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Orlicz spaces R R .
For a vector measure m, with values in a Banach space, we analyze the localization

Vector measure of uniformly integrable subsets of scalar integrable functions with respect to m in a
suitable Orlicz space associated to m. As tools we consider the properties of Orlicz
spaces associated to intermediate functions of a given pair of Young functions. These
properties allow us to obtain compactness properties of the inclusion operators.

Uniformintegrability

Compactness

1. Introduction

This article is devoted to some measure and topological aspects of uniform integrability, a basic concept

P
on function spaces. Let D be the class of non-decreasing functions @ : [0, 00) — [0, 00) such that lim 2(z) =
Tr—r0o0

oo. This class contains for instance the convex functions x +— 2P with p > 1 and = — zlog(z + 1). Let JI:IS fix
a finite measure space (Q,%, i), and denote by L®(u) the set (Orlicz class) of measurable functions f such
that ®(|f]) belongs to the Lebesgue space L'(u). To avoid trivial cases, we will assume that the o-algebra
¥ is infinite. Then we have L®(u) & L'(u). Clearly, if H is bounded in L®(p) then H is bounded in L!(p).
Moreover, for any bounded subset H C L (1), the following three properties are equivalent.

1. H is uniformly integrable, that is, lim sup / |fldp = 0.
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2. H is equiintegrable, that is, lim sup ||fxa =0.
H(A)—>0feHH 21 ()

3. There exists ® € D such that sup [|2(|f])|[11,) < oo
feH a

For equivalence between 1. and 2. see [6, Theorem 1] and for the equivalence between 1. and 3. see [13,
Theorem I1.T22]. The third and last property is a boundedness property in L®(u) and is due to de la
Vallée-Poussin (1866-1962). From this theorem we can extract interesting results about the structure of the
space L!(u). For example, note that a singleton subset H := {f} of L*(u) is clearly uniformly integrable.

Thus, the de la Vallée-Poussin theorem allows us to prove that L*(u) = U L®(p). Let us mention that it
deD
is well known that U LP(u) & L*(p). On the other hand, the uniform integrability is strongly connected
p>1
with compactness in the space L' (1) thanks to the Dunford-Pettis theorem. It states that for every subset

H C L'(u), the following propositions are equivalent.

1. H is uniformly integrable.
2. H is relatively compact for the weak topology of L!(u).
3. H is relatively sequentially compact for the weak topology of L ().

The de la Vallée-Poussin theorem has been considered in different settings. For instance, in the space of mea-
sures with values into a Banach space which are countably additive, of bounded variation and p-continuous,
endowed with the variation norm [17]. In [2] the de la Vallée-Poussin theorem is applied to obtain a charac-
terization of the countably additivity of the Dunford integral of vector functions, and also they characterize
those strongly measurable vector functions that are Pettis integrable through the compactness of a certain
set of scalar functions in a certain space of Orlicz. Also an abstract version of the theorem for uniform
integrability in real interpolation spaces is given in [12]. More recently the theorem has been considered in
[4] to obtain improved results for tightness and Cesaro uniform integrability-type conditions.

The purpose of the present article is to study the de la Vallée-Poussin theorem in the context of spaces
L'(m) of scalar integrable functions with respect to a vector measure m and then, by using this result, find
some consequences related to the compactness in these spaces in the style of Dunford—Pettis theorem which
will allow us to locate each compact subset of L!(m) as a compact subset of a smaller Orlicz space L®(m)
associated to the measure m. This is carried out in Sect. 4 (Theorem 4.1, Corollary 4.6 and Corollary 4.7),
after having established the necessary preliminaries in Sect. 3. In Sect. 2 we will introduce the spaces of
functions with which we will work.

