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Abstract. Let ν be a σ-finite Banach-space-valued measure defined on a
δ-ring. We find a wide class of measures ν for which interpolation with a 
parameter function of couples of Banach lattices of p-integrable and weakly
p-integrable functions with respect to ν produces a Lorentz-type space. More-
over, we prove that if we interpolate between sums and intersections of them,
then they still yield another Lorentz-type space closely related with the first
one.

1. Introduction

Let m be a vector measure defined on a σ-algebra Σ of Ω with values in a
Banach space X, let ρ be a parameter function in the class Q(0, 1) of Persson, let
0 < q ≤ ∞, and let 1 < p0 6= p1 < ∞. We proved in [5, Corollary 4] that(

Lp0(m), Lp1(m)
)
ρ,q

=
(
Lp0w (m), Lp1w (m)

)
ρ,q

= Λqϕ(‖m‖), (1.1)

where ϕ(t) = t
1
p0

ρ(t
1
p0

− 1
p1 )

. In particular, for the classical real interpolation method,

which is obtained for the parameter function ρ(t) = tθ with 0 < θ < 1, we have(
Lp0(m), Lp1(m)

)
θ,q

=
(
Lp0w (m), Lp1w (m)

)
θ,q

= Lp,q(‖m‖), (1.2)
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where 1
p
= 1−θ

p0
+ θ

p1
. This particular situation (1.2) was generalized in [6, Corol-

lary 3.11], replacing m by a σ-finite, locally strongly additive vector measure ν
defined on a weaker structure than a σ-algebra, namely, on a δ-ring R of Ω.
Therefore, a natural question is to find out if (1.1) keeps on verifying with m
replaced by ν. The answer lies in the affirmative (even for 1 ≤ p0 6= p1 ≤ ∞), and
Section 3 is devoted to sketch the reasons why that works (see Corollary 3.5).

Moreover, in the setting of vector measures on δ-rings the Lp-spaces are no
longer ordered by inclusion as it occurs in the case of measures on σ-algebras,
and so it becomes interesting to investigate what happens when we interpolate
between sums and intersections of them. Recall that integration with respect to
vector measures defined on δ-rings is the natural vector-valued generalization of
the case of integration with respect to positive σ-finite measures µ, which does
not fit into the frame of vector measures on σ-algebras if µ is nonfinite. When µ
is a σ-finite measure, it is known that(

Lp(µ) + L∞(µ), Lp(µ) ∩ L∞(µ)
)
ρ,q

= Λqϕ̃(‖µ‖) (1.3)

with ϕ̃(t) = t
1
p

ρ̃(t
1
p )

and ρ̃(t) = ρ(t)χ(0,1](t) + tρ(t−1)χ(1,∞)(t) (see [17, Example

7.1]). Therefore, in light of (1.1) and (1.3), one can expect that(
Lp0(ν) + Lp1(ν), Lp0(ν) ∩ Lp1(ν)

)
ρ,q

= Λqϕ̃(‖ν‖) (1.4)

with ϕ̃(t) = t
1
p0

ρ̃(t
1
p0

− 1
p1 )

(and ρ̃ as above) for any σ-finite locally strongly additive

vector measure ν defined on a δ-ring and 1 ≤ p0 6= p1 ≤ ∞.
Given an interpolation couple Ā = (A0, A1), it has been studied that both the

relationship between its interpolation spaces and the interpolation spaces of the
couple (Σ(Ā),∆(Ā)) are obtained by the interpolation method with a parameter
function (see [12, Proposition 3] or [17, Proposition 7.2]). Applying this to a
couple of Lp-spaces with respect to ν and using Corollary 3.5, we can obtain
(1.4) under the hypothesis that ρ ∈ Q(0, 1

2
] ∪ Q[1

2
, 1). However, with the more

general and natural hypothesis ρ ∈ Q(0, 1), it cannot be deduced in such a way.
Therefore, a deeper insight into the involved K-functionals is needed in order to
see that (1.4) can be achieved for any ρ ∈ Q(0, 1) (see Corollary 5.3). The cases
p1 = ∞ or p1 6= ∞ in (1.4) must be treated separately. The former is done in
Section 4 and the latter in Section 5.

