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Abstract
Transceivers built to modern communication standards tend to be as digital as possible,
including the radio‐frequency stages. This forces the digital‐to‐analogue converters (DACs)
in the transmitter section to have a large bandwidth. DACs based on sigma‐delta (SD)
modulation represent a good choice in modern digital technologies as they have a simple
analogue circuitry with limited accuracy requirements. Error‐feedback (EF) architectures
are widely used in the realisation of SDmodulators. Inmany applications, DACoutput has a
small number of bits. In that case, the noise transfer function (NTF) must be of high order
(to achieve a high dynamic range) and of the infinite impulse response (IIR) type (for the
sake of stability). Concerning its implementation, one of the main challenges comes from
the speed limitation of the technology. In this sense, time‐interleaving (TI) allows the
designer a trade‐off between complexity and speed. Transforming the EF architecture into
its TI counterpart is not straightforward for IIRNTFs. A procedure for this transformation
is proposed, and a case study is described for a third‐order modulator. A method of co-
efficient rounding is also proposed to simplify the digital implementation of the modulator
while avoiding mismatches between the parallel paths of the TI modulator.

1 | INTRODUCTION

Sigma‐delta modulators (SDMs) are increasingly receiving
attention in the implementation of modern communication
standards in the design of both transmitters and receivers.
Wideband software‐defined transmitters require the digital‐to‐
analogue converter (DAC) to be rated at a very high frequency
[1–4]. When an SDM‐based DAC is used, speed constraints of
the hardware impose moderate values of the oversampling
ratio (OSR) [5]. As a result, the required dynamic range (DR)
can only be achieved using high‐order SDMs. When the noise
transfer function (NTF) is a finite impulse response (FIR)
filter, high‐order modulators can be stable as long as the bit
number of the quantiser is equal to or larger than L + 1, where
L is the order of the modulator [6]. On the other hand, single‐
bit DACs present the nice feature that they can directly drive
an energy‐efficient switching‐mode power amplifier or the
laser in a radio‐over‐fibre architecture [1].

Moreover, the simplicity and relaxed requirements of the
single‐bit DAC (where mismatch is not a concern, so complex

linearisation techniques, such as dynamic element matching [5],
are not necessary) facilitate the realisation of its analogue part
at very high frequencies. Unfortunately, single‐bit high‐order
SDMs are prone to instability, so for the sake of stability, the
NTF must be of the infinite impulse response (IIR) type;
that is,

NTFðzÞ ¼
�
1 − z−1�L

.
DðZÞ ð1Þ

where L is the order of the modulator and D(z) is an L‐order
polynomial in z [5]. Consequently, in an error‐feedback (EF)
realisation (Figure 1), the loop filter is also of the IIR type:

H zð Þ ¼ NTF zð Þ − 1 1 − z−1� �L − D Zð Þ
h i.

D zð Þ ð2Þ

In order to gain speed, different techniques for the decom-
position of arbitrary‐order IIR transfer functions have been
proposed [7–15]. Time‐interleaving (TI) has been used to
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overcome or alleviate speed constraints in the implementation of
SDMs [9–12]. The modulator of Figure 1, clocked at the sam-
pling frequency fs, is decomposed in N parallel paths clocked at
the low rate fs/N, by means of the filter bank HðzÞ shown in
Figure 2 [10]. The filter bankHðzÞ can be obtained fromH(z) by
means of type I polyphase decomposition (PD) [13]:

HðzÞ ¼
XN � 1

i¼0
z−iHi

�
zN
�

ð3Þ

whereHiðzÞ are the components ofH(z). This decomposition is
straightforward for a FIR transfer function or first‐order simple
sections of the type 1/(1−a z −1), but it is a complex task for a
general IIR transfer function like that in (2). Once the functions
HiðzÞ are known, the filter bank can be calculated by [10, 13]:

