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We study the equivalence between the Orlicz and Luxemburg (quasi-) norms in 
the context of the generalized Orlicz spaces associated to an N-function Φ and 
a (quasi-) Banach function space X over a positive finite measure μ. We show 
that the Orlicz and the Luxemburg spaces do not coincide in general, and also 
that under mild requirements (σ-Fatou property, strictly monotone renorming) 
the coincidence holds. We use as a technical tool the classes LΦ

w(m), LΦ(m) and 
LΦ(‖m‖) of Orlicz spaces of scalar integrable functions with respect to a Banach-
space-valued countably additive vector measure m, providing also some new results 
on these spaces.

1. Introduction

It is well-known that classical Orlicz spaces allow a double metric description: the so-called Orlicz and Lux-
emburg norms give equivalent formulas for norming the space. This provides some fundamental tools for the 
analysis of these spaces, and is one of the reasons why the theory of Orlicz spaces is so fruitful ([12,14,17–19]). 
The same construction that produces this class of spaces allows also to create a well characterized class of lat-
tices of (classes of) measurable functions. Indeed, if X is a quasi-Banach function space over a measure μ and 
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Φ is a Young function, we can define the Luxemburg space as XΦ
L :=

{
f ∈ L0(μ) : ∃ c > 0 : Φ

(
|f |
c

)
∈ X

}
(see for example [12,17]). If f ∈ XΦ

L , the Luxemburg (lattice) quasi-norm is given by

‖f‖XΦ
L

:= inf
{
c > 0 : Φ

(
|f |
c

)
∈ X with

∥∥∥∥Φ( |f |
c

)∥∥∥∥
X

≤ 1
}
.

If Φ is an N-function and Φ̂ is the complementary function of Φ, the Orlicz space is defined as

XΦ
O :=

{
f ∈ L0(μ) : ‖f‖XΦ

O
< ∞

}
,

where the Orlicz quasi-norm is defined by

‖f‖XΦ
O

:= sup
{
‖fg‖X : Φ̂(|g|) ∈ X,

∥∥∥Φ̂ (|g|)
∥∥∥
X

≤ 1
}
.

In the case of the classical Orlicz spaces —when the space X is L1(μ)—, the inequalities

‖f‖L1(μ)ΦL ≤ ‖f‖L1(μ)ΦO ≤ 2‖f‖L1(μ)ΦL , f ∈ LΦ(μ) (1)

provide the double way of describing the classical space LΦ(μ). That is, L1(μ)ΦL = L1(μ)ΦO =: LΦ(μ) with
equivalent norms.

The aim of this paper is to analyze up to which point the same can be said for the general case. That is, 
to what extent it can be said that the quasi-norms ‖ · ‖XΦ

L
and ‖ · ‖XΦ

O
are equivalent and in which space

this occurs. The main problem that arises when facing this issue is to know in which spaces these quasi-
norms can be compared. One of our main results states that the spaces XΦ

O and XΦ
L are in general different

(Example 4.1), and so the quasi-norms can only be compared in the smallest one. Under some natural 
assumptions on the function Φ, coincidence of these spaces and equivalence of the quasi-norms is assured 
with the hypotheses of the σ-Fatou property for the space X and the existence of a suitable strictly monotone 
renorming for it (Theorem 5.12). If the σ-Fatou property is not assumed, again the existence of a strictly 
monotone renorming gives the equivalence of both quasi-norms in the smallest space XΦ

L (Theorem 5.13).
It must be said that the issue that we face in the present paper was previously studied in [10], in which 
the σ-Fatou property is assumed in the definition of quasi-Banach function space. In [10, Theorem 5.1] the 
authors prove that the norms are in general equivalent, but it is implicitly assumed that the spaces XΦ

L and
XΦ

O (in our notation) coincide, what is not in general true, as we show in the present paper.
Our results are presented in six sections. After two introductory parts, we present in Section 3 the basics 

on the Luxemburg and Orlicz (quasi-) Banach function spaces associated to a quasi-Banach function space 
X. In particular, the continuous inclusion XΦ

L ⊆ XΦ
O is proved for general X and Φ. We will use the general

representation of (quasi-) Banach function spaces provided by the vector measure integration as a central 
technical tool. Essentially, this integration theory allows to write any order continuous Banach function 
space with a weak order unit as a space of integrable functions L1(m) with respect to a countably additive
vector measure m (see for example [16, Ch. 3]). These spaces will be explained in Section 4. Besides, Orlicz 
spaces of integrable functions with respect to a vector measure are introduced also as an auxiliary tool 
in Subsection 4.3. The counterexample that shows that in general XΦ

L and XΦ
O are not equal is presented

there. In Section 5 we introduce the notion of strictly monotone (quasi-) norm, and using it we prove broad 
sufficient conditions for the equality XΦ

L = XΦ
O and the equivalence of the corresponding quasi-norms.

Finally, we present in Section 6 some positive results in which the condition of having an equivalent strictly 
monotone renorming for the space X is fulfilled. Concretely, we prove that every L-convex quasi-Banach 
function space X —that is, spaces with some r-convexity— with the σ-Fatou property satisfies that the 
associated Orlicz and Luxemburg spaces coincide. This covers all the usual cases of quasi-Banach function 



spaces. However, some additional information is also provided: for any quasi-Banach function space X with 
the σ-Fatou property and some (r, 1)-concavity, equality XΦ

L = XΦ
O is also satisfied for every N-function Φ.

2. Preliminaries and notation

Throughout this paper, we shall always assume that Ω is a nonempty set, Σ is a σ-algebra of subsets
of Ω, μ is a finite positive measure defined on Σ and L0(μ) is the space of (μ-a.e. equivalence classes of) 
measurable functions f : Ω −→ R equipped with the topology of convergence in measure.

Recall that a quasi-normed space is any vector space X equipped with a quasi-norm, that is, a function 
‖ · ‖X : X −→ [0, ∞) which satisfies the following axioms:

(Q1) ‖f‖X = 0 if and only if f = 0.
(Q2) ‖αf‖X = |α| ‖f‖X , for α ∈ R and f ∈ X.
(Q3) There exists K ≥ 1 such that ‖f + g‖X ≤ K (‖f‖X + ‖g‖X), for all f, g ∈ X.

The constant K in (Q3) is called a quasi-triangle constant of X. Of course if we can take K = 1, then ‖ · ‖X
is a norm and X is a normed space. A quasi-normed function space over μ is any quasi-normed space X
satisfying the following properties:

(a) X is an ideal in L0(μ) and a quasi-normed lattice with respect to the μ-a.e. order, that is, if f ∈ L0(μ),
g ∈ X and |f | ≤ |g| μ-a.e., then f ∈ X and ‖f‖X ≤ ‖g‖X .

(b) The characteristic function of Ω, χΩ, belongs to X.

If, in addition, the quasi-norm ‖ · ‖X happens to be a norm, then X is called a normed function space. Note
that, with this definition, any quasi-normed function space over μ is continuously embedded into L0(μ), as 
it is proved in [16, Proposition 2.2].