2. Preliminaries

Let X be a real Banach space with dual X ′ and unit ball B(X), and let ν :
R → X be a (countably additive) vector measure defined on a δ-ring R of subsets
of some nonempty set Ω. We denote by Rloc the σ-algebra of subsets A ⊆ Ω such
that A ∩ B ∈ R for each B ∈ R. Measurability of functions f : Ω → R will be
considered with respect to the measurable space (Ω,Rloc). The semivariation of
ν is the set function ‖ν‖ : Rloc → [0,∞] defined by

‖ν‖(A) := sup
{
|〈ν, x′〉|(A) : x′ ∈ B(X ′)

}
, A ∈ Rloc,



where |〈ν, x′〉| is the variation of the scalar measure 〈ν, x′〉 : R → R given by
〈ν, x′〉(A) := 〈ν(A), x′〉 for all A ∈ R. The measure ν is said to be locally strongly
additive if, for every disjoint sequence (An)n ⊆ R with ‖ν‖(

⋃
n≥1An) < ∞, we

have ‖ν(An)‖X → 0.
A set N ∈ Rloc is called ν-null if ‖ν‖(N) = 0, and a property holds ν-almost

everywhere (ν-a.e.) if it holds except on a ν-null set. In what follows we will
always consider vector measures ν which are σ-finite; that is, there exist a pairwise
disjoint sequence (Ωk)k in R and a ν-null set N such that Ω = (

⋃
k≥1Ωk) ∪N .

Let L0(ν) denote the space of all measurable functions f : Ω → R. Two func-
tions f, g ∈ L0(ν) will be identified if they are equal ν-a.e. A measurable function
f ∈ L0(ν) is said to be weakly integrable (with respect to ν) if f ∈ L1(|〈ν, x′〉|) for
all x′ ∈ X ′. In this case, for each A ∈ Rloc, there exists an element

∫
A
f dν ∈ X ′′

(called the weak integral of f over A) such that 〈
∫
A
f dν, x′〉 =

∫
A
f d〈ν, x′〉 for all

x′ ∈ X ′. The space L1
w(ν) of all (ν-a.e. equivalence classes of) weakly integrable

functions becomes a Banach lattice when it is endowed with the natural order
ν-a.e. and the norm

‖f‖1 := sup
{∫

Ω

|f | d|〈ν, x′〉| : x′ ∈ B(X ′)
}
, f ∈ L1

w(ν).

A weakly integrable function f is called integrable (with respect to ν) if the vector∫
A
f dν ∈ X for all A ∈ Rloc. The space L1(ν) of all (ν-a.e. equivalence classes

of) integrable functions becomes an order-continuous closed ideal of L1
w(ν), and

in general L1(ν)  L1
w(ν).

If 1 < p <∞, then a function f ∈ L0(ν) is said to be weakly p-integrable (with
respect to ν) if |f |p ∈ L1

w(ν), and it is said to be p-integrable (with respect to
ν) if |f |p ∈ L1(ν). We denote by Lpw(ν) the space of (ν-a.e. equivalence classes
of) weakly p-integrable functions and by Lp(ν) the space of (ν-a.e. equivalence
classes of) p-integrable functions. Obviously, we have that Lp(ν) ⊆ Lpw(ν). The
natural norm for both spaces is given by

‖f‖p := sup
{(∫

Ω

|f |p d|〈ν, x′〉|
) 1

p
: x′ ∈ B(X ′)

}
, f ∈ Lpw(ν).