2. Lebesgue and Orlicz spaces associated to vector measures

Throughout this paper, we shall always assume that €2 is a nonempty set, 3 is a o-algebra of subsets
of Q, p is a finite positive measure defined on ¥ and L°(p) is the space of (u-a.e. equivalence classes
of) measurable functions f : @ — R. The natural topology on L°(x) is given by the complete metric

d(f,g) := Mdu, for all f,g € L%(u). It is folklore that convergence of sequences in this topology
L+[f -4l
-9

Q

is exactly the convergence in measure, that is, a sequence (f,), of measurable functions converges under d
to a measurable function f if lim w{weQ:|fn(w) — f(w)] >e}) =0 for all € > 0. In what follows we
will denote by [|fn — f] > €] thrza I;oeasurable set {w € Q:|fn(w) — f(w)| > €}

A Banach space X C L%(p) is called a Banach function space (B.f.s. for short) with respect to p if it has
the following properties:



(a) X is an ideal of L°(x) and a Banach lattice with respect to the u-a.e. order, that is, if f € L%(u), g € X
and |f| < |g| p-a.e., then f € X and [|f[|x < [lg]lx-

(b) The characteristic function of 2, xq, belongs to X.

(c) X is continuously included into L'(p).

We say that a B.f.s. X has the Fatou property if for any positive increasing sequence (f,), in X with
sup || fullx < oo and f,, — f € L°(u) pointwise p-a.e., then f € X and || f||x = sup||fullx. And a B.fs. X
n n

is said to be o-order continuous if for any positive increasing sequence (f,,), in X such that f, — f € X,
pointwise p-a.e., then || f — fn||lx — 0.

2.1. Lebesgue spaces

Let m : ¥ — X be a countably additive vector measure with values in a real Banach space X and consider
the vector space L°(m) of (m-a.e. equivalence classes of) measurable functions f : Q — R. The semivariation
of m is the subadditive set function defined on X by |m|/(A) := sup{|{m,z")|(A) : 2™ € Bx~}, where
[(m, z*)| denotes the variation of the scalar measure (m,z*) : ¥ — R given by (m,z*)(4) := (m(4),z*)
for all A € ¥, and By~ is the unit ball of X*, the continuous dual of X. A set A € ¥ is called m-null if
Imll(4) = 0.

A measure p = |(m,x*)|, where 2* € Bx~, that is equivalent to m (in the sense that ||m|(4) — 0 if
and only if u(A) — 0) is called a Rybakov control measure for m. Such a measure always exists (see [7,
Theorem 2, p. 268]). We refer to [7] for this notion and basic results on vector measures.

A measurable function f: Q — R is called weakly integrable (with respect to m) if f is integrable with
respect to [(m, z*)| for all * € X*. A weakly integrable function f is said to be integrable (with respect to

m) if, for each A € ¥ there exists an element (necessarily unique) / fdm € X, satisfying
A

<A/fdm,x*>:A/fd<m,:v*>7 xt e X",

The space LL (m) of all (m-a.e. equivalence classes of) weakly integrable functions becomes a Banach function
space, with respect to any Rybakov control measure for m, with the Fatou property when endowed with
the m-a.e. order and the norm

112 (my = sup / fldl{m,z")| : 2* € Bx-
Q

Moreover, the space L!(m) of all (m-a.e equivalence classes of) integrable functions is a closed subspace
and an order continuous ideal of L. (m). In fact, it is the closure of §(¥), the space of simple functions
supported on X.

Let 1 < p < oo. A measurable function f : Q — R is called p-integrable (with respect to m) if |f|” €
L'(m). We denote by LP(m) the space of (m-a.e. equivalence classes of) p-integrable functions, and by
L? (m) the space of (m-a.e. equivalence classes of) weakly p-integrable functions. Obviously we have LP(m) C
L% (m). The natural norm for these spaces is given by

1

Lt (m) ©= SUP /|f|pd|<m,x*>| tat € Bx- o, f € Li(m).
Q

]

/]




If i is a Rybakov control measure for m then LP(m) and L? (m) are B.f.s. on (2, %, i) for all p > 1. These
spaces were introduced and began to be studied in [8]. See also [15] for more information about them. In
particular, recall that every bounded function belongs to LP(m) for all p > 1.

