) = 5. Then
Remark 3 assures that there is at least one 4c-edge a2t with a2 ∈ O,
t /∈ O and O turns to be 4-removable after contracting a2t.

2. If E(O) ∩ ∂G = ∅ and the intersection V (O) ∩ ∂G reduces to a single
vertex, say a2 then deg(a2) ≥ 6 holds and since O is non-removable,
deg(ai) = 5 for i = 1 or i = 3. Let us suppose deg(a1) = 5 and let t be
the boundary vertex adjacent to a2 and a1. Therefore ta1a2 and ta1a3
are faces of G, and since a1 is not a boundary vertex, it readily follows
that a1t is a 4c-edge of G. Again, after contracting it, the octahedron
becomes 4-removable.

3. If E(O) ∩ ∂G = ∅ and ∅ 6= ∂G ∩ V (O) ( {a1, a2, a3}, again there exists
precisely one vertex aj such that deg(aj) = 5 and there is a 4c-edge
incident with aj .

4. If E(O) ∩ ∂G = {a1a2} and deg(a2) = 5, then, there is precisely one
vertex v ∈ V (link(a2)) − V (O) and by applying an operation R5 to G,
the new triangulation G′ belongs to F2(4).
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5. If E(O)∩∂G = {a2a3, a1a3} and δ(a1) = 6 or δ(a2) = 6, then by applying
an operation R3 to G, the new triangulation G′ belongs to F2(4).

6. If E(O) ∩ ∂G = {v1a2, a2a3, v1a3} and δ(a2) = 5, there is at least one
4c-edge a2t with t /∈ O and O turns to be 4-removable after contracting
a2t.

As a consequence of Lemma 2 we get that any octahedron component is
not 4-fixed. Namely,

Proposition 5. No octahedron component appears in a 4-minimal triangula-
tion in F2(4) of the surface F 2.

The following lemma informs about possible configurations around a cn4c-
edge. It is the corresponding analogue of Lemma 1 (Proposition 3.3 in [6]) for
the class F2(4).

Lemma 3. Let G ∈ F2(4) be a triangulation of the surface F 2. If ab is a
cn4c-edge in G so that d(ab, ∂G) ≤ 1, and abx is a face with deg(x) = 4, then
one of the following configurations can be found at distance at most 1 from ab:

1. A 4c-edge

2. A subgraph in the family

B = {octahedron component, quasi-octahedron component, N-component}

3. An M -component centered at abx.

The proof consists of the exhaustive analysis of all possible local configu-
rations around a cn4c-edge ab that lies in a face abx with deg(x) = 4. To ease
the reading of the paper we will postpone the proof to appendix A.

Proof of Theorems 1 and 2: Let ab be a contractible edge in G. As
G is 4-minimal, ab is a cn4c-edge. Moreover, if d(ab, ∂G)) ≥ 2 then the same
arguments given in Lemma 1 of [18] for closed surfaces allows us to find a 4c-
edge or an octahedron component at distance ≤ 1 from ab. This contradicts
the 4-minimality of G. Thus, necessarily, d(ab, ∂G) ≤ 1 and Lemma 3, Propo-
sition 5 and Remark 5 yield that ab lies in a quasi-octahedron component or
an M -component. Now, by Proposition 3, the quasi-octahedron component
must be 4-fixed.

Conversely, by hypothesis the only contractible edges are cn4c-edges. If a
cn4c-edge ab belongs to a non-removable quasi-octahedron component Ô then
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it is not a 4c-edge since Ô does not contain such edges. Moreover, Ô cannot
be extended to an octahedron in G by Definition 3. Finally, no N -component
contained in Ô can be reduced by Remark 5. Hence, no reduction Ri can be
applied to remove ab.

On the other hand, if ab belongs to an M -component M ⊂ G, we know
by Proposition 2 that M is stable under reductions Ri (i = 1, . . . , 6). This
finishes the proof of Theorem 1.