�HðzÞ ¼
2

6
6
6
6
6
6
4

H0ðzÞ H1ðzÞ H2ðzÞ … HN−1ðzÞ
z−1HN−1ðzÞ H0ðzÞ H1ðzÞ … HN−2ðzÞ
z−1HN−2ðzÞ

⋮
z−1H1ðzÞ

z−1HN−1ðzÞ
⋮

z−1H2ðzÞ

H0ðzÞ
⋮

z−1H3ðzÞ

…
⋱
…

HN−3ðzÞ
⋮

H0ðzÞ

3

7
7
7
7
7
7
5

ð4Þ

Due to the inherent advantages of DACs based on a
single‐bit SDM, the performance improvement of high‐order
modulators, and the capability of TI architectures to increase

the effective operation rate, the design of an SDM that
combines these features is addressed by the authors.
Although some examples can be found in the design of
cascaded high‐order SDMs, this is the first time, to the best
knowledge of the authors, that a digital single‐bit high‐order
EF structure with an IIR NTF has been designed. For
practical reasons, in the real‐world implementation of this
architecture, the floating‐point coefficients of filter H (z) in
Figure 1 must be rounded. The rounding must be carefully
carried out in order to maintain the NTF zeros in their ideal
position (z = 1). Failure to do so could lead to decreases in
performance. For this purpose, a novel rounding procedure
is also proposed herein. In the following section, the poly-
phase decomposition is reviewed. Afterwards, a third‐order
EF structure is developed, coefficient rounding is completed,
and the resulting architecture is evaluated by simulation
results.

2 | POLYPHASE DECOMPOSITION

In order to carry out PD when the transfer function is an IIR
filter, H(z) should be reformulated as [14,15]

HðzÞ ¼QðzÞ
�
P
�
zN
�

ð5Þ

where QðzÞ and PðzÞ are polynomials in z. In this way, the PD
of H(z) results in the components

HiðzÞ ¼QiðzÞ
�
PðzÞ ð6Þ

where QiðzÞ (i = 0,1,..., N−1) are the components of the (type
I) PD of QðzÞ [13],

QiðzÞ ¼
Xþ∞

k¼0

qkNþi z
−k ð7Þ

F I GURE 1 Error‐feedback sigma‐delta modulator architecture

F I GURE 2 Time‐interleaving architecture of
the modulator in Figure 1. Ei(z) is the error of the
i‐th quantiser
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and qk are the coefficients of the FIR filter QðzÞ; that is,
QðzÞ ¼

P
kqk z

−k
.

The reformulation can be done as follows [14]. Let

pi ¼ ri expðjαiÞði¼ 0; 1; :::;L − 1Þ ð8Þ

be the poles of the NTF, that is, the roots of D(z), where ri and
αi are the modulus and the phase of pi, respectively. Then,

HðzÞ ¼

h
ð1 − z−1Þ

L − DðzÞ
i

∏L−1
i¼0
�
1 − piz−1

� ð9Þ

can be derived from (2). Every denominator term can now be
transformed as

1
�
1 − piz−1

�¼

�
1 − pNi z

−N
�

�
1 − piz−1

��
1 − pNi z−N

� ð10Þ

where pNi is the N‐th power of pi. The term ð1 − pNi z
−NÞ can

be factorised by means of their roots pik as

�
1 − pNi z

−N�¼∏N−1
k¼0
�
1 − pikz

−1�; pik ¼ ri exp
�

jαi þ
j2πk
N

�

ð11Þ

Note that pi0 = pi. Now, substituting Equation (11) in the
numerator of (10), the terms ð1 − piz