2.2. Orlicz spaces

We recall that a Young function is any function @ : [0, 00) — [0, 00) which is strictly increasing, convex,

®(0) = 0, and hm ®(x) = oo. If moreover lim &x) = M

x—0 T—00 x
N-function. In such a case we shall write ® € N. Note that ®,(x) := 2P are Young functions for all p > 1,

= o0 it is said that ® is an

but they are N-functions only if p > 1.

A Young function ® has the As-property if there exists a real number C' > 0 such that ®(2z) < C®(x)
for all > 0. In such a case we shall write & € Ay. We will also put Ny := NN Ay. Note that &,(x) = 2P
has trivially the As-property for all p > 1.

Let us fix a positive finite measure p and let ® be an N-function. The Orlicz space L® (i) consists of
those (u-a.e. equivalence classes of) functions f € L%(u) for which || f[|pe(,) < 0o, where

I fll Ly := inf k>0:/<1)<f|) dp <1y, felLp)
Q

is the Luzemburg norm associated to ®. Note that || f||z=(,) < 1 if and only if || ®(|f])[|£1() < 1. In L®(p)
we can consider another norm, the Orlicz norm,

1100 =] [ 1foldus lall oy <170 F € L),
Q

where & is the conjugated N-function of ®, defined as ®(y) := sup{zy — ®(x)}, for all y > 0. From the
x>0

definition of @ it is clear that ® and ® satisfy the Young inequality:
zy < ®(x) + d(y), z,y>0. (1)
The Orlicz norm is equivalent to the Luxemburg norm. In fact,

1Fllze gy < 1120y < 2o f € LT (1) (2)

The Orlicz class corresponding to ® is defined by

O% () = {f € L°(n) - ®(|f]) € L' ()}

It holds that O®(u) € L®(u) but the Orlicz class and the Orlicz space are not equal in general. However,
if ® € Ny then O®(u) = L®(u). Detailed information about Orlicz spaces can be found in the classic books
[9] and [16] or in the most recent monographs [11] and [19].

The weak Orlicz space with respect to a vector measure m and an N-function ® can be introduced as the
following linear space

Ly(m) :={f € L°(m) : || fll L2 (m) < o0},



where || fll Lo (m) := sup {|| fllL# (| (m,=))) : ° € Bx-}, for all f € LO(m), and coincides with the intersection
of all scalar Orlicz spaces L®(|(m,z*)|) with 2* € X*. In addition, the Orlicz space with respect to the
vector measure m is defined as the closure of simple functions §(2) in L (m) and will be denoted by L*(m).
It can be proved that L2(m) is a B.f.s. (with respect to any Rybakov control measure for m) having the
Fatou property which is continuously included in Ll (m), and L®(m) is a o-order continuous B.f.s. (with
respect to any Rybakov control measure for m) which is continuously included in L!(m). The corresponding
Orlicz classes are given by

Oy (m) := {f :€ L(m) : ®(|f]) € Ly, (m)},

0% (m) i= { € L%m) s B fI) € L' (m)}.
The Orlicz spaces and Orlicz classes for a vector measure were introduced in [18] and subsequently studied
in [5]. In general we only have O2(m) C L2 (m) and O%(m) C L*®(m), but if ® € Ay then O2(m) = LE(m)

and O®(m) = L®(m). Furthermore, there exists a close relation between the quantities I fllz2 (m) and

127D

L1 (m)- We finish this section with the next result (see [3, Lemma 2.1]) that we shall need later.

w

Lemma 2.1. Let f € L°(m) be and let C > 0. If [ (| f)| 1, (m) < O, then || fl|l Lo (m) < C+1, for any ® € N.

Proof. Assume that [|®([f[)|;: ) < C, and fix 2* € Bx«. Given a function g € L'i’(|<m,1:*)|) with
191l Lo (m,zyy < 15 we get ||<i>(|g|)||L1(‘<m,x*>|) < 1. According to (1), we have |fg| < ®(|f]) + ®(g]).

Therefore,

/ Fald[{m, z*)] < / B( fl)d |(m, z*)| + / &(|gl)d [{m, )|
Q Q

Q

(| f 1)l [(m, )| + 19| 1 oy )

D O

< [ @(|f)d[{m,z")| + 1.

