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For a vector measure m, with values in a Banach space, we analyze the localization 
of uniformly integrable subsets of scalar integrable functions with respect to m in a 
suitable Orlicz space associated to m. As tools we consider the properties of Orlicz 
spaces associated to intermediate functions of a given pair of Young functions. These 
properties allow us to obtain compactness properties of the inclusion operators.

1. Introduction

This article is devoted to some measure and topological aspects of uniform integrability, a basic concept

on function spaces. Let D be the class of non-decreasing functions Φ : [0, ∞) → [0, ∞) such that lim
x→∞

Φ(x)
x

=
∞. This class contains for instance the convex functions x �→ xp with p > 1 and x �→ x log(x +1). Let us fix 
a finite measure space (Ω, Σ, μ), and denote by LΦ(μ) the set (Orlicz class) of measurable functions f such 
that Φ(|f |) belongs to the Lebesgue space L1(μ). To avoid trivial cases, we will assume that the σ-algebra
Σ is infinite. Then we have LΦ(μ) � L1(μ). Clearly, if H is bounded in LΦ(μ) then H is bounded in L1(μ).
Moreover, for any bounded subset H ⊆ L1(μ), the following three properties are equivalent.

1. H is uniformly integrable, that is, lim
c→∞

sup
f∈H

∫
[|f |>c]

|f | dμ = 0.
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2. H is equiintegrable, that is, lim
μ(A)→0

sup
f∈H

‖fχA‖L1(μ) = 0.

3. There exists Φ ∈ D such that sup
f∈H

‖Φ(|f |)‖L1(μ) < ∞.

For equivalence between 1. and 2. see [6, Theorem 1] and for the equivalence between 1. and 3. see [13, 
Theorem II.T22]. The third and last property is a boundedness property in LΦ(μ) and is due to de la
Vallée-Poussin (1866–1962). From this theorem we can extract interesting results about the structure of the 
space L1(μ). For example, note that a singleton subset H := {f} of L1(μ) is clearly uniformly integrable. 
Thus, the de la Vallée-Poussin theorem allows us to prove that L1(μ) =

⋃
Φ∈D

LΦ(μ). Let us mention that it

is well known that 
⋃
p>1

Lp(μ) � L1(μ). On the other hand, the uniform integrability is strongly connected

with compactness in the space L1(μ) thanks to the Dunford–Pettis theorem. It states that for every subset 
H ⊆ L1(μ), the following propositions are equivalent.

1. H is uniformly integrable.
2. H is relatively compact for the weak topology of L1(μ).
3. H is relatively sequentially compact for the weak topology of L1(μ).

The de la Vallée-Poussin theorem has been considered in different settings. For instance, in the space of mea-
sures with values into a Banach space which are countably additive, of bounded variation and μ-continuous, 
endowed with the variation norm [17]. In [2] the de la Vallée-Poussin theorem is applied to obtain a charac-
terization of the countably additivity of the Dunford integral of vector functions, and also they characterize 
those strongly measurable vector functions that are Pettis integrable through the compactness of a certain 
set of scalar functions in a certain space of Orlicz. Also an abstract version of the theorem for uniform 
integrability in real interpolation spaces is given in [12]. More recently the theorem has been considered in 
[4] to obtain improved results for tightness and Cesàro uniform integrability-type conditions.

The purpose of the present article is to study the de la Vallée-Poussin theorem in the context of spaces
L1(m) of scalar integrable functions with respect to a vector measure m and then, by using this result, find
some consequences related to the compactness in these spaces in the style of Dunford–Pettis theorem which 
will allow us to locate each compact subset of L1(m) as a compact subset of a smaller Orlicz space LΦ(m)
associated to the measure m. This is carried out in Sect. 4 (Theorem 4.1, Corollary 4.6 and Corollary 4.7), 
after having established the necessary preliminaries in Sect. 3. In Sect. 2 we will introduce the spaces of 
functions with which we will work.

2. Lebesgue and Orlicz spaces associated to vector measures

Throughout this paper, we shall always assume that Ω is a nonempty set, Σ is a σ-algebra of subsets 
of Ω, μ is a finite positive measure defined on Σ and L0(μ) is the space of (μ-a.e. equivalence classes
of) measurable functions f : Ω → R. The natural topology on L0(μ) is given by the complete metric

d(f, g) :=
∫
Ω

|f − g|
1 + |f − g|dμ, for all f, g ∈ L0(μ). It is folklore that convergence of sequences in this topology

is exactly the convergence in measure, that is, a sequence (fn)n of measurable functions converges under d
to a measurable function f if lim

n→∞
μ ({w ∈ Ω : |fn(w) − f(w)| ≥ ε}) = 0 for all ε > 0. In what follows we

will denote by [|fn − f | ≥ ε] the measurable set {w ∈ Ω : |fn(w) − f(w)| ≥ ε}.
A Banach space X ⊆ L0(μ) is called a Banach function space (B.f.s. for short) with respect to μ if it has

the following properties:



(a) X is an ideal of L0(μ) and a Banach lattice with respect to the μ-a.e. order, that is, if f ∈ L0(μ), g ∈ X

and |f | ≤ |g| μ-a.e., then f ∈ X and ‖f‖X ≤ ‖g‖X .
(b) The characteristic function of Ω, χΩ, belongs to X.
(c) X is continuously included into L1(μ).