The Banach lattices Lp(ν) and Lpw(ν) were initially studied in [8] for vector mea-
sures on a σ-algebra (see [15]), and its basic properties can be extended and
remain true for vector measures on δ-rings (see [3], [4]). The space L∞(ν) consists
of all (ν-a.e. equivalence classes of) essentially bounded functions equipped with
the essential supremum norm ‖ · ‖∞.

Given f ∈ L0(ν), we shall consider its distribution function (with respect to
the semivariation ‖ν‖) ‖ν‖f : [0,∞) → [0,∞] defined by

‖ν‖f (s) := ‖ν‖
({
w ∈ Ω : |f(w)| > s

})
, s ≥ 0.

This distribution function has similar properties as in the scalar case (see [7]). For
instance, ‖ν‖f is nonincreasing and right-continuous. The decreasing rearrange-
ment of f (with respect to the semivariation ‖ν‖) is the function f∗ : (0,∞) →
[0,∞) given by f∗(t) := inf{s > 0 : ‖ν‖f (s) ≤ t} for all t > 0. In particular, f∗ is
nonincreasing and right-continuous.



For 0 < q ≤ ∞ and a nonnegative measurable function ϕ defined on (0,∞),
we denote by Λqϕ(‖ν‖) the set of all f ∈ L0(ν) such that the quantity

‖f‖Λq
ϕ(‖ν‖) :=

{
(
∫∞
0
(ϕ(t)f∗(t))

q dt
t
)
1
q , if 0 < q <∞,

supt>0 ϕ(t)f∗(t), if q = ∞,

is finite.
When ϕ(t) = t

1
p with 1 ≤ p < ∞, we obtain the Lorentz space Lp,q(‖ν‖)

introduced in [7] for vector measures on σ-algebras. We also note that Lp,q(‖ν‖)
is a quasi-Banach lattice with the Fatou property. For the special case p = q,
we denote the space Lp,p(‖ν‖) simply by Lp(‖ν‖). As was pointed out in [7], in
general, the spaces Lp(‖ν‖) and Lp(ν) do not coincide if 1 ≤ p < ∞. If the
measure ν is defined on a σ-algebra, then it holds that

Lp,1(‖ν‖) ⊆ Lp(‖ν‖) ⊆ Lp(ν) ⊆ Lpw(ν) ⊆ Lp,∞(‖ν‖), (2.1)

and all these inclusions are continuous (see [7, Proposition 7]). If the vector mea-
sure ν is defined on a δ-ring, then the (continuous) inclusions that remain true
are

Lp,1(‖ν‖) ⊆ Lp(‖ν‖) ⊆ Lpw(ν) ⊆ Lp,∞(‖ν‖). (2.2)

However, if ν is locally strongly additive, then we recover the chain of inclusions
(2.1) (see [6, Proposition 2.2, Remark 3.3] for the details).

Throughout the paper, we will use parameter functions that belong to the class
Q(0, 1) considered by Persson [17]. Let us review the definition of the class Q(0, 1)
and some other related classes. Given two real numbers a0 < a1, the class Q[a0, a1]
denotes all nonnegative functions ρ on (0,∞) such that ρ(t)t−a0 is nondecreasing
and ρ(t)t−a1 is nonincreasing. We write ρ ∈ Q(a0, a1) if ρ ∈ Q[a0 + ε, a1 − ε] for
some ε > 0. Moreover, ρ ∈ Q(a0,−) (resp., ρ ∈ Q(−, a1)) means that ρ ∈ Q(a0, b)
(resp., ρ ∈ Q(b, a1)) for a certain real number b. Observe that ρ ∈ Q(0, 1) if and
only if ρ(t)t−α is nondecreasing and ρ(t)t−β is nonincreasing for some 0 < α <
β < 1.

Let us recall briefly the construction of the real interpolation method with a
parameter function. Let Ā := (A0, A1) be a quasi-Banach couple, that is, two
quasi-Banach spaces A0, A1 which are continuously embedded in some Hausdorff
topological vector space. The Peetre’s K-functional is defined for f ∈ A0 + A1

and t > 0 by

K(t, f) = K(t, f ;A0, A1) = inf{‖f0‖A0 + t‖f1‖A1 : f = f0 + f1, fi ∈ Ai}.