Taking supremum in g and using (2), it follows that

0o sy < MWy < [ Um0+ 1. )
Q

and again taking supremum in (3) with z* € Bx+ we deduce that

/1

LE(m) S SUp /‘1>(|f\)d|<maw*>| +1=o(f]l

w
T*EBx*

Ll(m)—i—lgC—i—l. Oa

w

3. Inclusions between Orlicz spaces associated to vector measures

It is possible to consider different partial ordering relations between Young functions and they are useful
in dealing with embeddings of Orlicz spaces. Here are some of these relations (see [16, Section 2.2]).

Definition 3.1. We shall write:

o &y < P if there exist € > 0 and xy > 0 such that &1 (z) < Pg(ex), for all z > xy.
e Oy << P if for each € > 0, there exists z. > 0 such that ®;(x) < Pg(ex), for all x > z..



Observe that if @ is an N-function, then ® < ® is always satisfied but ® << ® is never possible. The following
inclusion result (essentially established in [3] for N-functions with the As-property) will be of interest for us
in what follows. Recall that a subset H of a o-order continuous B.f.s. X is said to be L-weakly compact (see
[14, Proposition 3.6.2]) if for every € > 0 there exists a function 0 < g € X such that H C [—g,¢g] + ¢Bx.
Note that an L-weakly compact set is always weakly compact (see [14, Proposition 3.6.5]).

Proposition 3.2. Let &y, P be Young functions.

1) If ®; < ®g, then LT (m) C LE(m).
2) If 61 << g0 and go, 61 € \2, then lﬁo (m) C 191(m) and this inclusion is -weakly compact, that is, every
bounded subset of lfjo (m) is an l-weakly compact subset 0f1¢1 (m).

Proof. Keeping in mind that L (m) := (\,.cx~ L (|{m,2*)]), part 1) follows from [16, Theorem 5.1.3].
For 2) see [3, Lemma 3.2.(ii) and Lemma 3.3]. O

Given two Young functions ®g, ®; : [0,00) — [0,00) and a parameter 0 < 6 < 1, consider the function
®y whose inverse is given by the relationship

oyt = [0 (01" (4)

It is well known (see [16, Lemma 6.3.2]) that @y is a Young function, and if &g, &1 € N, then so is Py € N.
Moreover, if &g, $; € No, then &y € No. However, these results don’t cover the case of ®1(x) = x. Next
we are going to verify that the function ®y defined by (4) also inherits good properties from the extreme
functions ®y and ®; when ®, € N and ®;(z) = x. Recall that ®; € Ay but ®; ¢ N. Namely, from &g we
will deduce that &y € N, and from ®; we will get that ®y € As.

Proposition 3.3. Suppose that g € N and let ®1(x) = x. Then

lim @g—(z) =0 and lim ®o(2)

x—0 x T—00 xX

= 0.
In particular, ®g € N.

Proof. The function ®y is given by q)e_l(a:) = [@al(x)] = x%, for all z > 0. Then, for all z > 0, we have

v 0 (e(x) (@5t (By(x))]' 7 [ ()]’

_ l@o (25 (%(@))] o
o (®ow)) |

Dy (x) Do(x) Dy (2) { Dy () }”
o5 (@(x))

P d
Then lim (z) = oo follows from lim ®y(z) = oo, lim ®;'(y) = co and lim o(2) = 00. On the other
T—00 €T T—00 Yy—00 Z—+00 z
d o
hand, Tim 2% _ 0 follows from lim @y(z) = 0, lim & (y) = 0 and lim 22 — 0. 0
x—0 x x—0 y—0 z—0 z

Proposition 3.4. Suppose that &g € N and let ®1(x) = x. Then
Dy(22) < 20Bp(z), >0, 0<0<1.

In particular, ®g € Ay for all 0 < 6 < 1.