We say that a quasi-normed function space X has the σ-Fatou property if for any positive increasing 
sequence (fn)n in X with sup

n
‖fn‖X < ∞ and converging μ-a.e. to a function f , we have that f ∈ X and

‖f‖X = sup
n

‖fn‖X . A quasi-normed function space X is said to be σ-order continuous if for any positive

increasing sequence (fn)n in X converging μ-a.e. to a function f ∈ X, we have that ‖f − fn‖X → 0.
A complete quasi-normed function space is called a quasi-Banach function space. If, in addition, the quasi-

norm happens to be a norm, then X is called a Banach function space. It is known that if a quasi-normed 
function space has the σ-Fatou property, then it is complete and hence a quasi-Banach function space 
(see [16, Proposition 2.35]) and that inclusions between quasi-Banach function spaces are automatically 
continuous (see [16, Lemma 2.7]). However, in this work we will also consider function spaces without the 
σ-Fatou property.

3. Luxemburg and Orlicz (quasi-) Banach function spaces

Recall that a Young function is any function Φ : [0, ∞) −→ [0, ∞) which is strictly increasing, convex
(hence continuous), Φ(0) = 0 and lim

x→∞
Φ(x) = ∞. A Young function Φ satisfies the following useful 

inequalities (which we will use later) for all x ≥ 0:

Φ(αx) ≤ αΦ(x) if 0 ≤ α ≤ 1, (2)

Φ(αx) ≥ αΦ(x) if α ≥ 1. (3)



A Young function Φ is called an N-function if Φ satisfies the limit conditions lim
x→0

Φ(x)
x

= 0 and 

lim
x→∞

Φ(x)
x

= ∞. N-functions are a useful nice class of Young functions for which its complementary functions
are also N-functions (see [17, p. 13]).

A Young function Φ has the Δ2-property, written Φ ∈ Δ2, if there exists a constant C > 1 such that
Φ(2x) ≤ CΦ(x) for all x ≥ 0.

Next we introduce the Luxemburg and Orlicz quasi-Banach function spaces whose relations will be the 
aim of our work. See [4] for detailed study about these spaces that have also been considered in [10] in the 
setting of Banach function spaces with the σ-Fatou property.

Let Φ be a Young function. Given a quasi-normed function space (respectively, normed function space) 
X over μ, the corresponding (generalized) Orlicz class X̃Φ is defined as the following set:

X̃Φ :=
{
f ∈ L0(μ) : Φ(|f |) ∈ X

}
.

The Orlicz class X̃Φ is a solid convex set in L0(μ). Moreover, X̃Φ ⊆ X.
The (generalized) Luxemburg space XΦ

L is defined as the following set:

XΦ
L :=

{
f ∈ L0(μ) : ∃ c > 0 : |f |

c
∈ X̃Φ

}
.

The Luxemburg space XΦ
L is a linear space, an ideal in L0(μ) and X̃Φ ⊆ XΦ

L ⊆ X (see [4, Proposition 4.4]).
Given f ∈ XΦ

L , we define the Luxemburg lattice quasi-norm (respectively, norm) of f by

‖f‖XΦ
L

:= inf
{
c > 0 : |f |

c
∈ X̃Φ with

∥∥∥∥Φ( |f |
c

)∥∥∥∥
X

≤ 1
}
. (4)

The Luxemburg space XΦ
L equipped with the Luxemburg quasi-norm, is really a quasi-normed (respectively,

normed) function space over μ with the same quasi-triangle constant as the one of the quasi-norm of X. 
Moreover, properties as completeness, σ-Fatou, and σ-order continuity (in that case the Young function Φ
must have additionally the Δ2-property) are transferred from X to XΦ

L . See [4] for details.
Consider the complementary function of the Young function Φ, defined as

Φ̂(y) := sup
x≥0

{xy − Φ(x)},

for all y ≥ 0. From the definition of Φ̂ it is clear that Φ and Φ̂ satisfy the Young inequality

x y ≤ Φ(x) + Φ̂(y), x, y ≥ 0. (5)

It is well known (see [12, Theorem 1.1] or [17, Theorem 1.3.1]) that for a Young function Φ there exists a 

non-decreasing, right continuous function ϕ : [0, ∞) −→ [0, ∞), with ϕ(0) = 0, such that Φ(x) =
x∫

0

ϕ(t)dt

for all x ∈ [0, ∞). Such function ϕ is called the right derivative of the function Φ. This function ϕ satisfies 
the following equality (see [12, (2.7)] or [17, Theorem 1.3.3]) that we will use later

xϕ(x) = Φ(x) + Φ̂ (ϕ(x)) , x ≥ 0. (6)

Let Φ be an N-function. Given a quasi-normed function space (respectively, normed function space) X
over μ, the corresponding (generalized) Orlicz space XΦ

O is defined as the following set:



XΦ
O :=

{
f ∈ L0(μ) : ‖f‖XΦ

O
< ∞

}
,

where ‖·‖XΦ
O

is the Orlicz quasi-norm (respectively, norm) defined by

‖f‖XΦ
O

:= sup
{
‖fg‖X : g ∈ X̃Φ̂,

∥∥∥Φ̂ (|g|)
∥∥∥
X

≤ 1
}
. (7)

The Orlicz space XΦ
O is a linear space, an ideal in L0(μ) and X̃Φ ⊆ XΦ

O ⊆ X. In fact, the following 
inequalities hold

‖f‖XΦ
O
≤ K (‖Φ (|f |)‖X + 1) , f ∈ X̃Φ

‖f‖X ≤ 1
Φ̂−1

(
1

‖χΩ‖X

) ‖f‖XΦ
O
, f ∈ XΦ

O , (8)

where K is a quasi-triangle constant of X. Moreover, XΦ
O equipped with the Orlicz quasi-norm, is really a

quasi-normed (respectively, normed) function space over μ with the same quasi-triangle constant as the one 
of the quasi-norm of X. Moreover, as we will see next, properties as completeness or σ-Fatou are transferred 
from X to XΦ

O . However, the Orlicz space XΦ
O does not have to be σ-order continuous even if the space X

has that property and Φ ∈ Δ2 (see the next Example 4.1).

Proposition 3.1. Let Φ be an N-function and X be a quasi-Banach function space over μ. Then XΦ
O is a 

quasi-Banach function space over μ.

Proof. We are going to prove only the completeness of XΦ
O. To do this we will use the Amemiya’s theorem 

for quasi-normed lattices (see [4, Theorem 3.2]). It is enough to prove that for every positive increasing 
Cauchy sequence (fn)n in XΦ

O there exists sup
n

fn ∈ XΦ
O . By applying (8) it is easy to see that (fn)n is

Cauchy in X, and so there exists f ∈ X such that ‖f − fn‖X → 0 as n → ∞. Consequently f = sup
n

fn.

Now take g ∈ X̃Φ̂ with 
∥∥∥Φ̂ (|g|)

∥∥∥
X

≤ 1. Then 0 ≤ fn|g| ↑ f |g| μ-a.e. On the other hand, (fng)n is Cauchy 

in X because ‖fmg − fng‖X ≤ ‖fm − fn‖XΦ
O

for all m, n = 1, 2, . . . Then there exists a function hg ∈ X

such that ‖fng − hg‖X → 0 as n → ∞. Convergence on X implies convergence for subsequences μ-a.e.
Consequently hg = f |g| μ-a.e. and ‖fng − f |g|‖X → 0 as n → ∞. Take n ≥ 1 such that ‖fng − f |g|‖X ≤ 1,
and denote by K the quasi-triangle constant of X. Then

‖fg‖X = ‖f |g|‖X ≤ K ‖f |g| − fng‖X + K ‖fng‖X ≤ K + K ‖fn‖XΦ
O
≤ K

(
1 + sup

n
‖fn‖XΦ

O

)
< ∞

because (fn)n is bounded in XΦ
O . Thus f ∈ XΦ

O as we wanted to see. �
Proposition 3.2. Let Φ be an N-function and X be a quasi-normed function space over μ with the σ-Fatou 
property. Then XΦ

O has the σ-Fatou property.