Let us consider the case of the triangulated disk. From Remark 6 no
M -component may appear in a triangulation of the disk. Besides, a quasi-
octahedron component Ô will be always removable according to Definition 4.
In fact, it is clear that the degree ≥ 4 condition expels the quasi-octahedron
from the set of disk triangulations. Moreover, according to Definition 3, vertex
a3 must have degree ≥ 5. Let a3t be an edge with t outside Ô. Observe that
deg(a3) = 5 leads to the contractibility of at, which contradicts the minimality
of G, hence deg(a3) ≥ 6. Besides, deg(ai) ≥ 5 for i = 1, 2 since otherwise a

4-contractible edge incident at ai appears, which is impossible. Therefore, Ô
can be removed by applying Definition 4 (1) if deg(ai) ≥ 6 for i = 1, 2 and
a3 ∈ ∂G or Definition 4 (2) otherwise. This finishes the proof of Theorem 2.

�

4 Further developments

According to Proposition 4, it may occur that given a triangulation G in
F2(4) all possible 4-minimal triangulations obtained from G by applying the
4-reductions in Table 1 are reducible. To bridge this gap, it is natural to ask for
new 4-reduction operations to be defined in F2(4), such that the corresponding
triangulations are irreducible.

Alternatively, one may look for further operations (not increasing the num-
ber of vertices and edges) to be added to the family of Ri-operations in order
to reach the same goal.

With regard to the latter, let us observe that any 4-minimal triangula-
tion admits further reductions by allowing diagonal flips. Actually, diagonal
flips have been already considered in relation with irreducible triangulations
of closed surfaces in [11] and [19]; in fact, the Q-reduction operation described
in [20] can be regarded as the composite of a diagonal flip and an edge con-
traction. Concerning this problem we can prove the following result, which
gives a way of turning 4-minimal triangulations into irreducible.

Theorem 1 shows that 4-reductions do not suffice to get all irreducible
triangulations within the class F2(4). If, similarly as in [11] for closed surfaces,
we allow diagonal flips that preserve the 4-degree condition, then we get the
following theorem.
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Theorem 5. If diagonal flips are added to 4-reductions as admissible oper-
ations in the family F2(4) of triangulations of a given punctured surface F 2,
then the 4-minimal triangulations are exactly the irreducible triangulations in
F2(4).

Proof. The diagonal flip operation is a way of getting rid of quasi-octahedra
and M -components in 4-minimal triangulations. For instance, if we flip the
edge x1a in an M -configuration when deg(a) ≥ 5 (similarly, flip x2b when
deg(b) ≥ 5) we still have a triangulation in F2(4) but now the edge ab is
4-contractible. Notice that deg(x1) ≥ 5 by definition of an M -configuration
and, moreover, that some 4-contractible edge is detected whenever deg(a) = 4
(deg(b) = 4, respectively) (see Remark 6(1)).

On the other hand, by flipping an edge aia3 of a quasi-octahedron com-
ponent, new 4-contractible edges are available to perform further 4-reductions
and dismantle the original quasi-octahedron component.

As a consequence, we conclude with another generating theorem with the
same flavour as Theorem 3.

Theorem 6. Let F 2 be a punctured surface. Any triangulation in F2(4) can
be obtained from an irreducible triangulation by a sequence of 4-expansions
and diagonal flips.

Appendix: Proof of Lemma 3
Let us start by fixing some notation. Besides the edge ab and the vertex x

given by Lemma 3, we will denote by x1 and x2 the vertices adjacent to x for
which link(x) = x1abx2x1 if x /∈ ∂G or link(x) = x1abx2 if x ∈ ∂G. Recall
that a vertex v is said to be independent of degree k if all neighbours of v have
degree 6= k.

Lemma 1 establishes that the edge ab is at distance at most 1 from a
subgraph H of G wich is isomorphic to a 4c-edge or an ocathedron component
or a triode detecting edge or a flag. Moreover, if G triangulates the disk, then
H may reduce to a flag or an octahedron.

Since we are dealing with G ∈ F2(4), H cannot be a flag. Hence we can
take advantage of the other cases given by Lemma 1 and focus on the situation
in which H is a triode detecting edge located within a quasi-octahedron, or an
N -component, or an M -component at distance less than or equal to 1 from
ab.

After the previous observations, all remaining cases correspond to the ones
depicted in Figure 7.