Proof. By definition ®y(2x) = inf {t >0: [@al(t)] e

9 > 21:}. Since q)al is increasing,
Then we have {t >0:0," (t2_5> > x} C{t>0: D () > 2x}. Thus

Dy(22) = inf {t > 0: @, (1) > 20} <inf {¢ > 0: 051 (+273) > 2}

= inf {253 >0:0," (s) > x} = 2%4)9(.1‘). O

Remark 3.5. We just checked that ®y € Ny for all 0 < § < 1, where ®; € N (recall that we don’t assume
that @9 € Ay), and ®;(x) = x (recall that ®; ¢ N). However, we do not know if it is true that ®y € Ny for

all 0 < 6 < 1, for general Young functions &y € N and &, € As.

We finish this section with some others inclusion results between Orlicz spaces. Let us mention that next

Proposition 3.7 will be the key to some of the results of the following section.
Proposition 3.6. Suppose that &g € N and let ®1(x) = x. Then, for each 0 < 6 < 1:

o> ok

l
9

1) ®y(x

\ AN

), forallx>1

o(1
Yy - A -1
Dol , Jorally > yo := P9 (1).

\ \

1

In particular, this implies that Le (m) C L** (m) and L% (m) C L7=9(m), for every vector measure m.

Proof. 1) By definition ®y(x) = inf {t >0: [@5'(t)] BTN m} Since ®;! is increasing, for all z > 1,

0

[q)gl (tx*%)r_e [tx*%r < [ogt @]’ [tx*ﬂ
Then we have {t >0: @;1 (t;v_%) > 1} - {t >0: @;1@) > x} Thus, for all z > 1,

By(z) = inf {t > 0: 05 () >} < inf{t >0: ;" (tx‘ﬂ > 1}
= inf{m%s >0:0," (s) > 1} = 27 ®y(1).

2) From (1) and using the inequality 1) that we have just proved we get

vy < Py(x) + Dp(y) < w0 @p(1) + Pp(y), = >1, y>0.

. . 0
Given y > yo 1= Py 1(1), take z = [@g(y)] > 1 and put it into (5) to obtain

~

y [$00)]" < Bal)2o(1) + Goy),

1

y 1—-6
} ,forally >yo. O

for all y > vo. Now an easy computation shows that ® > | —
Y=Y y p 9(y)— |:1—|—(I>0(1)



Proposition 3.7. Suppose that ®g € N and let ®1(x) = x. Then
P << Py << Py, =< Dy, O<a<h<1

In particular, L2 (m) C L®¢(m) for all 0 < § < 1, and this inclusion is L-weakly compact.

Proof. i) First we are going to see that &, << @y forall0 < a < 1. For a given € > 0, since lim = 00,

T—00 I

P |
there is x. > 0 such that [Osix)} > o for all # > x.. Then, for z > x., we have 2% < 17 [®( (s2)]*
T

and so, z < [ex]' ¥ [® (ex)]”. Thus, z < (@5 (@ (sw))]l_a (@7 (®o (El‘))]a Consequently we get x <
D1 (g (ex)), and @, (z) < @ (ex), for all z > x., which means that &, << ®.
i) Next we will check that &5 << @, for all 0 < @ < 6 < 1. Recall that &5 := [®;']" " [®7']" and

o, = [05 '] [#71]". Take B := f:—z € (0,1). Then

_ _ 1-8 _
@1 o) = (o) ™ (o] o) = (05 [ar ) =
Now it is enough to apply exactly what we just seen in i) for the couple (®g, ®;), with parameter 0 < a < 1,
but now applied to the couple (®,,®1), with parameter 0 < 8 < 1, to deduce that ®y << P@,,.