We say that a B.f.s. X has the Fatou property if for any positive increasing sequence (fn)n in X with
sup
n

‖fn‖X < ∞ and fn → f ∈ L0(μ) pointwise μ-a.e., then f ∈ X and ‖f‖X = sup
n

‖fn‖X . And a B.f.s. X

is said to be σ-order continuous if for any positive increasing sequence (fn)n in X such that fn → f ∈ X,
pointwise μ-a.e., then ‖f − fn‖X → 0.

2.1. Lebesgue spaces

Let m : Σ → X be a countably additive vector measure with values in a real Banach space X and consider 
the vector space L0(m) of (m-a.e. equivalence classes of) measurable functions f : Ω → R. The semivariation
of m is the subadditive set function defined on Σ by ‖m‖(A) := sup{|〈m, x∗〉|(A) : x∗ ∈ BX∗}, where
|〈m, x∗〉| denotes the variation of the scalar measure 〈m, x∗〉 : Σ → R given by 〈m, x∗〉(A) := 〈m(A), x∗〉
for all A ∈ Σ, and BX∗ is the unit ball of X∗, the continuous dual of X. A set A ∈ Σ is called m-null if
‖m‖(A) = 0.

A measure μ := |〈m,x∗〉|, where x∗ ∈ BX∗ , that is equivalent to m (in the sense that ‖m‖(A) → 0 if
and only if μ(A) → 0) is called a Rybakov control measure for m. Such a measure always exists (see [7, 
Theorem 2, p. 268]). We refer to [7] for this notion and basic results on vector measures.

A measurable function f : Ω → R is called weakly integrable (with respect to m) if f is integrable with 
respect to |〈m, x∗〉| for all x∗ ∈ X∗. A weakly integrable function f is said to be integrable (with respect to 

m) if, for each A ∈ Σ there exists an element (necessarily unique)
∫
A

f dm ∈ X, satisfying

〈∫
A

f dm, x∗

〉
=

∫
A

f d〈m,x∗〉, x∗ ∈ X∗.

The space L1
w(m) of all (m-a.e. equivalence classes of) weakly integrable functions becomes a Banach function

space, with respect to any Rybakov control measure for m, with the Fatou property when endowed with 
the m-a.e. order and the norm

‖f‖L1
w(m) := sup

⎧⎨
⎩
∫
Ω

|f | d|〈m,x∗〉| : x∗ ∈ BX∗

⎫⎬
⎭ .

Moreover, the space L1(m) of all (m-a.e equivalence classes of) integrable functions is a closed subspace
and an order continuous ideal of L1

w(m). In fact, it is the closure of S(Σ), the space of simple functions
supported on Σ.

Let 1 ≤ p < ∞. A measurable function f : Ω → R is called p-integrable (with respect to m) if |f |p ∈
L1(m). We denote by Lp(m) the space of (m-a.e. equivalence classes of) p-integrable functions, and by 
Lp
w(m) the space of (m-a.e. equivalence classes of) weakly p-integrable functions. Obviously we have Lp(m) ⊆

Lp
w(m). The natural norm for these spaces is given by

‖f‖Lp
w(m) := sup

⎧⎪⎨
⎪⎩
⎛
⎝∫

|f |p d |〈m,x∗〉|

⎞
⎠

1
p

: x∗ ∈ BX∗

⎫⎪⎬
⎪⎭ , f ∈ Lp

w(m).

Ω



If μ is a Rybakov control measure for m then Lp(m) and Lp
w(m) are B.f.s. on (Ω, Σ, μ) for all p ≥ 1. These

spaces were introduced and began to be studied in [8]. See also [15] for more information about them. In 
particular, recall that every bounded function belongs to Lp(m) for all p ≥ 1.

2.2. Orlicz spaces

We recall that a Young function is any function Φ : [0, ∞) → [0, ∞) which is strictly increasing, convex, 

Φ(0) = 0, and lim
x→∞

Φ(x) = ∞. If moreover lim
x→0

Φ(x)
x

= 0 and lim
x→∞

Φ(x)
x

= ∞ it is said that Φ is an 

N-function. In such a case we shall write Φ ∈ N. Note that Φp(x) := xp are Young functions for all p ≥ 1,
but they are N-functions only if p > 1.