For ρ ∈ Q(0, 1) and 0 < q ≤ ∞, the space (A0, A1)ρ,q is formed by all those
elements f ∈ A0 + A1 such that the quasinorm

‖f‖ρ,q :=

{
(
∫∞
0
(K(t,f ;A0,A1)

ρ(t)
)q dt

t
)
1
q , if 0 < q <∞,

supt>0
K(t,f ;A0,A1)

ρ(t)
, if q = ∞,

is finite. In the particular case when ρ(t) = tθ, 0 < θ < 1, the space (A0, A1)ρ,q
coincides with the interpolation space (A0, A1)θ,q obtained by the classical real
method (see [2]).



The interpolation space (A0, A1)ρ,q can be also defined by using a parameter
function ρ belonging to other similar function classes such as the class P+− or
Bψ (see [10], [9], [17]). We refer to [16], [10], [9], [11], [14], and [17], among others,
for complete information about the real interpolation method with a parameter
function.

Given a quasinormed function space A in L0(ν), the r-convexification of A is
the space A(r) defined by A(r) := {f ∈ L0(ν) : |f |r ∈ A} and equipped with the

quasinorm ‖f‖A(r) := ‖|f |r‖
1
r
A. It is not difficult to check the following result using

the definitions of the function spaces that we have introduced.

Proposition 2.1. Let 1 ≤ r <∞, and let 0 < q ≤ ∞. Then

(i) (Λqϕ(‖ν‖))(r) = Λrq
ϕ

1
r
(‖ν‖).

In particular, for ϕ(t) = t, we have

(ii) (L1(‖ν‖))(r) = Lr(‖ν‖) for q = 1.
(iii) (L1,∞(‖ν‖))(r) = Lr,∞(‖ν‖) for q = ∞.

As usual, the equivalence a ≈ b (resp., a 4 b) means that 1
c
a ≤ b ≤ ca (resp.,

a ≤ cb) for some positive constant c independent of the appropriate parameters.
Two quasinormed spaces, A and B, are considered as equal, and we write A = B
whenever they coincide as sets and their quasinorms are equivalent.

3. Interpolation of couples of Lp-spaces

In this section, we provide a description of the interpolation spaces for couples
of Lp-spaces associated to a σ-finite vector measure ν. We start studying when
Λqϕ(‖ν‖) is intermediate for the couples (L1(‖ν‖), L∞(ν)) and (L1,∞(‖ν‖), L∞(ν)).

Lemma 3.1. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), and let ϕ(t) = t
ρ(t)

. Then

L1,∞(‖ν‖) ∩ L∞(ν) ⊆ Λqϕ(‖ν‖) ⊆ L1(‖ν‖) + L∞(ν).

Proof. Assume that q < ∞ (the case q = ∞ is similar). Given f ∈ Λqϕ(‖ν‖),
f ≥ 0, let M := 1 + f∗(t0) for some t0 > 0, g := fχ[f>M ], h := fχ[f≤M ], and

W (t) = tq−1

ρ(t)q
, and take 0 < α < 1 such that ρ(t)t−α is nondecreasing. It is not

difficult to check that∫ ∞

r

W (t)

tq
dt ≤ 1− α

αrq

∫ r

0

W (t) dt, r > 0.

Since g∗(t) ≤ f∗(t), for all t > 0, the weighted Hardy inequality for the nonin-
creasing function (see [1, Theorem 1.7], and see also [18, Theorem 3] for the case
0 < q < 1) gives(∫ ∞

0

[1
t

∫ t

0

g∗(u) du
]q
W (t) dt

) 1
q ≤

(∫ ∞

0

[1
t

∫ t

0

f∗(u) du
]q
W (t) dt

) 1
q

4
(∫ ∞

0

f∗(t)
qW (t) dt

) 1
q



=
(∫ ∞

0

[ t

ρ(t)
f∗(t)

]q dt
t

) 1
q

= ‖f‖Λq
ϕ(‖ν‖) <∞.