P
iii) Once we know that ®y is a N-function, we have lim Po(z)

= 4-00. Therefore, for each ¢ > 0 we
xr——+00 xT

Py(ex Py(ex
have lim L = +400. From here we have that there exists z. > 0 such that M
T—>+00 EX ET

Then ®4(z) := z < Py(ex) for all x > x.. That is, D1 << Dy.
The last assertion follows from Proposition 3.2. Indeed, given 0 < 6 < 1, take 0 < o < 6. Then we know

1
> —forallx > ..
€

that LEo(m) C L2~ (m) since ®; and ®,, are Young functions. Now taking into account that ®4, ®, € N
and @y << @, it follows that the inclusion L= (m) C L®?(m) is L-weakly compact, and so it is also the
inclusion L20(m) C L®¢(m), as we wanted to see. O

4. Some consequences of the de la Vallée-Poussin theorem for vector measures

In this section we present the de la Vallée-Poussin theorem in the context of spaces L!(m) of scalar inte-
grable functions with respect to a vector measure m and then, using this result, we find some consequences
related to the compactness in these spaces in the style of Dunford—Pettis theorem which will allow us to
locate each compact subset of L'(m) as a compact subset of a smaller Orlicz space L®(m) associated to
the measure m. Of course, the de la Vallée-Poussin theorem characterizes the uniformly integrable subsets
of L} (m) as bounded subsets of some Orlicz space LE(m). A subset H C L. (m) is said to be uniformly

integrable if lim |f]d[{m,z*)| = 0, uniformly in ||z*|| < 1 and f € H, or equivalently,
c—00

[1F1>]

Jimn sup [ x>l oy = O (6)

Note that any uniformly integrable subset H C L} (m) is in fact a bounded subset of L!(m). See the proof
of the implication 1) = 2) in Proposition 4.4.

Theorem 4.1 (de la Vallée-Poussin). For a subset H C L°(m), the following conditions are equivalent:

a) H is uniformly integrable.



b) There exists a convex function ® € D such that {®(|f|): f € H} is a bounded subset of L% (m).

¢) There exists W € N such that H is a bounded subset of LY (m).

Proof. b) = a) Let M := sup{||<I>(|f|)||L; my S € H} < oo. For a given ¢ > 0 let ¢ > 0 be such that
O(x) >

x for x > ¢. Then

|5

M
(1 fIxtf1>a) = PUDXf15q = ?|f\X[|f|>c],

and taking norm, we get ||fXHf|>C]HL1 my = % ||(I)(|f|X[|f\>C])||L1U(m) < g, for every f € H. This also

implies that H C L(m).
a) = b) From the hypothesis (6) we can select an increasing sequence 0 < “ < ¢g < --- T 0o such that

HfX[If\>Cn]HL1 my < , forall n > 1, and all f € H. Let us define ®(x Z x —cp)t for x > 0. Then
b k=1
® : [0,00) — [0,00) is convex, increasing and for z > 2¢,, we have

Obviously for each f € H and |z*| < 1, applying the monotone convergence theorem for each positive
finite measure |(m, z*)| we get

/<b<|f|>d\<m,x*>\ - Z/(If\ et difm, ) < 1,
k:lg

Q

which means that {®(|f|) : f € H} is a bounded subset of L. (m).

b) = ¢) We know by applying [9, Theorem 3.3] that ® is the principal part of some ¥ € N, which means
that there exists zp > 0 such that ®(z) = ¥(x), for all z > x(. To prove that H is a bounded subset of
LY(m) it is enough to check (see Lemma 2.1) that {¥(|f]): f € H} is a bounded subset of Ll (m). Note
that (| f]) < @([fD)x(712z0) + ¥ (T0) X[ f|<x0]> and then

DLy oy < NRADXUs1Z001l] 21 0y + ¥ @0)X1111<001 ] 2 ()
1SNy oy + ¥0) ] ().

Thus, {U(|f]): f € H} is a bounded subset of Ll (m) because {®(|f|): f € H} is a bounded subset of
L} (m) by the hypothesis. The implication c¢) = b) is trivial. O

We present now a first consequence of the above result. Recall that Ny denotes the set of all N-functions
with the As-property.