Proof. Take an increasing positive sequence (fn)n ⊆ XΦ
O converging μ-a.e. to a function f such that M :=

sup
n

‖fn‖Xφ
O

< ∞. By applying (8) we get sup
n

‖fn‖X ≤ M

Φ̂−1
(

1
‖χΩ‖X

) , and having in mind that X has 

the σ-Fatou property, it follows that f ∈ X. Now take g ∈ X̃Φ̂ with 
∥∥∥Φ̂ (|g|)

∥∥∥
X

≤ 1. Then we have
0 ≤ fn|g| ↑ f |g| μ-a.e. and also that ‖fg‖ ≤ ‖fn‖ Φ ≤ M . Consequently f |g| ∈ X and moreover 
X XO



‖fg‖X = sup
n

‖fng‖X ≤ M by the σ-Fatou property of X. Taking suprema on g it follows that f ∈ XΦ
O and 

‖f‖XΦ
O
≤ M = sup

n
‖fn‖XΦ

O
. The converse inequality is obvious. �

Proposition 3.3. Let Φ be an N-function and X be a quasi-normed function space over μ with quasi-triangle 
constant K ≥ 1. Then XΦ

L ⊆ XΦ
O holds and

‖f‖XΦ
O
≤ 2K ‖f‖XΦ

L
, f ∈ XΦ

L . (9)

Proof. Take a function f ∈ XΦ
L and let c > 0 be such that f

c
∈ X̃Φ with 

∥∥∥∥Φ( |f |
c

)∥∥∥∥
X

≤ 1. By the Young 

inequality (5) we have 
|f |
c
|g| ≤ Φ 

(
|f |
c

)
+Φ̂(|g|) for all g ∈ X̃Φ̂ with 

∥∥∥Φ̂ (|g|)
∥∥∥
X

≤ 1, and taking quasi-norm

1
c
‖fg‖X =

∥∥∥∥fc g
∥∥∥∥
X

≤ K

(∥∥∥∥Φ( |f |
c

)∥∥∥∥
X

+
∥∥∥Φ̂(|g|)

∥∥∥
X

)
≤ 2K.

Thus ‖f‖XΦ
O

≤ 2Kc, and finally taking infimum in c we obtain ‖f‖XΦ
O

≤ 2K ‖f‖XΦ
L

as we wanted to 
prove. �
4. Integrable function spaces and Orlicz spaces respect to a vector measure

In this section we will describe a class of Banach function spaces X for which the corresponding Orlicz
and Luxemburg spaces do not match, that is, XΦ

L � XΦ
O .

4.1. Lebesgue spaces with respect to a vector measure

Given a countably additive vector measure m : Σ → Y with values in a real Banach space Y , there 
are several ways of constructing (quasi-) Banach function spaces of integrable functions. Let us recall them 
briefly. The semivariation of m is the finite subadditive set function defined on Σ by

‖m‖(A) := sup {|〈m, y∗〉|(A) : y∗ ∈ BY ∗} ,

where |〈m, y∗〉| denotes the variation of the scalar measure 〈m, y∗〉 : Σ → R given by 〈m, y∗〉(A) :=
〈m(A), y∗〉 for all A ∈ Σ, and BY ∗ is the unit ball of Y ∗, the dual space of Y . A set A ∈ Σ is called m-null
if ‖m‖(A) = 0. A measure μ := |〈m, y∗〉|, where y∗ ∈ BY ∗ , that is equivalent to m (in the sense that
‖m‖(A) → 0 if and only if μ(A) → 0) is called a Rybakov control measure for m. Such a measure always
exists (see [7, Theorem 2, p. 268]). Let L0(m) be the space of (m-a.e. equivalence classes of) measurable
functions f : Ω −→ R. Thus, L0(m) and L0(μ) are just the same whenever μ is a Rybakov control measure
for m, and allows to define equivalence classes of m-a.e. functions as the ones that are equal μ-a.e.

A measurable function f : Ω −→ R is called weakly integrable (with respect to m) if f is integrable with 
respect to |〈m, y∗〉| for all y∗ ∈ Y ∗. A weakly integrable function f is said to be integrable (with respect to 

m) if, for each A ∈ Σ there exists an element (necessarily unique)
∫
A

f dm ∈ Y , satisfying

〈∫
A

f dm, y∗

〉
=
∫
A

f d〈m, y∗〉, y∗ ∈ Y ∗.

Let L1
w(m) be the space of all (m-a.e. equivalence classes of) weakly integrable functions, and let L1(m) the

space of all (m-a.e. equivalence classes of) integrable functions. Letting μ be any Rybakov control measure 



for m, we have that L1
w(m) becomes a Banach function space over μ with the σ-Fatou property when

endowed with the norm

‖f‖L1
w(m) := sup

⎧⎨⎩
∫
Ω

|f | d|〈m, y∗〉| : y∗ ∈ BY ∗

⎫⎬⎭ .

Moreover, L1(m) is a closed σ-order continuous ideal of L1
w(m). In fact, it is the closure of S(Σ), the space

of simple functions supported on Σ. Thus, L1(m) is a σ-order continuous Banach function space over μ
endowed with the same norm (see [16, Theorem 3.7] and [16, p. 138]).

We will denote by L∞(m) the Banach function space of all (m-a.e. equivalence classes of) essentially 
bounded functions equipped with the essential sup-norm.

4.2. Choquet spaces with respect to the semivariation

Given a measurable function f : Ω −→ R, we will also consider its distribution function (with respect to 
the semivariation of the vector measure m)

‖m‖f : t ∈ [0,∞) −→ ‖m‖f (t) := ‖m‖([|f | > t]) ∈ [0,∞),

where [|f | > t] := {w ∈ Ω : |f(w)| > t}. This distribution function is bounded, non-increasing and right-
continuous.

Let L1(‖m‖) be the space of all (m-a.e. equivalence classes of) measurable functions f such that its 
distribution function ‖m‖f is Lebesgue integrable in (0, ∞). It is known that L1(‖m‖) equipped with the
quasi-norm

‖f‖L1(‖m‖) :=
∞∫
0

‖m‖f (t) dt

is a quasi-Banach function space over μ with the σ-Fatou property (see [2, Proposition 3.1]) and it is also 
σ-order continuous (see [2, Proposition 3.6]).

Finally note that the following inclusions

L∞(m) ⊆ L1 (‖m‖) ⊆ L1(m) ⊆ L1
w(m) ⊆ L0 (m) (10)

are all continuous. See for instance [8, Proposition 3.4], particularly for the second inclusion. In general, all 
these inclusions are strict inclusions. Sufficient conditions for the equality L1(m) = L1

w(m) were given in
[13].