A Young function Φ has the Δ2-property if there exists a real number C > 0 such that Φ(2x) ≤ CΦ(x)
for all x ≥ 0. In such a case we shall write Φ ∈ Δ2. We will also put N2 := N ∩ Δ2. Note that Φp(x) = xp

has trivially the Δ2-property for all p ≥ 1.
Let us fix a positive finite measure μ and let Φ be an N -function. The Orlicz space LΦ(μ) consists of 

those (μ-a.e. equivalence classes of) functions f ∈ L0(μ) for which ‖f‖LΦ(μ) < ∞, where

‖f‖LΦ(μ) := inf

⎧⎨
⎩k > 0 :

∫
Ω

Φ
(
|f |
k

)
dμ ≤ 1

⎫⎬
⎭ , f ∈ L0(μ)

is the Luxemburg norm associated to Φ. Note that ‖f‖LΦ(μ) ≤ 1 if and only if ‖Φ(|f |)‖L1(μ) ≤ 1. In LΦ(μ)
we can consider another norm, the Orlicz norm,

‖f‖oLΦ(μ) := sup

⎧⎨
⎩
∫
Ω

|fg| dμ : ‖g‖LΦ̂(μ) ≤ 1

⎫⎬
⎭ , f ∈ L0(μ),

where Φ̂ is the conjugated N-function of Φ, defined as Φ̂(y) := sup
x≥0

{xy − Φ(x)}, for all y ≥ 0. From the 

definition of Φ̂ it is clear that Φ and Φ̂ satisfy the Young inequality:

xy ≤ Φ(x) + Φ̂(y), x, y ≥ 0. (1)

The Orlicz norm is equivalent to the Luxemburg norm. In fact,

‖f‖LΦ(μ) ≤ ‖f‖oLΦ(μ) ≤ 2‖f‖LΦ(μ), f ∈ LΦ(μ). (2)

The Orlicz class corresponding to Φ is defined by

OΦ(μ) := {f :∈ L0(μ) : Φ(|f |) ∈ L1(μ)}.

It holds that OΦ(μ) ⊆ LΦ(μ) but the Orlicz class and the Orlicz space are not equal in general. However,
if Φ ∈ N2 then OΦ(μ) = LΦ(μ). Detailed information about Orlicz spaces can be found in the classic books
[9] and [16] or in the most recent monographs [11] and [19].

The weak Orlicz space with respect to a vector measure m and an N-function Φ can be introduced as the
following linear space

LΦ
w(m) :=

{
f ∈ L0(m) : ‖f‖LΦ(m) < ∞

}
,

w



where ‖f‖LΦ
w(m) := sup

{
‖f‖LΦ(|〈m,x∗〉|) : x∗ ∈ BX∗

}
, for all f ∈ L0(m), and coincides with the intersection

of all scalar Orlicz spaces LΦ(|〈m, x∗〉|) with x∗ ∈ X∗. In addition, the Orlicz space with respect to the
vector measure m is defined as the closure of simple functions S(Σ) in LΦ

w(m) and will be denoted by LΦ(m). 
It can be proved that LΦ

w(m) is a B.f.s. (with respect to any Rybakov control measure for m) having the
Fatou property which is continuously included in L1

w(m), and LΦ(m) is a σ-order continuous B.f.s. (with
respect to any Rybakov control measure for m) which is continuously included in L1(m). The corresponding
Orlicz classes are given by

OΦ
w(m) := {f :∈ L0(m) : Φ(|f |) ∈ L1

w(m)},
OΦ(m) := {f :∈ L0(m) : Φ(|f |) ∈ L1(m)}.

The Orlicz spaces and Orlicz classes for a vector measure were introduced in [18] and subsequently studied 
in [5]. In general we only have OΦ

w(m) ⊆ LΦ
w(m) and OΦ(m) ⊆ LΦ(m), but if Φ ∈ Δ2 then OΦ

w(m) = LΦ
w(m)

and OΦ(m) = LΦ(m). Furthermore, there exists a close relation between the quantities ‖f‖LΦ
w(m) and

‖Φ(|f |)‖L1
w(m). We finish this section with the next result (see [3, Lemma 2.1]) that we shall need later.

Lemma 2.1. Let f ∈ L0(m) be and let C > 0. If ‖Φ(|f |)‖L1
w(m) ≤ C, then ‖f‖LΦ

w(m) ≤ C+1, for any Φ ∈ N.

Proof. Assume that ‖Φ(|f |)‖L1
w(m) ≤ C, and fix x∗ ∈ BX∗ . Given a function g ∈ LΦ̂(|〈m,x∗〉|) with

‖g‖LΦ̂(|〈m,x∗〉|) ≤ 1, we get ‖Φ̂(|g|)‖L1(|〈m,x∗〉|) ≤ 1. According to (1), we have |fg| ≤ Φ(|f |) + Φ̂(|g|).
Therefore, ∫

Ω

|fg|d |〈m,x∗〉| ≤
∫
Ω

Φ(|f |)d |〈m,x∗〉| +
∫
Ω

Φ̂(|g|)d |〈m,x∗〉|

=
∫
Ω

Φ(|f |)d |〈m,x∗〉| + ‖Φ̂(|g|)‖L1(|〈m,x∗〉|)

≤
∫
Ω

Φ(|f |)d |〈m,x∗〉| + 1.

Taking supremum in g and using (2), it follows that

‖f‖LΦ(|〈m,x∗〉|) ≤ ‖f‖oLΦ(|〈m,x∗〉|) ≤
∫
Ω

Φ(|f |)d |〈m,x∗〉| + 1, (3)

and again taking supremum in (3) with x∗ ∈ BX∗ we deduce that

‖f‖LΦ
w(m) ≤ sup

x∗∈BX∗

∫
Ω

Φ(|f |)d |〈m,x∗〉| + 1 = ‖Φ(|f |)‖L1
w(m) + 1 ≤ C + 1. �

3. Inclusions between Orlicz spaces associated to vector measures

It is possible to consider different partial ordering relations between Young functions and they are useful
in dealing with embeddings of Orlicz spaces. Here are some of these relations (see [16, Section 2.2]).