−1Þ can be cancelled. As a
result,

1
�
1 − piz−1

�¼
∏N−1

k¼1

�
1 − pi;kz

−1
�

�
1 − pNi z−N

� ð12Þ

Finally, substituting (12) in (9), Equation (5) can be ob-
tained, being

QðzÞ ¼
h�
1 − z−1�L − DðzÞ

i
∏L−1

i¼0 ∏N−1
k¼1

�
1 − pi;kz

−1
�

PðzÞ ¼∏L−1
i¼0
�
1 − pNi z

−1�

ð13Þ

The polynomials in (13) can be evaluated using numerical‐
computing programs like Matlab®. In practice, the NTF
(Butterworth, Chebyshev...) is a rational function with real
coefficients, so all poles are complex conjugates except for L
odd, for which there is one additional real pole. As long as H
(z), obtained from (2) or (5), is also a rational function with real
coefficients, in spite of the fact that the roots pik are complex
numbers, the resulting coefficients of Q(z) and P(z) must be
real numbers. Then, the imaginary terms are necessarily
cancelled. In any case, if both polynomials are to be computed

using real numbers, the expressions in (13) can be modified, as
shown in Appendix I.

3 | COEFFICIENT ROUNDING

Let us now show an example of a third‐order single‐bit
modulator (L = 3) for the case N = 2. The NTF chosen is a
Butterworth high‐pass transfer function with a normalised
cutoff frequency (for a sampling rate fs = 2 Hz) fC. As the
cutoff frequency increases, the quantisation noise is more
abruptly attenuated at low frequencies, but on the other hand,
it is amplified with greater gain at high frequencies. The high‐
frequency noise could overload the quantiser (making the
modulator more prone to instability), and the maximum
achievable amplitude of the input signal would decrease [5].
The dynamic range (i.e., the difference in decibels between the
maximum input amplitude and the amplitude where the signal‐
to‐noise‐and‐distortion ratio—SNDR—is 0 dB) has been ob-
tained from simulations of the EF‐SDM architecture for
different values of fC. The results are shown in Figure 3. The
value fC = 0.16 Hz represents a good trade‐off between signal
swing and modulator performance.

The transfer function poles are located in p0 = 0.5914, and
p1,2 = 0.7062 ± j 0.3362. From these floating‐point quantities,
the derived coefficients of polynomials in (13) will be also
floating‐point numbers, and therefore they must be codified
with a large number of bits. As a consequence, digital imple-
mentation of the resulting architecture will be extremely
complex or even unfeasible at high frequencies. Some kind of
rounding is necessary to derive coefficients with only a few bits
different to zero so the multipliers, which implement the
product of a coefficient with its corresponding signal, can be
replaced by a few adders.

TI architectures are very prone to mismatch in the gain
between the N parallel paths, and also to deviations in the
implemented transfer functions from their theoretical expres-
sions [10]. In an analogue realisation, mismatch can be pro-
duced by tolerances in the components (resistors,
capacitors…) or by non‐linear effects in the amplifiers (finite
DC gain, speed limitations…). In a digital implementation,
these deviations come from coefficient rounding.

Figure 4 shows the NTFs for the floating‐point (ideal) and
rounded coefficients. The ideal NTF is evaluated from (1) for
the poles given above. The rounded‐coefficient NTF is
calculated from the polynomials given in (13) whose co-
efficients are firstly calculated in floating‐point format from the
poles given above and secondly rounded to 11 bits1 (the
weights of the most and least significant bits being 1 and 2−10,
respectively). Finally, the NTF is calculated as 1 + H(z), where
H(z) is given by (5). As expected, the ideal NTF falls at low
frequencies at a rate of −60 dB/dec. Unfortunately, rounding
shifts the original zeros at z = 1 to the values z0 = 0.9403, and

1
This number has been arbitrarily chosen for the sole purpose of illustrating how
rounding affects the NTF.
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z1,2 = 1.0297 ± j 0.0501. In consequence, the NTF does not
asymptotically fall to −∞ dB and remains flat about |1−z0|�|
1−z1|2 (approximately −50 dB) at low frequencies.