4.3. Orlicz spaces with respect to a vector measure

First of all observe that classical Orlicz spaces LΦ(μ) with respect to a positive finite measure μ and
an N-function Φ are obtained applying the constructions XΦ

L and XΦ
O of Section 3 to the Banach function

space X = L1(μ), that is, L1(μ)ΦL = L1(μ)ΦO = LΦ(μ) equipped with the norm ‖ · ‖LΦ(μ) := ‖ · ‖L1(μ)ΦL
which results to be equivalent to ‖ · ‖L1(μ)ΦO as it is well known. Using these classical spaces LΦ(μ), new
Orlicz spaces LΦ

w(m) and LΦ(m) with respect to a vector measure m : Σ → Y were introduced in [6] in the 
following way:

LΦ
w(m) :=

{
f ∈ L0(m) : f ∈ LΦ(|〈m, y∗〉|), ∀ y∗ ∈ Y ∗} ,
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equipped with the norm

‖f‖LΦ
w(m) := sup

{
‖f‖LΦ(|〈m,y∗〉|) : y∗ ∈ BY ∗

}
,

and LΦ(m) is the closure of simple functions S(Σ) in LΦ
w(m). These Orlicz spaces LΦ

w(m) and LΦ(m) can 
be obtained as generalized Orlicz spaces XΦ

L by taking X to be L1
w(m) and L1(m), respectively. In fact, if

Φ is an N-function, then LΦ
w(m) = L1

w(m)ΦL and ‖f‖LΦ
w(m) = ‖f‖L1

w(m)ΦL , for all f ∈ LΦ
w(m). In general the 

inclusion LΦ(m) ⊆ L1(m)ΦL holds, but if we also assume Φ ∈ Δ2, then LΦ(m) = L1(m)ΦL = L̃1(m)
Φ
. See [4,

Proposition 5.1] and [4, Theorem 4.13].

Example 4.1. Let Y be a real Banach space and let m : Σ → Y a countably additive vector measure such 
that the spaces L1(m) and L1

w(m) are different. It is worth noting that there are many vector measures m
for which L1(m) � L1

w(m). See [13] for details on the equality L1(m) = L1
w(m). Let’s choose such a measure

m with L1(m) �= L1
w(m). Then, for every N-function Φ ∈ Δ2 such that Φ̂ ∈ Δ2 we have

L1
w(m)ΦL = LΦ

w(m) = L1
w(m)ΦO, (11)

L1(m)ΦL = LΦ(m) � LΦ
w(m) = L1(m)ΦO. (12)

First let us note that LΦ(m) � LΦ
w(m) since the function Φ has the Δ2 property and we have chosen the

measure m so that L1(m) � L1
w(m). As we have said before, the equality L1

w(m)ΦL = LΦ
w(m) has been proved

in [4, Proposition 5.1]). The other equality, that is LΦ
w(m) = L1

w(m)ΦO, will be obtained as a consequence of
the next Theorem 5.12 (see also Example 6.1) since the space L1

w(m) has the σ-Fatou property.
It is also clear the equality L1(m)ΦL = LΦ(m) because the function Φ has the Δ2 property. It only remains

to establish the equality LΦ
w(m) = L1(m)ΦO. Let us suppose f ∈ LΦ

w(m) and take g ∈ L̃1(m)
Φ̂

= LΦ̂(m) (for
this equality we have used that Φ̂ ∈ Δ2) such that 

∥∥∥Φ̂ (|g|)
∥∥∥
L1(m)

≤ 1. In this case ‖g‖LΦ̂
w(m) ≤ 1 (see [9, 

Lemma 2.4]). By applying [9, Proposition 4.5] we know that fg ∈ L1(m), and moreover

‖fg‖L1(m) ≤ 2‖f‖LΦ
w(m)‖g‖LΦ̂

w(m) ≤ 2‖f‖LΦ
w(m) < ∞.

Thus f ∈ L1(m)ΦO. For the opposite inclusion let us take now f ∈ L1(m)ΦO, that is,

sup
{
‖fg‖L1(m) : g ∈ LΦ̂(m),

∥∥∥Φ̂(|g|)
∥∥∥
L1(m)

≤ 1
}
< ∞.

This means in the terminology of [9] that the function f belongs to the multipliers space M 
(
LΦ̂(m), L1(m)

)
. 

In the same paper (see [9, Theorem 4.8]) it is proved the equality M 
(
LΦ̂(m), L1(m)

)
= LΦ

w(m). Thus 
f ∈ LΦ

w(m) as we wanted to see.
A simpler special case of this general situation appears when we take the N-function Φ(x) := xp

p
, with 

p > 1. Then we have Φ̂(x) = xq

q
, where 

1
p

+ 1
q

= 1. In [1] it is proved that M 
(
Lp(m), L1(m)

)
= Lq

w(m).
Thus

L1(m)ΦL = Lp(m) � Lp
w(m) = L1(m)ΦO

that shows again (12).



The Orlicz spaces LΦ(m) have been recently employed in [3] to locate the compact subsets of L1(m). 
Motivated by the idea of studying compactness in L1(‖m‖) in a forthcoming paper [5], we introduced the
Orlicz spaces LΦ(‖m‖) as the Orlicz spaces XΦ

L associated to the quasi-Banach function space X = L1(‖m‖). 
For further reference, we collect together some information of [4] about LΦ(‖m‖).

Proposition 4.2. Let Φ be a Young function, m : Σ → Y a vector measure and μ any Rybakov control 
measure for m. Then,

(i) LΦ(‖m‖) is a quasi-Banach function space over μ with the σ-Fatou property.
(ii) LΦ(‖m‖) ⊆ L1(‖m‖) with continuous inclusion.

Moreover, if Φ ∈ Δ2, then

(iii) LΦ(‖m‖) is σ-order continuous, and
(iv) LΦ(‖m‖) =

{
f ∈ L0(m) : Φ(|f |) ∈ L1(‖m‖)

}
.

5. Sufficient conditions for the equality XΦ
L = XΦ

O

In this section we will show sufficient conditions for the equality of the spaces XΦ
L and XΦ

O . Since we 
already know that the inclusion XΦ

L ⊆ XΦ
O is always true for every N-function Φ, we look for sufficient 

conditions that guarantee the inequality ‖ · ‖XΦ
L
≤ ‖ · ‖XΦ

O
of the Luxemburg and Orlicz quasi-norms. For 

this we need a couple of technical results (Proposition 5.3 and Proposition 5.4) which are the analogues to 
[12, Lemma 9.1] and [12, Lemma 9.2] for our context.

Lemma 5.1. Let X be a quasi-Banach function space over μ. If f ∈ XΦ
O and g ∈ X̃Φ̂, then

‖fg‖X ≤ ‖f‖XΦ
O
· max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
. (13)

Proof. If 
∥∥∥Φ̂ (|g|)

∥∥∥
X

≤ 1, from the definition of the Orlicz quasi-norm (7) it follows that

‖fg‖X ≤ ‖f‖XΦ
O

= ‖f‖XΦ
O
· max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
.

If 
∥∥∥Φ̂ (|g|)

∥∥∥
X

> 1, it follows from inequality (2) that

Φ̂

⎛⎝ |g|∥∥∥Φ̂ (|g|)
∥∥∥
X

⎞⎠ ≤ Φ̂ (|g|)∥∥∥Φ̂ (|g|)
∥∥∥
X

.

Then, by the ideal property of the quasi-norm we obtain that∥∥∥∥∥∥Φ̂
⎛⎝ |g|∥∥∥Φ̂ (|g|)

∥∥∥
X

⎞⎠∥∥∥∥∥∥
X

≤

∥∥∥Φ̂ (|g|)
∥∥∥
X∥∥∥Φ̂ (|g|)
∥∥∥
X

= 1.