We will next analyze these cases by following the Roman numbering in
Figure 7.
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b
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x1

x2

∂G

(III.b)

Figure 7: Different configurations for link(x), with deg(x) = 4 and distance
at most 1 from ∂G.

(I) x ∈ ∂G and ab ⊂ ∂G.

If abx is the center of an M -component, statement 3 holds. Otherwise,
x1 and x2 do not define an edge and xxi is a contractible edge, for
i = 1, 2. We distinguish two cases according to deg(a) and deg(b).

If deg(a) ≥ 5 (or deg(b) ≥ 5), then the edge xx1 turns to be a 4c-edge.
Otherwise (deg(a) = 4 and deg(b) = 4), there is an N -component with
parallel edges xx1, ab.

Notice that x and ab do not lie simultaneously in ∂G except for Case
(I). Let m ≥ 4 denote the minimum degree of the vertices of link(x).
If m ≥ 5, then it is not difficult to check that a 4c-edge incident in x
must appear. A similar situation occurs if m = 4 and only one vertex of
link(x) has degree 4.

Next we can deal cases (II) - (VI) under the following assumption.

(A) m = 4 with at least two vertices {u, v} ⊂ V (link(x)) having degree
m.

(II) ab ⊆ G− ∂G, x ∈ ∂G.
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If abx is the center of an octahedron component or a quasi-octahedron
component, we are done. If xx1x2 is the center of an octahedron, we are
done. Otherwise we distinguish two cases according to the existence of
the inner edge x1x2 or not. Observe that with these conditions we get
deg(a) ≥ 5 or deg(b) ≥ 5.

If x1x2 does not exist, then xxi is a 4c-edge (for i = 1 or 2)

If x1x2 does exist, it must be an inner edge. Since ab is contractible, we
can suppose b ∈ G−∂G and xb contractible edge. Moreover, deg(a) ≥ 5
since deg(a) = 4 implies the existence of the edge bx1 and this contra-
dicts the contractibility of ab. Observe that in this case deg(x2) ≥ 5,
since otherwise x2bx1 must define a face of G, contradicting again the
contractibility of ab. Therefore, xb is a 4c-edge and this case is finished.

(III.a) ab ⊆ G− ∂G, x ∈ G− ∂G, x1x2 ⊆ ∂G.

If abx is the center of an octahedron component we are done. If axx1
(analogously bxx2) is the center of an octahedron component or a quasi-
octahedron component, we are done. Otherwise, the 4-valent vertices of
link(x) can not be adjacent, except possibly x1 and x2.

Let us suppose deg(a) = deg(x2) = 4 (deg(b) = deg(x1) = 4 is analo-
gous), then deg(b) ≥ 5 and deg(x1) ≥ 5 implies xb and xx1 are 4c-edges.

If deg(x1) = deg(x2) = 4, then deg(a) ≥ 5 and deg(b) ≥ 5, If x1x2 is
not contractible, it must be because of the existence of an octahedron
component centered at xx1x2. Otherwise, x1x2 is contractible and there
exists an N -component with parallel edges xa and x1x2.

(III.b) ab ⊆ G − ∂G, x ∈ G − ∂G, x1x2 ⊆ G − ∂G, x1 ∈ ∂G. If abx or bx2x
is the center of an octahedron component, we are done. Otherwise, by
assumption (A) deg(b) ≥ 5 and ax and xx2 are 4c-edges.

(IV.a) ab ⊆ G − ∂G, x, b ∈ G − ∂G, a ∈ ∂G, ax1 ⊆ ∂G. If one of the
triangles meeting x is the center of an octahedron or quasi-octahedron
component, we are done. By assumption (A), there are at least two
vertices of degree 4 in V (link(x)). If deg(a) = deg(x2) = 4 (analogous
for deg(b) = deg(x1) = 4), then xa is 4c-edge if deg(x1) ≥ 5 (since
deg(b) ≥ 5). If deg(x1) = 4 and ax1 is contractible, then there exists an
N -component with parallel edges ax1 and xx2. If ax1 is not contractible,
then ∂G has length 3 and axx1 is the center of an octahedron component.