Definition 3.1. We shall write:

• Φ1 ≺ Φ0 if there exist ε > 0 and x0 ≥ 0 such that Φ1(x) ≤ Φ0(εx), for all x ≥ x0.
• Φ1 ≺≺ Φ0 if for each ε > 0, there exists xε ≥ 0 such that Φ1(x) ≤ Φ0(εx), for all x ≥ xε.



Observe that if Φ is an N-function, then Φ ≺ Φ is always satisfied but Φ ≺≺ Φ is never possible. The following 
inclusion result (essentially established in [3] for N-functions with the Δ2-property) will be of interest for us
in what follows. Recall that a subset H of a σ-order continuous B.f.s. X is said to be L-weakly compact (see 
[14, Proposition 3.6.2]) if for every ε > 0 there exists a function 0 < g ∈ X such that H ⊆ [−g, g] + εBX .
Note that an L-weakly compact set is always weakly compact (see [14, Proposition 3.6.5]).

Proposition 3.2. Let Φ0, Φ1 be Young functions.

1) If Φ1 ≺ Φ0, then LΦ0
w (m) ⊆ LΦ1

w (m).
2) If φ1 ≺≺ φ0 and φ0, φ1 ∈ \2, then lφ0

w (m) ⊆ lφ1(m) and this inclusion is l-weakly compact, that is, every
bounded subset of lφ0

w (m) is an l-weakly compact subset of lφ1(m).

Proof. Keeping in mind that LΦ
w(m) :=

⋂
x∗∈X∗ LΦ (|〈m,x∗〉|), part 1) follows from [16, Theorem 5.1.3].

For 2) see [3, Lemma 3.2.(ii) and Lemma 3.3]. �
Given two Young functions Φ0, Φ1 : [0, ∞) → [0, ∞) and a parameter 0 < θ < 1, consider the function

Φθ whose inverse is given by the relationship

Φ−1
θ :=

[
Φ−1

0
]1−θ [Φ−1

1
]θ

. (4)

It is well known (see [16, Lemma 6.3.2]) that Φθ is a Young function, and if Φ0, Φ1 ∈ N, then so is Φθ ∈ N.
Moreover, if Φ0, Φ1 ∈ N2, then Φθ ∈ N2. However, these results don’t cover the case of Φ1(x) = x. Next
we are going to verify that the function Φθ defined by (4) also inherits good properties from the extreme
functions Φ0 and Φ1 when Φ0 ∈ N and Φ1(x) = x. Recall that Φ1 ∈ Δ2 but Φ1 /∈ N. Namely, from Φ0 we
will deduce that Φθ ∈ N, and from Φ1 we will get that Φθ ∈ Δ2.

Proposition 3.3. Suppose that Φ0 ∈ N and let Φ1(x) = x. Then

lim
x→0

Φθ(x)
x

= 0 and lim
x→∞

Φθ(x)
x

= ∞.

In particular, Φθ ∈ N.

Proof. The function Φθ is given by Φ−1
θ (x) =

[
Φ−1

0 (x)
]1−θ

xθ, for all x ≥ 0. Then, for all x > 0, we have

Φθ(x)
x

= Φθ(x)
Φ−1

θ (Φθ(x))
= Φθ(x)[

Φ−1
0 (Φθ(x))

]1−θ [Φθ(x)]θ
=

[
Φθ(x)

Φ−1
0 (Φθ(x))

]1−θ

=
[

Φ0
(
Φ−1

0 (Φθ(x))
)

Φ−1
0 (Φθ(x))

]1−θ

.

Then lim
x→∞

Φθ(x)
x

= ∞ follows from lim
x→∞

Φθ(x) = ∞, lim
y→∞

Φ−1
0 (y) = ∞ and lim

z→∞
Φ0(z)
z

= ∞. On the other 

hand, lim
x→0

Φθ(x)
x

= 0 follows from lim
x→0

Φθ(x) = 0, lim
y→0

Φ−1
0 (y) = 0 and lim

z→0

Φ0(z)
z

= 0. �
Proposition 3.4. Suppose that Φ0 ∈ N and let Φ1(x) = x. Then

Φθ(2x) ≤ 2 1
θ Φθ(x), x ≥ 0, 0 < θ < 1.

In particular, Φθ ∈ Δ2 for all 0 < θ < 1.



Proof. By definition Φθ(2x) = inf
{
t > 0 :

[
Φ−1

0 (t)
]1−θ

tθ > 2x
}

. Since Φ−1
0 is increasing,

[
Φ−1

0

(
t 2− 1

θ

)]1−θ [
t 2− 1

θ

]θ
≤

[
Φ−1

0 (t)
]1−θ

[
t 2− 1

θ

]θ
.