Now, from the definition of the Orlicz quasi-norm (7) it follows that

‖fg‖X∥∥∥Φ̂ (|g|)
∥∥∥ =

∥∥∥∥∥∥f g∥∥∥Φ̂ (|g|)
∥∥∥
∥∥∥∥∥∥ ≤ ‖f‖XΦ

O
,

X X X



and from this last inequality we get that

‖fg‖X ≤ ‖f‖XΦ
O
·
∥∥∥Φ̂ (|g|)

∥∥∥
X

= ‖f‖XΦ
O
· max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
. �

Definition 5.2. Let X be a quasi-normed function space over the measure μ. We say that the quasi-norm 
‖ · ‖X of X is strictly monotone if ‖f‖X < ‖g‖X for all 0 ≤ f < g ∈ X. As it is usual f < g means that
f ≤ g and f �= g in X. In particular, if f < g, then μ ([f �= g]) > 0.

Proposition 5.3. Let X be a quasi-Banach function space over μ with the σ-Fatou property and strictly 
monotone quasi-norm, and let ϕ be the right derivative of the N-function Φ. If ‖f‖XΦ

O
≤ 1, then g :=

ϕ (|f |) ∈ X̃Φ̂ and satisfies that 
∥∥∥Φ̂ (|g|)

∥∥∥
X

≤ 1.

Proof. Suppose that ‖f‖XΦ
O

≤ 1 and denote by fn := fχ[|f |≤n] for all n = 1, 2, . . . Since fn ∈ L∞(μ) it
follows that ϕ(|fn|) ∈ L∞(μ) ⊆ X̃Φ̂, and so Φ̂ (ϕ (|fn|)) ∈ X for all n = 1, 2, . . . Moreover Φ̂ (ϕ (|fn|)) ↑
Φ̂ (ϕ (|f |)) μ-a.e. since |fn| ↑ |f | μ-a.e.

Suppose on the contrary that the conclusion of the statement is not satisfied. Then two possibilities 
appear:

a) g := ϕ (|f |) /∈ X̃Φ̂, or
b) g := ϕ (|f |) ∈ X̃Φ̂ but 

∥∥∥Φ̂ (|g|)
∥∥∥
X

> 1.

In both cases a) or b), the σ-Fatou property of X ensures that there exists n0 ≥ 1 such that∥∥∥Φ̂ (ϕ (|fn0 |))
∥∥∥
X

> 1. In particular, |fn0 | > 0. In view of (6) we have

Φ̂ (ϕ (|fn0 |)) < Φ (|fn0 |) + Φ̂ (ϕ (|fn0 |)) = |fn0 |ϕ (|fn0 |) .

Taking quasi-norm and having in mind the strict monotonicity property of X together with the inequality 
(13), we conclude that∥∥∥Φ̂ (ϕ (|fn0 |))

∥∥∥
X

< ‖|fn0 |ϕ (|fn0 |)‖X ≤ ‖fn0‖XΦ
O

∥∥∥Φ̂ (ϕ (|fn0 |))
∥∥∥
X

≤ ‖f‖XΦ
O

∥∥∥Φ̂ (ϕ (|fn0 |))
∥∥∥
X

≤
∥∥∥Φ̂ (ϕ (|fn0 |))

∥∥∥
X
.

This contradiction proves the result. �
Proposition 5.4. Let X be a quasi-Banach function space over μ with the σ-Fatou property and strictly 
monotone quasi-norm, and let Φ an N-function.

1) If ‖f‖XΦ
O
≤ 1, then ‖Φ (|f |)‖X ≤ ‖f‖XΦ

O
.

2) If 0 �= f ∈ XΦ
O, then ∥∥∥∥∥Φ

(
|f |

‖f‖XΦ
O

)∥∥∥∥∥
X

≤ 1. (14)

In particular f ∈ XΦ
L .

Proof. 1) Consider the function g := ϕ (|f |) ≥ 0, where ϕ is the right derivative of the N-function Φ. The 

above Proposition 5.3 tells us that 
∥∥∥Φ̂ (|g|)

∥∥∥ ≤ 1. Now, from (6) we have

X



|f |g = |f |ϕ (|f |) = Φ (|f |) + Φ̂ (ϕ (|f |)) = Φ (|f |) + Φ̂ (|g|) . (15)

Noting that Φ (|f |) ≤ Φ (|f |) + Φ̂ (|g|), taking quasi-norm and using the equality (15) we conclude that

‖Φ (|f |)‖X ≤
∥∥∥Φ (|f |) + Φ̂ (|g|)

∥∥∥
X

= ‖fg‖X ≤ ‖f‖XΦ
O
,

as we wanted to see.

2) If f �= 0, then

∥∥∥∥∥ |f |
‖f‖XΦ

O

∥∥∥∥∥
XΦ

O

= 1. From item 1) it follows that

∥∥∥∥∥Φ
(

|f |
‖f‖XΦ

O

)∥∥∥∥∥
X

≤
∥∥∥∥∥ |f |
‖f‖XΦ

O

∥∥∥∥∥
XΦ

O

= 1. �

Theorem 5.5. Let X be a quasi-Banach function space over μ, with quasi-triangle constant K ≥ 1, with 
the σ-Fatou property and strictly monotone quasi-norm, and let Φ an N-function. Then XΦ

L = XΦ
O and the 

Orlicz quasi-norm is equivalent to the Luxemburg quasi-norm. In fact,

‖f‖XΦ
L
≤ ‖f‖XΦ

O
≤ 2K‖f‖XΦ

L
, f ∈ XΦ

L = XΦ
O . (16)

Proof. From the definition of the Luxemburg quasi-norm (4) together with the inequality (14) we obtain 
the following important first inequality

‖f‖XΦ
L
≤ ‖f‖XΦ

O
, f ∈ XΦ

O .

The second inequality has been established in (9) of Proposition 3.3. �
Remark 5.6. Let μ be a finite positive measure. Then the Lebesgue space X := L1(μ) is a Banach function
space over μ with the σ-Fatou property and its norm ‖ · ‖L1(μ) is clearly strictly monotone. Thus, the
inequalities in (16) give a generalization of the well known equivalence between the Orlicz and Luxemburg 
norms in classical context (1). Moreover, the proof we have presented of Theorem 5.5 is essentially the only 
known proof in the literature, as far as we know, of the inequalities (16) and (1).

The σ-Fatou assumption for the (quasi-) Banach function space X is essential for the equality XΦ
L = XΦ

O

as the strict inclusion (12) of the Example 4.1 points out. Without the σ-Fatou property we only have the 
inclusion XΦ

L ⊆ XΦ
O . In this case, with an strictly monotone quasi-norm on X, we will see that the Orlicz 

and Luxemburg quasi-norms are still equivalent in the smallest space XΦ
L if we add the hypothesis Δ2 to

the N-function Φ.
The following results are variants of Propositions 5.3, 5.4 and Theorem 5.9, respectively, under this new 

hypothesis.

Proposition 5.7. Let X be a quasi-Banach function space over μ with strictly monotone quasi-norm, let Φ an 
N-function with the Δ2-property and let ϕ be the right derivative of the function Φ. Suppose that f ∈ XΦ

L , 
with ‖f‖XΦ

O
≤ 1. Then the function g := ϕ (|f |) ∈ X̃Φ̂ and satisfies that 

∥∥∥Φ̂ (|g|)
∥∥∥
X

≤ 1.