(IV.b) ab ⊆ G− ∂G, x, b ∈ G− ∂G, a ∈ ∂G, ax1 ⊆ G− ∂G.

It is not difficult to see that all edges incident in x are contractible. If
xx1x2 or xbx2 is the center of an octahedron, we are done. Otherwise,
by assumption (A), deg(x2) ≥ 5 and xx1 and xb are 4c-edges.
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(V) ab ⊆ G− ∂G, x, a ∈ ∂G.
If xbx2 is the center of an octahedron or quasi-octahedron component,
we are done. If axx1 is the center of a boundary octahedron component
we are done. Otherwise deg(b) ≥ 5 or deg(x2) ≥ 5. Observe that xb is a
contractible edge. We distinguish two cases: there exists inner edge ax1
or not.

If ax1 is an inner edge, then deg(a) ≥ 5 since deg(a) = 4 implies the
existence of the edge bx1 contradicting the contractibility of ab. If
deg(x2) ≥ 5, then xb is a 4c-edge. If deg(x2) = 4, then deg(b) ≥ 5
and it is not difficult to check that x2 ∈ G− ∂G (x2 ∈ ∂G implies x1x2
boundary edge, a contradiction). Therefore xx2 is also a contractible
edge. Now, notice that deg(x1) ≥ 5 since deg(x1) = 4 implies the exis-
tence of the edge ax2 contradicting the contractibility of ab. Hence, xx2
is a 4c-edge.

If ax1 is not an edge, then xa and xx1 are contractible and one of
them must be a 4c-edge since b and x2 can not be 4-valent vertices
simultaneously.

(VI) ab ⊆ ∂G, x ∈ G− ∂G. If one of the triangles meeting x is the center of
an octahedron or quasi-octahedron component, we are done. Otherwise,
no pair of adjacent vertices are 4-valent, except possibly a and b. If
deg(a) = deg(b) = 4, then an N -component with parallel edges ab, xx2
is found. If deg(a) ≥ 5 and deg(x2) ≥ 5, then xx1 and xb are 4c-
edges. If deg(a) ≥ 5 and deg(x2) = 4, then deg(x1) ≥ 5 and deg(b) ≥ 5
(otherwise an octahaedron or quasi-octahedron appear), and xx2 and xa
are 4c-edges.

�
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[14] A. Malnič, R. Nedela, K-Minimal triangulations of surfaces, Acta Math.
Univ. Comenianae 64, 1 (1995), 57-76.



GENERATING PUNCTURED SURFACE TRIANGULATIONS WITH
DEGREE AT LEAST 4 150

[15] N. Matsumoto, A. Nakamoto, Generating 4-connected even triangulations
on the sphere, Discrete Math. 338 (2015), 64-70.

[16] N. Matsumoto, A. Nakamoto, T. Yamaguchi, Generating even triangula-
tions on the torus, Discrete Mathematics 341 (2018), 2035-2048.

[17] A. Nakamoto, H. Motoaki, Generating 4-connected triangulations on
closed surfaces, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci.
50, no. 2 (2002), 145-153.

[18] A. Nakamoto, S. Negami, Generating triangulations on closed surfaces
with minimum degree at least 4, Discrete Math. 244 (2002), 345-349.

[19] S. Negami, Triangulations, Handbook of Graph Theory, Second Edition.
J. L. Gross, J. Yellen and P. Zhang (Ed.) Chapman and Hall/CRC Press,
876-901, 2014.

[20] M. Nishina, Y. Suzuki, A generating theorem of simple even triangulations
with a finitizable set of reductions, Discrete Math., 340 (2017), 2604-2613.

[21] T. Sulanke, Generating irreducible triangulations of surfaces,
arXiv:math/0606687v1 [math.CO], (2006).

[22] T. Sulanke, F. H. Lutz, Isomorphism-free lexicographic enumeration of
triangulated surfaces and 3-manifolds, Eur. J. Comb. 30 (2009), 1965-
1979.

[23] R. Thomas, X. Yu, 4-connected projective planar graphs are Hamiltonian,
J. Combin. Theory Ser. B 62 (1994), 114-132.

[24] H. Whitney, A theorem on graphs, Ann. Math. 32 (1931), 378-390.
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