Then we have 
{
t > 0 : Φ−1

θ

(
t 2− 1

θ

)
> x

}
⊆

{
t > 0 : Φ−1

θ (t) > 2x
}
. Thus

Φθ(2x) = inf
{
t > 0 : Φ−1

θ (t) > 2x
}
≤ inf

{
t > 0 : Φ−1

θ

(
t 2− 1

θ

)
> x

}
= inf

{
2 1

θ s > 0 : Φ−1
θ (s) > x

}
= 2 1

θ Φθ(x). �
Remark 3.5. We just checked that Φθ ∈ N2 for all 0 < θ < 1, where Φ0 ∈ N (recall that we don’t assume
that Φ0 ∈ Δ2), and Φ1(x) = x (recall that Φ1 /∈ N). However, we do not know if it is true that Φθ ∈ N2 for
all 0 < θ < 1, for general Young functions Φ0 ∈ N and Φ1 ∈ Δ2.

We finish this section with some others inclusion results between Orlicz spaces. Let us mention that next 
Proposition 3.7 will be the key to some of the results of the following section.

Proposition 3.6. Suppose that Φ0 ∈ N and let Φ1(x) = x. Then, for each 0 < θ < 1:

1) Φθ(x) ≤ x
1
θ Φθ(1), for all x ≥ 1.

2) Φ̂θ(y) ≥
[

y

1 + Φθ(1)

] 1
1−θ

, for all y ≥ y0 := Φ̂θ
−1

(1).

In particular, this implies that L 1
θ (m) ⊆ LΦθ (m) and LΦ̂θ (m) ⊆ L

1
1−θ (m), for every vector measure m.

Proof. 1) By definition Φθ(x) = inf
{
t > 0 :

[
Φ−1

0 (t)
]1−θ

tθ > x
}

. Since Φ−1
0 is increasing, for all x ≥ 1,

[
Φ−1

0

(
t x− 1

θ

)]1−θ [
t x− 1

θ

]θ
≤

[
Φ−1

0 (t)
]1−θ

[
t x− 1

θ

]θ
.

Then we have 
{
t > 0 : Φ−1

θ

(
t x− 1

θ

)
> 1

}
⊆

{
t > 0 : Φ−1

θ (t) > x
}
. Thus, for all x ≥ 1,

Φθ(x) = inf
{
t > 0 : Φ−1

θ (t) > x
}
≤ inf

{
t > 0 : Φ−1

θ

(
t x− 1

θ

)
> 1

}
= inf

{
x

1
θ s > 0 : Φ−1

θ (s) > 1
}

= x
1
θ Φθ(1).

2) From (1) and using the inequality 1) that we have just proved we get

xy ≤ Φθ(x) + Φ̂θ(y) ≤ x
1
θ Φθ(1) + Φ̂θ(y), x ≥ 1, y ≥ 0. (5)

Given y ≥ y0 := Φ̂θ
−1

(1), take x =
[
Φ̂θ(y)

]θ
≥ 1 and put it into (5) to obtain

y
[
Φ̂θ(y)

]θ
≤ Φ̂θ(y)Φθ(1) + Φ̂θ(y),

for all y ≥ y0. Now an easy computation shows that Φ̂θ(y) ≥
[

y

1 + Φθ(1)

] 1
1−θ

, for all y ≥ y0. �



Proposition 3.7. Suppose that Φ0 ∈ N and let Φ1(x) = x. Then

Φ1 ≺≺ Φθ ≺≺ Φα ≺≺ Φ0, 0 < α < θ < 1

In particular, LΦ0
w (m) ⊆ LΦθ (m) for all 0 < θ < 1, and this inclusion is L-weakly compact.

Proof. i) First we are going to see that Φα ≺≺ Φ0 for all 0 < α < 1. For a given ε > 0, since lim
x→∞

Φ0(x)
x

= ∞, 

there is xε > 0 such that
[
Φ0(εx)
εx

]α
≥ 1

ε
, for all x > xε. Then, for x > xε, we have xα ≤ ε1−α [Φ0 (εx)]α

and so, x ≤ [εx]1−α [Φ0 (εx)]α. Thus, x ≤
[
Φ−1

0 (Φ0 (εx))
]1−α [

Φ−1
1 (Φ0 (εx))

]α. Consequently we get x ≤
Φ−1

α (Φ0 (εx)), and Φα(x) ≤ Φ0 (εx), for all x > xε, which means that Φα ≺≺ Φ0.
ii) Next we will check that Φθ ≺≺ Φα for all 0 < α < θ < 1. Recall that Φ−1

α :=
[
Φ−1

0
]1−α [

Φ−1
1

]α and 

Φ−1
θ :=

[
Φ−1

0
]1−θ [Φ−1

1
]θ. Take β := θ − α

1 − α
∈ (0, 1). Then

[
Φ−1

α

]1−β [
Φ−1

1
]β =

[[
Φ−1

0
]1−α [

Φ−1
1

]α]1−β [
Φ−1

1
]β =

[
Φ−1

0
]1−θ [Φ−1

1
]θ = Φ−1

θ .