Proof. First of all let us check that the product fg ∈ X. Since Φ ∈ Δ2 there exist c > 1 and x0 ≥ 0 such
that xϕ(x) ≤ cΦ(x) for all x ≥ x0 (see [12, Theorem 4.1] or [17, Theorem 2.2.3]). Then

|fg| = |f |ϕ(|f |) ≤ cΦ(|f |) + |f(x0)|Φ(|f(x0|)χΩ ∈ X



because Φ(|f |) ∈ X and |f(x0)|Φ(|f(x0|)χΩ ∈ L∞(μ) ⊆ X. Thus fg ∈ X.
Now, from (6) we have |f |ϕ(|f |) = Φ(|f |) + Φ̂(ϕ(|f |)), that is,

|fg| = Φ(|f |) + Φ̂(|g|). (17)

Then Φ̂(|g|) ≤ |fg| ∈ X, and so Φ̂(|g|) ∈ X, that is, g ∈ X̃Φ̂. Suppose on the contrary that the second
conclusion of the statement is not satisfied, that is, suppose that 

∥∥∥Φ̂ (|g|)
∥∥∥
X

> 1. Since f �= 0, from (17) we
have

Φ̂(|g|) < Φ(|f |) + Φ̂(|g|) = |fg|.

Taking into account that the quasi-norm is strictly monotone and the inequality (13) of Lemma 5.1 we 
conclude that∥∥∥Φ̂(|g|)

∥∥∥
X

< ‖fg‖X ≤ ‖f‖XΦ
O
· max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
= ‖f‖XΦ

O
·
∥∥∥Φ̂ (|g|)

∥∥∥
X

≤
∥∥∥Φ̂ (|g|)

∥∥∥
X
.

This contradiction proves the result. �
Proposition 5.8. Let X be a quasi-Banach function space over μ with strictly monotone quasi-norm and let 
Φ an N-function with the Δ2-property.

1) If f ∈ XΦ
L , with ‖f‖XΦ

O
≤ 1, then ‖Φ (|f |)‖X ≤ ‖f‖XΦ

O
.

2) If 0 �= f ∈ XΦ
L , then ∥∥∥∥∥Φ

(
|f |

‖f‖XΦ
O

)∥∥∥∥∥
X

≤ 1. (18)

Proof. The same proof of Proposition 5.4 works by applying now Proposition 5.7 instead of Proposi-
tion 5.3. �
Theorem 5.9. Let X be a quasi-Banach function space over μ with strictly monotone quasi-norm and let Φ
an N-function with the Δ2-property. Then the Orlicz quasi-norm is equivalent to the Luxemburg quasi-norm
on XΦ

L . In fact,

‖f‖XΦ
L
≤ ‖f‖XΦ

O
≤ 2K‖f‖XΦ

L
, f ∈ XΦ

L . (19)

Proof. From the definition of the Luxemburg quasi-norm (4) together with the inequality (18) we obtain 
the following inequality

‖f‖XΦ
L
≤ ‖f‖XΦ

O
, f ∈ XΦ

L .

The second inequality has been established in (9) of Proposition 3.3. �
Next we will see that the hypothesis of strict monotonicity for the quasi-norm can be strongly relaxed. 

Recall that the norm of the spaces L1(m) and L1
w(m) will not be in general a strictly monotone norm.

Proposition 5.10. Let Φ be an N-function and let X an ideal of L0(μ). Consider two equivalent quasi-norms
‖·‖1 and ‖·‖2 on X, and denote by X1 := (X, ‖·‖1) and X2 := (X, ‖·‖2) the corresponding quasi-normed
function spaces. Then



1) the Luxemburg quasi-norms ‖·‖XΦ
1L

and ‖·‖XΦ
2L

are also equivalent, and
2) the Orlicz quasi-norms ‖·‖XΦ

1O
and ‖·‖XΦ

2O
are equivalent too.

Proof. Let M ≥ 1 be such that 1
M

‖·‖1 ≤ ‖·‖2 ≤ M ‖·‖1. Note that X̃1
Φ

= X̃2
Φ

= X̃Φ and also that 
XΦ

1L = XΦ
2L = XΦ

L .

1) Given f ∈ XΦ
L , let c > 0 be such that 

∥∥∥∥Φ( |f |
c

)∥∥∥∥
X2

≤ 1. Then, since 
1
M

≤ 1, accordingly to (2), we have

∥∥∥∥Φ( 1
M

|f |
c

)∥∥∥∥
X1

≤
∥∥∥∥ 1
M

Φ
(
|f |
c

)∥∥∥∥
X1

= 1
M

∥∥∥∥Φ( |f |
c

)∥∥∥∥
X1

≤
∥∥∥∥Φ( |f |

c

)∥∥∥∥
X2

≤ 1.

By the definition of the Luxemburg quasi-norm (4) it follows that ‖f‖XΦ
1L

≤ Mc. Using again the definition 
of the Luxemburg quasi-norm (4) we also get ‖f‖XΦ

1L
≤ M ‖f‖XΦ

2L
. To obtain this last inequality we have 

only used the inequality ‖·‖1 ≤ M ‖·‖2. Now, by using this other inequality ‖·‖2 ≤ M ‖·‖1, we also deduce
that ‖f‖XΦ

2L
≤ M ‖f‖XΦ

1L
. From both inequalities together we conclude that

1
M

‖f‖XΦ
1L

≤ ‖f‖XΦ
2L

≤ M ‖f‖XΦ
1L

, f ∈ XΦ.

2) Given f ∈ XΦ
O , let g ∈ X̃1

Φ̂
be such that

∥∥∥Φ̂ (|g|)
∥∥∥
X1

≤ 1. Then, since 
1
M

≤ 1, accordingly to (2), we 

have ∥∥∥∥Φ̂( |g|
M

)∥∥∥∥
X2

≤
∥∥∥∥ 1
M

Φ̂ (|g|)
∥∥∥∥
X2

= 1
M

∥∥∥Φ̂ (|g|)
∥∥∥
X2

≤
∥∥∥Φ̂ (|g|)

∥∥∥
X1

≤ 1.

By the definition of the Orlicz quasi-norm (7) and taking into account the above inequality we obtain that

‖fg‖X1
≤ M ‖fg‖X2

= M2
∥∥∥f g

M

∥∥∥
X2

≤ M2 ‖f‖XΦ
2O

and taking suprema we deduce that ‖f‖XΦ
1O

≤ M2 ‖f‖XΦ
2O

. To obtain this last inequality we have only 
used the inequality ‖·‖2 ≤ M ‖·‖1. Now, by using this other inequality ‖·‖1 ≤ M ‖·‖2, we also deduce that
‖f‖XΦ

2O
≤ M2 ‖f‖XΦ

1O
. From both inequalities together we conclude that

1
M2 ‖f‖XΦ

1O
≤ ‖f‖XΦ

2O
≤ M2 ‖f‖XΦ

1O
, f ∈ XΦ. �

Motivated by Theorem 5.5 and the above Proposition 5.10 we introduce the following definition.

Definition 5.11. We say that a quasi-normed function space X, with quasi-norm ‖ ·‖X , has a strictly monotone
q-renorming if there exist another strictly monotone quasi-norm ‖| · |‖X which makes X a quasi-normed
function space and two positive constants C1 and C2 such that C1‖f‖X ≤ ‖|f |‖X ≤ C2‖f‖X , for all f ∈ X.