In particular, the function 1
t

∫ t
0
g∗(u) du is finite almost everywhere. Moreover,

‖ν‖([f > M ]) = ‖ν‖f (M) ≤ t0, and we can assume that ‖ν‖(Ω) = ∞ (the case
‖ν‖(Ω) <∞ is evident since L∞(ν) ⊆ L1(‖ν‖)); thus, ‖ν‖([f ≤M ]) = ∞ and g =
0 in [f ≤M ], which implies that g∗(t) = 0 for all t ≥ t0. Hence

∫∞
0
g∗(u) du <∞;

that is, g ∈ L1(‖ν‖). This proves that f = g+h with g ∈ L1(‖ν‖) and h ∈ L∞(ν),
and so f ∈ L1(‖ν‖) + L∞(ν).

Let f ∈ L1,∞(‖ν‖)∩L∞(ν), let K1 := ‖f‖L∞(ν) = f∗(0), let K2 := ‖f‖L1,∞(‖ν‖),
and let M := ρ(1)−1, and take 0 < α < β < 1 such that ρ(t)t−α is nondecreasing
and ρ(t)t−β is nonincreasing. Thus tβρ(t)−1 ≤M for all 0 < t ≤ 1 and tαρ(t)−1 ≤
M for all t ≥ 1 and so

‖f‖q
Λq
ϕ(‖ν‖)

=

∫ 1

0

[ t

ρ(t)
f∗(t)

]q dt
t
+

∫ ∞

1

[ t

ρ(t)
f∗(t)

]q dt
t

≤ (MK1)
q

∫ 1

0

tq(1−β)−1 dt+ (MK2)
q

∫ ∞

1

t−qα−1 dt <∞. �

The following result can be obtained using the estimates of [6, Proposition 3.5]
and following the lines of the proof of [5, Theorem 3] (with Lemma 3.1 in mind).

Theorem 3.2. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), and let ϕ(t) = t
ρ(t)

. It holds that(
L1(‖ν‖), L∞(ν)

)
ρ,q

=
(
L1,∞(‖ν‖), L∞(ν)

)
ρ,q

= Λqϕ(‖ν‖).

The reiteration theorem [17, Proposition 4.3] allows us to calculate the inter-
polation spaces for different couples of Lp-spaces from Theorem 3.2. We need first
this technical lemma, which can be easily deduced from [17, Lemma 1.1].

Lemma 3.3. Let ρ ∈ Q(0, 1), let 1 < p0 < p1 <∞, let ρ0(t) := t
1− 1

p0 , let ρ1(t) :=

t
1− 1

p1 ρ2(t) := ρ0(t)ρ(
ρ1(t)
ρ0(t)

), let ρ3(t) := ρ0(t)ρ(
t

ρ0(t)
), and let ρ4(t) := ρ(ρ1(t)). It

holds that

(i) ρ2(t) ∈ Q(1− 1
p0
, 1− 1

p1
),

(ii) ρ3(t) ∈ Q(1− 1
p0
, 1),

(iii) ρ4(t) ∈ Q(0, 1− 1
p1
).

In particular, we have that ρ2, ρ3, ρ4 ∈ Q(0, 1).

Corollary 3.4. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), let 1 ≤ p0 < p1 ≤ ∞, and let

ϕ(t) = t
1
p0

ρ(t
1
p0

− 1
p1 )

. It holds that(
Lp0(‖ν‖), Lp1(‖ν‖)

)
ρ,q

=
(
Lp0,∞(‖ν‖), Lp1,∞(‖ν‖)

)
ρ,q

= Λqϕ(‖ν‖).