Now it is enough to apply exactly what we just seen in i) for the couple (Φ0,Φ1), with parameter 0 < α < 1,
but now applied to the couple (Φα,Φ1), with parameter 0 < β < 1, to deduce that Φθ ≺≺ Φα.

iii) Once we know that Φθ is a N -function, we have lim
x→+∞

Φθ(x)
x

= +∞. Therefore, for each ε > 0 we 

have lim
x→+∞

Φθ(εx)
εx

= +∞. From here we have that there exists xε > 0 such that Φθ(εx)
εx

≥ 1
ε

for all x ≥ xε.
Then Φ1(x) := x ≤ Φθ(εx) for all x ≥ xε. That is, Φ1 ≺≺ Φθ.

The last assertion follows from Proposition 3.2. Indeed, given 0 < θ < 1, take 0 < α < θ. Then we know 
that LΦ0

w (m) ⊆ LΦα
w (m) since Φ0 and Φα are Young functions. Now taking into account that Φθ, Φα ∈ N2

and Φθ ≺≺ Φα it follows that the inclusion LΦα
w (m) ⊆ LΦθ (m) is L-weakly compact, and so it is also the

inclusion LΦ0
w (m) ⊆ LΦθ (m), as we wanted to see. �

4. Some consequences of the de la Vallée-Poussin theorem for vector measures

In this section we present the de la Vallée-Poussin theorem in the context of spaces L1(m) of scalar inte-
grable functions with respect to a vector measure m and then, using this result, we find some consequences 
related to the compactness in these spaces in the style of Dunford–Pettis theorem which will allow us to 
locate each compact subset of L1(m) as a compact subset of a smaller Orlicz space LΦ(m) associated to
the measure m. Of course, the de la Vallée-Poussin theorem characterizes the uniformly integrable subsets 
of L1

w(m) as bounded subsets of some Orlicz space LΦ
w(m). A subset H ⊆ L1

w(m) is said to be uniformly
integrable if lim

c→∞

∫
[|f |>c]

|f | d|〈m, x∗〉| = 0, uniformly in ‖x∗‖ ≤ 1 and f ∈ H, or equivalently,

lim
c→∞

sup
f∈H

∥∥fχ[|f |>c]
∥∥
L1

w(m) = 0. (6)

Note that any uniformly integrable subset H ⊆ L1
w(m) is in fact a bounded subset of L1(m). See the proof

of the implication 1) ⇒ 2) in Proposition 4.4.

Theorem 4.1 (de la Vallée-Poussin). For a subset H ⊆ L0(m), the following conditions are equivalent:

a) H is uniformly integrable.



b) There exists a convex function Φ ∈ D such that {Φ(|f |) : f ∈ H} is a bounded subset of L1
w(m).

c) There exists Ψ ∈ N such that H is a bounded subset of LΨ
w(m).

Proof. b) ⇒ a) Let M := sup
{
‖Φ(|f |)‖L1

w(m) : f ∈ H
}

< ∞. For a given ε > 0 let c ≥ 0 be such that 

Φ(x) ≥ M

ε
x for x > c. Then

Φ(|f |χ[|f |>c]) ≥ Φ(|f |)χ[|f |>c] ≥
M

ε
|f |χ[|f |>c],

and taking norm, we get 
∥∥fχ[|f |>c]

∥∥
L1

w(m) ≤ ε

M

∥∥Φ(|f |χ[|f |>c])
∥∥
L1

w(m) ≤ ε, for every f ∈ H. This also 

implies that H ⊂ L1(m).
a) ⇒ b) From the hypothesis (6) we can select an increasing sequence 0 < c1 < c2 < · · · ↑ ∞ such that∥∥fχ[|f |>cn]

∥∥
L1

w(m) ≤
1
2n , for all n ≥ 1, and all f ∈ H. Let us define Φ(x) :=

∞∑
k=1

(x − ck)+ for x ≥ 0. Then

Φ : [0, ∞) → [0, ∞) is convex, increasing and for x ≥ 2cn we have

Φ(x)
x

≥
n∑

k=1

(
1 − ck

x

)+
≥ n

2 .

Obviously for each f ∈ H and ‖x∗‖ ≤ 1, applying the monotone convergence theorem for each positive 
finite measure |〈m, x∗〉| we get

∫
Ω

Φ(|f |) d|〈m,x∗〉| =
∞∑
k=1

∫
Ω

(|f | − ck)+ d|〈m,x∗〉| ≤ 1,

which means that {Φ(|f |) : f ∈ H} is a bounded subset of L1
w(m).

b) ⇒ c) We know by applying [9, Theorem 3.3] that Φ is the principal part of some Ψ ∈ N, which means
that there exists x0 ≥ 0 such that Φ(x) = Ψ(x), for all x ≥ x0. To prove that H is a bounded subset of
LΨ
w(m) it is enough to check (see Lemma 2.1) that {Ψ(|f |) : f ∈ H} is a bounded subset of L1

w(m). Note
that Ψ(|f |) ≤ Φ(|f |)χ[|f |≥x0] + Ψ(x0)χ[|f |<x0], and then

‖Ψ(|f |)‖L1
w(m) ≤

∥∥Φ(|f |)χ[|f |≥x0]
∥∥
L1

w(m) +
∥∥Ψ(x0)χ[|f |<x0]

∥∥
L1

w(m)

≤ ‖Φ(|f |)‖L1
w(m) + Ψ(x0) ‖m‖ (Ω).