Theorem 5.12. Let X be a quasi-Banach function space over μ with the σ-Fatou property which has a strictly 
monotone q-renorming, and let Φ an N-function. Then XΦ

L = XΦ
O and the Orlicz quasi-norm is equivalent 

to the Luxemburg quasi-norm.

Proof. Apply Theorem 5.5 and Proposition 5.10. �



Theorem 5.13. Let X be a quasi-Banach function space over μ which has a strictly monotone q-renorming, 
and let Φ an N-function with the Δ2-property. Then the Orlicz quasi-norm and the Luxemburg quasi-norm
are equivalent on the smallest space XΦ

L .

Proof. Apply now Theorem 5.9 and Proposition 5.10 again. �
6. Quasi-Banach functions spaces with a strictly monotone renorming

In this section we will show sufficient conditions for a quasi-Banach function space to have a strictly
monotone q-renorming. We will also present concrete examples of Banach and quasi-Banach spaces that 
possess such a q-renorming. Let’s start with the last one.

Example 6.1. Let m : Σ → Y a vector measure with values on a Banach space Y and let μ := |〈m, y∗〉| a 
Rybakov control measure for m. We can consider a new norm on L1

w(m) defined by

‖|f |‖L1
w(m) := ‖f‖L1

w(m) + ‖f‖L1(μ) , f ∈ L1
w(m).

Note that ‖f‖L1
w(m) ≤ ‖|f |‖L1

w(m) ≤ 2 ‖f‖L1
w(m) for all f ∈ L1

w(m) and, moreover, ‖| · |‖L1
w(m) is a strictly

monotone norm (because ‖·‖L1(μ) is) on L1
w(m). Recall that L1

w(m) has the σ-Fatou property. Thus we have
the equality L1

w(m)ΦL = L1
w(m)ΦO, and consequently the second equality of (11).

Example 6.2. Let m : Σ → Y a vector measure with values into a Banach space Y . In general the quasi-
norm of L1(‖m‖) is not strictly monotone. Nevertheless, it can be proved that the following conditions are
equivalent:

1) The quasi-norm ‖ · ‖L1(‖m‖) is strictly monotone.
2) If A ⊆ B ∈ Σ and ‖m‖(B �A) �= 0, then ‖m‖(A) < ‖m‖(B).

In any case, following the same way of the above example, we can consider a new quasi-norm on L1(‖m‖)
defined by

‖|f |‖L1(‖m‖) := ‖f‖L1(‖m‖) + ‖f‖L1(μ) , f ∈ L1(‖m‖)

which turns out to be equivalent to the quasi-norm ‖·‖L1(‖m‖) and, moreover, ‖| · |‖L1(‖m‖) is a strictly
monotone quasi-norm. Then we have the equality L1(‖m‖)ΦL = L1(‖m‖)ΦO and the quasi-norms ‖ · ‖L1(‖m‖)ΦL
and ‖ · ‖L1(‖m‖)ΦO are equivalent for every vector measure m.

Necessary conditions and sufficient conditions that for a given Riesz (= lattice) norm there is an equivalent 
strictly monotone Riesz norm are investigated in [15]. We translate the general result [15, Theorem 1] into 
our context as follows. If a quasi-Banach function space X over the measure μ with quasi-norm ‖ · ‖X
possesses a bounded strictly positive linear functional (hence continuous) T : f ∈ X −→ T (f) ∈ R, then

‖|f |‖X := ‖f‖X + T (|f |), f ∈ X

defines a strictly monotone quasi-norm ‖ | · | ‖X on X that is equivalent to ‖ · ‖X . This is exactly the case of
the previous Example 6.1 and Example 6.2, where T (f) :=

∫
Ω

fdμ define a strictly positive linear functional 

on L1
w(m) and therefore also in L1(‖m‖).



On the other hand if X is a countably generated Banach function space with a strictly monotone norm, 
then it must possess a bounded strictly positive linear functional. The proof of this last statement depends 
strongly on the Hahn-Banach theorem. Unfortunately this essential tool is not available in the quasi-Banach 
context. Moreover, this is not the case in the setting of quasi-Banach function spaces as the spaces Lp(μ), 
with 0 < p < 1, point out. All these spaces have a strictly monotone quasi-norm (as they have all Lp-spaces 
with p < ∞) but, as it is well known, they have no non-zero bounded linear functionals.

Although we do not know to what extent it is possible to find a strictly monotone equivalent quasi-norm 
for a quasi-Banach function space, we can show some sufficient conditions that allow to prove that such 
an equivalent quasi-norm exists in a broad class of quasi-Banach function spaces (including all Banach 
function spaces). According to this, in the rest of the section we present several sufficient conditions for a 
quasi-Banach function space to have an equivalent strictly monotone quasi-norm.

Given 0 < r < ∞ and a quasi-Banach function space X over μ, consider its r-th power

X[r] :=
{
h ∈ L0(μ) : |h| 1r ∈ X

}
with the quasi-norm

‖h‖X[r] :=
∥∥∥|h| 1r ∥∥∥r

X
, h ∈ X[r].

For details on r-th powers of quasi-Banach function spaces see [16, Section 2.2]. In particular note that 
X[r] is again a quasi-Banach function space over μ, and what is most important to us (see [16, Proposition
2.23]): If X is r-convex, then X[r] admits a lattice norm, namely,

‖|h|‖X[r] := inf
{

n∑
k=1

‖hk‖X[r] : |h| ≤
n∑

k=1

|hk|, hk ∈ X[r], k = 1, . . . , n, n ≥ 1
}

which is equivalent to ‖ · ‖X[r] . Accordingly, if X is r-convex, then X[r] is a Banach function space over μ.
We recall that X is called r-convex if there exists C ≥ 1 such that∥∥∥∥∥∥

(
n∑

k=1

|fk|r
) 1

r

∥∥∥∥∥∥
X

≤ C

(
n∑

k=1

‖fk‖rX

) 1
r

, f1, . . . , fn ∈ X.

Moreover, as we always assume that the characteristic function χΩ ∈ X, the Banach function space X[r] is
saturated in the sense of [20]. Recall that a quasi-Banach function space X is saturated if and only if there 
is a positive measurable function f , that is, f ≥ 0 and μ ([f = 0]) = 0, that belongs to X. Clearly, if X is 
saturated then X[r] is too for any r > 0.

Proposition 6.3. Let X be a quasi-Banach function space over μ which is r-convex for some 0 < r < ∞. 
Then X possesses a strictly monotone q-renorming.

Proof. Consider the saturated Banach function space X[r] with the lattice norm ‖ | · | ‖X[r] , and denote by
E := X[r] and F := L∞(μ). Since, as we have explained before, the product E · F = X[r] · L∞(μ) = X[r] is
normable, we can apply the implication (i) ⇒ (ii) of [20, Proposition 1.1] to get a function 0 ≤ g ∈ L0(μ),
with μ ([g = 0]) = 0, such that g ·L∞(μ) ⊆ X ′

[r]. Definitely we found a positive function g ∈ X ′
[r], the Köthe

dual of X[r], which means that

∣∣∣∣∣∣
∫

hgdμ

∣∣∣∣∣∣ ≤
∫

|h|gdμ ≤ ‖ |h| ‖X[r]‖g‖X′
[r]

≤ ‖h‖X[r]‖g‖X′
[r]

, for all h ∈ X[r].