To guarantee that the original zeros will remain at z = 1
after rounding, we can proceed as follows. The poles of the
original NTF given in (1) are rounded to the lowest possible
resolution without compromising stability and performance.
The new denominator of the NTF is recalculated from the
rounded poles, pðRÞk ; that is,

DRðzÞ ¼∏
k

�
1 − pðRÞk z−1�; k¼ 1;…;L ð14Þ

Finally, the polynomials Q(z) and P(z) are calculated from
(13) using the rounded poles and DR(z). In this way, H(z) is

calculated from (5) and the NTF, which is equal to 1 + H(z), is
given by (1), as long as D(z) is replaced by DR(z). As a
consequence, the L zeros are maintained at z = 1.

4 | SIMULATION RESULTS

Following the procedure given above, simulations show that
rounded poles with only 2‐bit resolution are enough to guarantee
the stability and performance of the resulting TI modulator.
Then, the original poles (p0 = 0.5914, and p1,2 = 0.7062 ± j
0.3362) are rounded to p0(R)= 0.5, and p1,2(R)= 0.75± j 0.25. The
polynomials in (13) can be calculated using pðRÞk and DRðzÞ. The
resulting coefficients are shown in the second column of Table 1.
An additional 7‐bit rounding can be done to them to obtain the
third column of Table 1. Note that only the coefficients q6 and p3
are affected by this second rounding. Consequently, the
maximum number of non‐zero bits was limited to three, which
simplifies the digital implementation of the filters.

Once Q (z) and P (z) are known, the PD of H(z) can be
obtained from (6)–(7), and the filter bank components can be
represented as fractional functions; that is,

HðzÞ ¼
�
HijðzÞ

�
¼

�
NijðzÞ
PðzÞ

�

ð15Þ

where

N11ðzÞ ¼ q2z
−1 þ q4z

−2 þ q6z
−3; N22ðzÞ ¼ N11ðzÞ

N12ðzÞ ¼ q1 þ q3z
−1 þ q5z

−2; N21ðzÞ ¼ z−1N12ðzÞ
ð16Þ

Figure 5 depicts the amplitude response of the floating‐
point, only pole rounding, and double‐rounding implementa-
tions of the NTFs. The last two NTFs have been calculated
using the coefficients given in the second and third columns,
respectively, of Table 1. Once again, NTF is calculated as 1 +

F I GURE 3 Dynamic range versus the cutoff frequency of the Butterworth third‐order noise transfer function

F I GURE 4 Third‐order Butterworth noise transfer function (NTF) for
floating‐point (ideal) and 11‐bit rounded coefficients
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H(z), where H(z) is given by (5), their three zeros are placed at
z = 1 (the additional rounding hardly affects performance in
this case), and there is an attenuation loss of approximately
2 dB at low frequencies compared with the ideal NTF. As
shown in Figure 5, the difference between both rounded NTFs
is not appreciable

Time‐domain simulations of the EF modulator (Figure 1)
and its double‐rounded TI (Figure 2) implementations, clocked
at the rates fs and fs/2, respectively, are performed using
MATLAB® & Simulink® for the third‐order single‐bit SDM
with a cutoff normalised frequency of 0.16, which is the same
used in the examples discussed previously. The original poles
of the Butterworth NTF have been used for the EF modulator
implementation, and the double‐rounded coefficient (third
column in Table 1) for that of the TI. The resulting SNDR
curves are shown in Figure 6, where the noise power has been

calculated in a bandwidth of fs/64 (OSR = 32). Both curves
match very well. The achieved DR values are 67.8 and 68.5 dB,
which correspond to effective numbers of 11 and 11.12 bits for
the EF and TI architectures, respectively. For sake of com-
parison, the second‐order SDM has also been simulated with
an OSR of 32 and NTF ¼ ð1 − z−1Þ2. The third‐order
modulators outperform the second‐order one by approxi-
mately 9 dB (1.5 effective bits). Finally, the power spectral
densities of both third‐order architectures are shown in
Figure 7 for an input tone with −4 dB amplitude (full scale)
and 0.0062 Hz frequency (approximately one‐fifth of the signal
bandwidth). The vertical dashed line marks the limit of the