Thus, {Ψ(|f |) : f ∈ H} is a bounded subset of L1
w(m) because {Φ(|f |) : f ∈ H} is a bounded subset of

L1
w(m) by the hypothesis. The implication c) ⇒ b) is trivial. �
We present now a first consequence of the above result. Recall that N2 denotes the set of all N-functions

with the Δ2-property.

Corollary 4.2. For any vector measure m we have

L1(m) =
⋃

Φ∈N2

LΦ(m) =
⋃

Φ∈N2

LΦ
w(m). (7)

Proof. Clearly 
⋃

Φ∈N2
LΦ(m) ⊆

⋃
Φ∈N2

LΦ
w(m). For any function Φ ∈ N (in particular if Φ ∈ N2) Proposi-

tions 3.3, 3.7 and 3.4 together assure that there exists another Ψ ∈ N2 such that LΦ
w(m) ⊆ LΨ(m). That



means the equality 
⋃

Φ∈N2
LΦ(m) =

⋃
Φ∈N2

LΦ
w(m) holds. To finish the proof take a function f ∈ L1(m).

Since {f} is a uniformly integrable subset, the de la Vallée-Poussin theorem provides a function Φ0 ∈ N

such that f ∈ LΦ0
w (m). Once again Propositions 3.3, 3.7 and 3.4 together assure that there exists another 

Φ ∈ N2 such that f ∈ LΦ(m), and the proof is over. �
Remark 4.3. Let us make some observations on the equality (7).

1) For a finite measure μ and Φ ∈ N it is known (see [19, Corollary 15.4.2] or [16, Theorem VII.3.2])
that LΦ(μ) is reflexive if and only if both Φ, Φ̂ ∈ N2. Denote by NR the set of all Φ ∈ N such that LΦ(μ)
is reflexive. Note that {x �→ xp, p > 1} � NR � N2. On the other hand (see the proof of [9, Theorem 4.1]
and the comments therein), if Φ ∈ N2 then Lp1(μ) ⊆ LΦ(μ) for some p1 > 1. Using the same argument for
Φ̂ we conclude that Φ ∈ NR if and only if Lp1(μ) ⊆ LΦ(μ) ⊆ Lp2(μ) for some p1 > p2 > 1. Then

⋃
Φ∈NR

LΦ(μ) =
⋃
p>1

Lp(μ) � L1(μ).

2) Another natural question is to ask whether equality L1
w(m) =

⋃
Φ∈N2

LΦ
w(m) holds. In general the

answer is negative because there exist vector measures m such that L1(m) � L1
w(m). A such vector measure

m can be constructed with values in the space c0 of all null sequences. For the equality between the spaces
L1(m) and L1

w(m) see [10].

Clearly, if H is relatively norm compact in LΦ(m) for some Φ ∈ N, then H is relatively norm compact
in L1(m). Now we are going to prove that, reciprocally, every relatively norm compact subset of L1(m) is 
located within some LΦ(m). Relatively norm compactness in L1(m) is connected with L-weakly compact-
ness and sequentially compactness in measure. The connection between L-weakly compactness and uniform 
integrability is given by the following

Proposition 4.4. For a subset H ⊆ L1
w(m) the following conditions are equivalent:

1) H is uniformly integrable.
2) H ⊂ L1(m) is bounded and lim

‖m‖(A)→0
sup
f∈H

‖fχA‖L1
w(m) = 0.

3) H is L-weakly compact in L1(m).

Proof. 1) ⇒ 2) Let’s fix a function f ∈ H, and consider the bounded functions fn := fχ[|f |≤n] ∈ L1(m)
for all n = 1, 2, . . . From (6) we have that lim

n→∞
‖f − fn‖L1

w(m) = 0. Then f ∈ L1(m) because this space
is closed in L1

w(m), and therefore H ⊆ L1(m). By using (6) again there exists a constant c > 0 such that∥∥fχ[|f |>c]
∥∥
L1

w(m) ≤ 1 for all f ∈ H. Then

‖f‖L1
w(m) ≤

∥∥fχ[|f |≤c]
∥∥
L1

w(m) +
∥∥fχ[|f |>c]

∥∥
L1

w(m) ≤ c‖m‖(Ω) + 1

for all f ∈ H, and thus H is bounded in L1(m). Finally, note that

|f |χA = |f |χA∩[|f |>c] + |f |χA∩[|f |≤c] ≤ |f |χ[|f |>c] + cχA

for all f ∈ L1
w(m) and all A ∈ Σ. Then

‖fχA‖L1
w(m) ≤

∥∥fχ[|f |>c]
∥∥
L1

w(m) + c‖m‖(A)

for all f ∈ L1
w(m) and all A ∈ Σ, and the conclusion follows from (6).



The reverse implication 2) ⇒ 1) follows from the Markov–Chebyshev’s inequality. For a direct proof see 
[6, Theorem 1]. For the equivalence of 2) and 3) see [15, Lemma 2.37(iii)] since L1(m) is a σ-order continuous
Banach function space with respect every Rybakov control measure for m. �
Proposition 4.5. Let X be a σ-order continuous Banach function space with respect to μ. Let (fn)n ⊆ X,
and f ∈ L0(μ). The following conditions are equivalent:

1) f ∈ X, and ‖fn − f‖X → 0.
2) (fn)n is L-weakly compact, and fn → f in measure.