Ω Ω



Then it is not difficult to see that 

⎡⎣∫
Ω

|f |rgdμ

⎤⎦
1
r

≤ ‖f‖X‖g‖
1
r

X′
[r]

, for all f ∈ X, and consequently, the 

formula

‖|f |‖X := ‖f‖X +

⎡⎣∫
Ω

|f |rgdμ

⎤⎦
1
r

, f ∈ X

defines a strictly monotone quasi-norm on X that is equivalent to ‖ · ‖X . �
Remark 6.4. If X is a Banach function space over μ then it is certainly 1-convex. Trivially X[1] = X

and ‖ | · | ‖X[1] = ‖·‖X on X. This means that every Banach function space satisfies the conclusion of
Proposition 6.3. Thus every Banach function space possesses a strictly monotone renorming.

Quasi-Banach function spaces not satisfying the r-convexity condition for any r > 0 are not the most 
naturally arising quasi-Banach function spaces; in fact, to find examples of such spaces is rather difficult even 
in the setting of quasi-Banach lattices. However, this class has been studied, because of their importance 
from the theoretical point of view. In [11], Kalton described the class of quasi-Banach lattices that are r-
convex for some r > 0, and provided an example ([11, Example 2.4]) of a quasi-Banach lattice not satisfying 
this property. It is worth noting that this example fall outside the context of quasi-Banach functions spaces 
in which we are working on. It is shown in this paper ([11, Theorem 2.2]) that being r-convex for some r > 0
is equivalent to being L-convex. It is said that quasi-Banach lattice X is L-convex if there exists 0 < ε < 1
so that if 0 ≤ g ∈ X with ‖g‖X = 1 and 0 ≤ fk ≤ g (1 ≤ k ≤ n) satisfy 

1
n

(f1 + · · · + fn) > (1 − ε)g, then
max

1≤k≤n
‖fk‖X > ε.

Thus, because of the quoted counterexample, our feeling is that we cannot use the argument we have 
shown in Proposition 6.3 for the whole class of quasi-Banach function spaces without any assumption of 
convexity.

On the other hand, it is possible to find easy examples of spaces that cannot be renormed with an 
strictly monotone norm (see [15, Example 4]). However, it remains open the question about if there is a 
non-L-convex quasi-Banach function space over a finite measure which cannot be renormed with a strictly 
monotone quasi-norm. As far as we know, the answer is not known, or at least we have not been able to 
find it in the literature. This justifies the following result, which shows that r-convexity can be substituted 
by (r, 1)-concavity as a sufficient condition for having an equivalent strictly monotone norm.

Let r > 0. A quasi-Banach function space X is called (r, 1)-concave if there exists C ≥ 1 such that (
n∑

k=1

‖fk‖rX

) 1
r

≤ C

∥∥∥∥∥
n∑

k=1

|fk|
∥∥∥∥∥
X

, for all f1, . . . , fn ∈ X. The (r, 1)-concavity constant is the infimum of all

such constants C. Note that r-concave function spaces (see [16, Definition 2.46]) are (r, 1)-concave for r ≥ 1.

Proposition 6.5. Let X be a (r, 1)-concave quasi-Banach function space over μ. Then X possesses a strictly 
monotone q-renorming.

Proof. Suppose that the quasi-norm ‖ ·‖X has quasi-triangle constant K. If X is (r, 1)-concave, the following
formula gives an equivalent quasi-norm with quasi-triangle constant CK, where C is the (r, 1)-concavity 
constant for X. Indeed, if f ∈ X,

‖|f |‖X := sup

⎧⎨⎩
(

n∑
‖fk‖rX

) 1
r

:
n∑

|fk| = |f |, f1, . . . , fn ∈ X

⎫⎬⎭ ,

k=1 k=1



clearly satisfies that

‖f‖X ≤ ‖|f |‖X = sup
(

n∑
k=1

‖fk‖rX

) 1
r

≤ C sup

∥∥∥∥∥
n∑

k=1

|fk|
∥∥∥∥∥
X

= C‖f‖X ,

where the supremum is computed for all representations 
n∑

k=1

|fk| = |f |, with f1, . . . , fn ∈ X, and so ‖ · ‖X

and ‖ | · | ‖X are equivalent on X.
Note also that, if f, g ∈ X, using the inequality above we have that

‖|f + g|‖X ≤ C‖f + g‖X ≤ C K (‖f‖X + ‖g‖X) ≤ C K (‖|f |‖X + ‖|g|‖X) .

Let us now check that ‖ | · | ‖X is strictly monotone. Indeed, if there are two functions 0 ≤ f < g ∈ X we
have that there is a non-negative non-zero function h = g − f ∈ X, that is, ‖h‖rX > ε > 0 for some ε. Take

a decomposition of |f | as |f | =
n∑

k=1

|fk| such that ‖ |f | ‖rX <

n∑
k=1

‖fk‖rX + ε. Then, taking into account that

|g| = g = f + h = |f | + |g − f | =
n∑

k=1

|fk| + |g − f |, we get

‖|f |‖rX <
n∑

k=1

‖fk‖rX + ε <
n∑

k=1

‖fk‖rX + ‖h‖rX ≤ ‖|g|‖rX .

Then we obtain that ‖ |f | ‖X < ‖ |g| ‖X . �
To have equivalence between the Orlicz and Luxemburg quasi-norms the hypothesis that the quasi-

Banach function space X has a strictly monotone q-renorming seems to be necessary. As we have pointed 
out with the different types of results of this section, this hypothesis is certainly very general. In fact, to 
be honest, we have not been able to build a quasi-Banach function space without this property. Certainly 
there exist Banach lattices (see [15, Example 4]) without a strictly monotone renorming but these examples 
fall outside the context in which we are working on.

We conclude this section by gathering the three positive results where we can ensure that the spaces XΦ
O

and XΦ
L coincide and/or the corresponding Orlicz and Luxemburg quasi-norms are equivalent. They follow 

from Theorem 5.12 and Theorem 5.13 respectively.

Corollary 6.6. Let X be a quasi-Banach function space over μ with the σ-Fatou property and let Φ an 
N-function. If at least one of the following two conditions:

a) X is r-convex for some 0 < r < ∞, or
b) X (r, 1)-concave for some 0 < r < ∞

is satisfied, then XΦ
O = XΦ

L and the corresponding Orlicz and Luxemburg quasi-norms are equivalent.

Corollary 6.7. Let X be a quasi-Banach function space over μ and let Φ an N-function with the Δ2-property.
If at least one of the following two conditions:

a) X is r-convex for some 0 < r < ∞, or
b) X (r, 1)-concave for some 0 < r < ∞



is satisfied, then the Orlicz quasi-norm and the Luxemburg quasi-norm are equivalent on the smallest space 
XΦ

L .

Remark 6.8. A special case of item a) in the above Corollaries 6.6 and 6.7 appears if the space X is a Banach 
function space over μ. In that case:

i) If X has the σ-Fatou property and Φ is an N-function, then XΦ
O = XΦ

L and the corresponding Orlicz 
and Luxemburg quasi-norms are equivalent.

ii) If Φ is an N-function with the Δ2-property, then the Orlicz quasi-norm and the Luxemburg quasi-norm
are equivalent on the smallest space XΦ

L .
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