Corollary 4.2. For any vector measure m we have

Lmy= {J L*m)= |J Li(m). (7)

PeN, PeN,

Proof. Clearly Ugen, L*(m) € Upen, L (m). For any function ® € N (in particular if ® € Ny) Proposi-
tions 3.3, 3.7 and 3.4 together assure that there exists another ¥ € Ny such that LE(m) C LY(m). That



means the equality Ugen, L*(m) = Ugen, Lin(m) holds. To finish the proof take a function f € L'(m).
Since {f} is a uniformly integrable subset, the de la Vallée-Poussin theorem provides a function ®; € N
such that f € L®o(m). Once again Propositions 3.3, 3.7 and 3.4 together assure that there exists another
® € Ny such that f € L®(m), and the proof is over. O

Remark 4.3. Let us make some observations on the equality (7).

1) For a finite measure p and ® € N it is known (see [19, Corollary 15.4.2] or [16, Theorem VII.3.2])
that L®(u) is reflexive if and only if both ®, & € N,. Denote by Ng the set of all ® € N such that L® (1)
is reflexive. Note that {z — 2P, p > 1} ¢ Nr & Na. On the other hand (see the proof of [9, Theorem 4.1]
and the comments therein), if ® € Ny then LP1(y) C L®(u) for some p; > 1. Using the same argument for
$ we conclude that ® € Ny if and only if LP' (1) € L®(u) € LP?(u) for some p; > py > 1. Then

U 22w = L (w) & L' ().

PeNR p>1

2) Another natural question is to ask whether equality L, (m) = Ugen, Ly (m) holds. In general the
answer is negative because there exist vector measures m such that L'(m) & L. (m). A such vector measure
m can be constructed with values in the space ¢ of all null sequences. For the equality between the spaces
L'(m) and L} (m) see [10].

Clearly, if H is relatively norm compact in L®(m) for some ® € N, then H is relatively norm compact
in L'(m). Now we are going to prove that, reciprocally, every relatively norm compact subset of L!(m) is
located within some L®(m). Relatively norm compactness in L!(m) is connected with L-weakly compact-
ness and sequentially compactness in measure. The connection between L-weakly compactness and uniform
integrability is given by the following

Proposition 4.4. For a subset H C L (m) the following conditions are equivalent:

1) H is uniformly integrable.

2) H C L*(m) is bounded and  lim  sup || fxall;. (m) = 0.
lmll(A)=0 e w

3) H is L-weakly compact in L*(m).

Proof. 1) = 2) Let’s fix a function f € H, and consider the bounded functions f,, := fx|fj<n] € L*(m)
for all n = 1,2,... From (6) we have that lim |f— full;: () = 0. Then f € L'(m) because this space
n—oo w

is closed in L. (m), and therefore H C L'(m). By using (6) again there exists a constant ¢ > 0 such that
fo[lf\%]”/;}u(m) <1 forall f € H. Then

1l (my < ||fXHf|Sc]||Lgv(m) + HfX[If\>c]HL1U(m) < cfjml|(€) +1
for all f € H, and thus H is bounded in L*(m). Finally, note that

[flxa = fIxansi>ea + 1 fIxanisi<g < IfIXf>q +cxa

for all f € L (m) and all A € . Then

1Fxall s my < [ Fx01150ll] L1 oy + €l (A)

for all f € L (m) and all A € %, and the conclusion follows from (6).



The reverse implication 2) = 1) follows from the Markov—Chebyshev’s inequality. For a direct proof see
[6, Theorem 1]. For the equivalence of 2) and 3) see [15, Lemma 2.37(iii)] since L*(m) is a o-order continuous
Banach function space with respect every Rybakov control measure for m. 0O

Proposition 4.5. Let X be a o-order continuous Banach function space with respect to p. Let (fn)n C X,
and f € L°(u). The following conditions are equivalent:

1) feX,and ||fn— fllx —0.
2) (fn)n is L-weakly compact, and f, — f in measure.

Proof. 1) = 2) It is well-known that every relatively compact subset of a o-order continuous Banach
function space is L-weakly compact, and also that norm convergence implies convergence in measure.