Proof. 1) ⇒ 2) It is well-known that every relatively compact subset of a σ-order continuous Banach 
function space is L-weakly compact, and also that norm convergence implies convergence in measure.

2) ⇒ 1) It is enough to prove that (fn)n is norm Cauchy. Given ε > 0, by the L-weak compactness (see
[15, Lemma 2.37(iii)]), there exists δ1 > 0 such that ‖fnχA‖X <

ε

3 for all n ≥ 1 and all measurable subsets

with μ(A) < δ1. Now, taking into account that (fn)n is Cauchy in measure, given δ1 > 0 and ε1 := ε

3 ‖χΩ‖X
,

the exists n0 ≥ 1 such that μ ([|fn − fk| > ε1]) < δ1 for all n, k ≥ n0. Put An,k := [|fn − fk| > ε1] and note
that μ(An,k) < δ1 for all n, k ≥ n0. For those n, k we have

‖fn − fk‖X ≤
∥∥(fn − fk)χAn,k

∥∥
X

+
∥∥(fn − fk)χΩ�An,k

∥∥
X

≤
∥∥fnχAn,k

∥∥
X

+
∥∥fkχAn,k

∥∥
X

+ ε1
∥∥χΩ�An,k

∥∥
X

≤ ε

3 + ε

3 + ε1 ‖χΩ‖X = ε.

We just checked that (fn)n is norm Cauchy, and thus convergent. Necessarily, its limit must be the function
f . �
Corollary 4.6. Let X be a σ-order continuous Banach function space with respect to μ, and let H ⊆ X. The 
following conditions are equivalent:

1) H is relatively norm compact.
2) H is L-weakly compact and relatively (sequentially) compact in measure.

Corollary 4.7. A subset H ⊆ L1(m) is relatively norm compact if and only if there exists Φ ∈ N2 such that
H ⊆ LΦ(m) is relatively norm compact.

Proof. One implication is trivial because the inclusion LΦ(m) ⊆ L1(m) is continuous. On the other hand, if
H ⊆ L1(m) is relatively norm compact, then H is L-weakly compact and relatively (sequentially) compact
in measure by Corollary 4.6. Moreover, by the de la Vallée-Poussin Theorem 4.1, there exists Φ0 ∈ N such
that H ⊆ LΦ0

w (m) is bounded. We know (see Proposition 3.7) that the inclusion LΦ0
w (m) ⊆ LΦθ (m) is

L-weakly compact for 0 < θ < 1. Moreover, Φθ ∈ N2 by Proposition 3.4. Thus H ⊆ LΦθ (m) is L-weakly
compact, and relatively (sequentially) compact in measure. Since LΦθ(m) has σ-order continuous norm,
Corollary 4.6 tell us that H is relatively norm compact in LΦθ (m) as we want to see. �
Remark 4.8. The above result is essentially the generalization of [1, Theorem 2.2] for vector measures. 
Alexopoulos also proved in the same article that a similar result (see [1, Theorem 2.5]) is true for the weak 
topology of L1(μ), where μ is a positive finite measure defined on a σ-algebra Σ. Nevertheless, we can not
expect a similar result to Corollary 4.7 for the weak topology of L1(m). In order to check this take p > 1
and the vector measure



m : A ∈ Σ → m(A) := χA ∈ Lp(μ), (8)

in which case it is well-known that L1(m) = Lp(μ). Therefore, L1(m) is reflexive and a subset H ⊆ L1(m) is 
relatively weakly compact if and only if it is bounded. If H were contained in some LΦ0(m), being bounded,
we know that there exists Φθ ∈ N2 such that H ⊆ LΦθ (m) is L-weakly compact. Then H would be L-weakly
compact in L1(m) = Lp(μ), but not every bounded subset of Lp(μ) is L-weakly compact.

Remark 4.9. In Corollary 4.6 or Proposition 4.5 we can not weaken hypothesis 2) replacing the L-weak 
compactness with weak compactness of the subset H. Consider a finite measure μ and let 1 < p < ∞. 
Take a sequence of measurable sets (An)n such that An ↓ ∅, and construct the sequence of functions
fn := 1

μ(An)
1
p

χAn
, for all n ≥ 1. For every measurable set B, note that

∫
B

fndμ = 1
μ(An)

1
p

μ(An ∩B) ≤ μ(An)1−
1
p → 0.

Thus, fn → 0 in the weak topology of Lp(μ). On the other hand, its easy to see that fn → 0 in measure,
but ‖fn‖Lp(μ) = 1, for all n ≥ 1.

However, the case p = 1 is particularly interesting because it points out another difference between the 
Lebesgue space of a positive scalar measure L1(μ) and the Lebesgue space of a vector measure L1(m). For 
a bounded sequence (fn)n ⊆ L1(μ) and a function f ∈ L0(μ), the Lebesgue–Vitali and Dunford–Pettis
theorems assert that fn → f in L1(μ) if and only if fn → f in the weak topology of L1(μ) and fn → f in
measure. This equivalence fails for some Lebesgue spaces L1(m) as the measure of (8) points out.
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