TABLE 1 Coefficients (in binary) of
QðzÞ and PðzÞ

Filter coefficients

2‐bit pole rounding 2‐bit pole and 7‐bit coefficient rounding

QðzÞ q 1 −1.00000000 −1.000000

q 2 −0.01100000 −0.011000

q 3 +1.00110000 +1.001100

q 4 +0.10001100 +0.100011

q 5 −0.01110000 −0.011100

q 6 −0.00110111 −0.001110

PðzÞ b 0 +1.00000000 +1.000000

b 1 −1.01000000 −1.010000

b 2 +0.10100100 +0.101001

b 3 −0.00011001 −0.000110

Notes: Second column: coefficients obtained from rounded poles. Third column: Coefficients of the second column with
additional rounding.

F I GURE 5 Third‐order Butterworth noise transfer functions for the
ideal, 2‐bit rounded poles and additional rounded coefficients (2‐bit pole
and 7‐bit coefficient rounding) cases

F I GURE 6 Signal‐to‐noise‐and‐distortion ratio (SNDR) curves for the
error‐feedback with ideal coefficient (Figure 1) and double‐rounded time‐
interleaving (Figure 2) architectures
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signal bandwidth (0.0313 Hz). The SNDR values are 62.41 and
61.65 dB, and the spurious free dynamic range values are 74.8
and 76.8 dB, for the ideal EF and the double‐rounded TI
modulators, respectively.

5 | CONCLUSIONS

The transformation of an EF SDM into its TI counterpart is
not a straightforward task when the NTF is of the IIR type.
This kind of modulator finds application as a DAC in the
transmitters of increasingly demanding communication stan-
dards. A systematic procedure for this transformation is
presented here for a single‐bit modulator. To reduce the
complexity of digital implementation of the TI SDM, the
coefficients of the transfer functions are rounded to a low
resolution (so that only a few bits are different to zero). A
method to reach this objective is also proposed based on
pole rounding. As a result, the rounded NTF retains its zeros
at z = 1. The case study selected for this analysis (the two‐
phase decomposition of a third‐order Butterworth high‐pass
NTF) shows that TI modulators with an IIR NTF can be
implemented with low‐resolution coefficients. The method
proposed here can be also applied to EF modulators with the
zeros of its NTF distributed in the signal band. In this case,
the results obtained with the technique proposed for
rounding coefficients could cause a loss in performance,
which must be carefully monitored.
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APPENDIX I

Transformation of Equation (13)
If the pole pi is real (αi ¼ 180° ), then it can be stated from the
second equation of (11) that pi k and pi N‐k are conjugates; they
can be grouped, and (12) can be expressed as

1
�
1 − piz−1

� ¼

8
>>>>><

>>>>>:

∏ðN−1Þ=2
k¼1

�
1 − 2ℜe

�
pik
�
z−1 þ |pik|

2 z−2�

1 − pNi z−N ;N odd

�
1þ piz

−1�∏ðN−2Þ=2
k¼1

�
1 − 2ℜe

�
pik
�
z−1 þ |pik|

2 z−2�

1 − pNi z−N ;N even

ð17Þ

where as usual, ℜe(x) is the real component of x, and |x|, its
modulus. On the other hand, if pq and pr are conjugates, every
pole pq k is a conjugate of pr N‐k. Again, they can be grouped,
and

1
�
1 − pqz−1

��
1 − pq∗ z−1

�

¼
∏N−1

k¼1

�
1 − 2ℜe

n
pqk
o
z−1 þ

�
�
�pqk
�
�
�
2
z−2
�

1 − 2ℜe

n
pNq
o
z−N þ

�
�
�pq
�
�
�
2N

z−2N
ð18Þ

Summarising, for NTFs with real coefficients, the expres-
sions in (17) and (18) can be substituted in (9), and H(z) can be
expressed in (5) as a rational function with real coefficients.
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