2) = 1) It is enough to prove that (fy,), is norm Cauchy. Given ¢ > 0, by the L-weak compactness (see
[15, Lemma 2.37(iii)]), there exists d; > 0 such that || foxal y < % for all n > 1 and all measurable subsets
5
3lIxelx’
the exists ng > 1 such that u ([|fn — fi| > e1]) < d1 for all n, k > ng. Put A, 1 := [|fn. — fx| > €1] and note

that p(An k) < 61 for all n, k > ng. For those n, k we have

with p(A) < ;. Now, taking into account that (f,), is Cauchy in measure, given d; > 0 and &1 :=

1fo = Frllxe < [[(fa = f) Xl + ([ (Fo = i) xoanill

< ||anAn,kHX + kaXAn,kHX +e1 || xa A, ||X
<+ +alxalx =<

We just checked that (fy, )y is norm Cauchy, and thus convergent. Necessarily, its limit must be the function

f. O

Corollary 4.6. Let X be a o-order continuous Banach function space with respect to p, and let H C X. The
following conditions are equivalent:

1) H is relatively norm compact.
2) H is L-weakly compact and relatively (sequentially) compact in measure.

Corollary 4.7. A subset H C L'(m) is relatively norm compact if and only if there exists ® € Ny such that
H C L*(m) is relatively norm compact.

Proof. One implication is trivial because the inclusion L®(m) C L!(m) is continuous. On the other hand, if
H C L'(m) is relatively norm compact, then H is L-weakly compact and relatively (sequentially) compact
in measure by Corollary 4.6. Moreover, by the de la Vallée-Poussin Theorem 4.1, there exists &3 € N such
that H C L20(m) is bounded. We know (see Proposition 3.7) that the inclusion LEo(m) C L®¢(m) is
L-weakly compact for 0 < § < 1. Moreover, ®3 € Ny by Proposition 3.4. Thus H C L®¢(m) is L-weakly
compact, and relatively (sequentially) compact in measure. Since L®¢(m) has o-order continuous norm,
Corollary 4.6 tell us that H is relatively norm compact in L®?(m) as we want to see. 0O

Remark 4.8. The above result is essentially the generalization of [1, Theorem 2.2] for vector measures.
Alexopoulos also proved in the same article that a similar result (see [1, Theorem 2.5]) is true for the weak
topology of L'(u), where p is a positive finite measure defined on a c-algebra 3. Nevertheless, we can not
expect a similar result to Corollary 4.7 for the weak topology of L!(m). In order to check this take p > 1
and the vector measure



m:AeX = m(A):=xa € LP(u), (8)

in which case it is well-known that L!(m) = L?(u). Therefore, L*(m) is reflexive and a subset H C L*(m) is
relatively weakly compact if and only if it is bounded. If H were contained in some L®°(m), being bounded,
we know that there exists ®5 € Ny such that H C L®¢(m) is L-weakly compact. Then H would be L-weakly
compact in L!(m) = LP(u), but not every bounded subset of LP(u) is L-weakly compact.

Remark 4.9. In Corollary 4.6 or Proposition 4.5 we can not weaken hypothesis 2) replacing the L-weak
compactness with weak compactness of the subset H. Consider a finite measure g and let 1 < p < oo.

Take a sequence of measurable sets (A,), such that A, | &, and construct the sequence of functions

1
fn = ———1Xa,, for all n > 1. For every measurable set B, note that

N(An)p

1

/fndM = ﬁ#(ﬁln NB) < u(4,)' "7 = 0.
B 2

Thus, f, — 0 in the weak topology of LP(u). On the other hand, its easy to see that f,, — 0 in measure,
but || full s,y =1, for all n > 1.

However, the case p = 1 is particularly interesting because it points out another difference between the
Lebesgue space of a positive scalar measure L!(1) and the Lebesgue space of a vector measure L'(m). For
a bounded sequence (f,), C L'(u) and a function f € L%(u), the Lebesgue—Vitali and Dunford-Pettis
theorems assert that f,, — f in L'(u) if and only if f,, — f in the weak topology of L'(y) and f,, — f in
measure. This equivalence fails for some Lebesgue spaces L!(m) as the measure of (8) points out.
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