Proof. Let ρ0, ρ1, ρ2, ρ3, and ρ4 be as in Lemma 3.3. Observe that the extreme
case p0 = 1 and p1 = ∞ is precisely Theorem 3.2. Otherwise, since ρ1

ρ0
∈ Q(0,−),



we have by [17, Corollary 4.4] that(
Lp0(‖ν‖), Lp1(‖ν‖)

)
ρ,q

=
(
L1(‖ν‖), L∞(ν)

)
ρ2,q

, (3.1)(
Lp0(‖ν‖), L∞(ν)

)
ρ,q

=
(
L1(‖ν‖), L∞(ν)

)
ρ3,q

, (3.2)(
L1(‖ν‖), Lp1(‖ν‖)

)
ρ,q

=
(
L1(‖ν‖), L∞(ν)

)
ρ4,q

. (3.3)

If 1 < p0 < p1 < ∞, then Lemma 3.3 guarantees that ρ2 ∈ Q(0, 1). Therefore,
it follows from (3.1) and Theorem 3.2 that (Lp0(‖ν‖), Lp1(‖ν‖))ρ,q = Λqϕ2

(‖ν‖),

where ϕ2(t) =
t

ρ2(t)
= t

1
p0

ρ(t
1
p0 −t

1
p1 )

= ϕ(t).

If 1 < p0 < ∞ and p1 = ∞, then Lemma 3.3 implies that ρ3 ∈ Q(0, 1).
Hence (3.2) and Theorem 3.2 give (Lp0(‖ν‖), Lp1(‖ν‖))ρ,q = Λqϕ3

(‖ν‖), where

ϕ3(t) =
t

ρ3(t)
= t

ρ0(t)ρ(
t

ρ0(t)
)
= t

1
p0

ρ(t
1
p0 )

= ϕ(t).

If p0 = 1 and 1 < p1 < ∞, then Lemma 3.3 ensures that ρ4 ∈ Q(0, 1). Thus,
it follows from (3.3) and Theorem 3.2 that (Lp0(‖ν‖), Lp1(‖ν‖))ρ,q = Λqϕ4

(‖ν‖),
where ϕ4(t) =

t
ρ4(t)

= t

ρ(t
1− 1

p1 )
= ϕ(t).

The result for the couple (Lp0,∞(‖ν‖), Lp1,∞(‖ν‖)) is obtained with the same
reasoning but using the other equality of Theorem 3.2. �

Corollary 3.5. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), let 1 ≤ p0 < p1 ≤ ∞, and let

ϕ(t) = t
1
p0

ρ(t
1
p0

− 1
p1 )

. It holds that (Lp0w (ν), Lp1w (ν))ρ,q = Λqϕ(‖ν‖).

If in addition ν is locally strongly additive, then(
Lp0(ν), Lp1(ν)

)
ρ,q

=
(
Lp0w (ν), Lp1(ν)

)
ρ,q

=
(
Lp0(ν), Lp1w (ν)

)
ρ,q

= Λqϕ(‖ν‖).

Proof. For general ν, it holds that Lp(‖ν‖) ⊆ Lpw(ν) ⊆ Lp,∞(‖ν‖) (see (2.2)), and
if in addition ν is locally strongly additive, then it also holds that Lp(‖ν‖) ⊆
Lp(ν) ⊆ Lp,∞(‖ν‖) (see (2.1) and the later comments). Therefore, the result
directly follows from Corollary 3.4. �

Note that if ν is a σ-finite scalar measure, then this result recovers [17, Lemma
6.1].

4. Interpolation between sum and intersection of Lp and L∞

Let ρ ∈ Q(0, 1), and let 0 < q ≤ ∞. From now on ρ∗(t) := tρ(1
t
) and

ρ̃(t) = ρ(t)χ(0,1](t) + ρ∗(t)χ(1,∞)(t). Note that ρ∗ ∈ Q(0, 1) (see [17, Exam-
ple 1.2]), and so ρ̃ ∈ Q(0, 1). The next general estimate of the norm of an element
a ∈ (Σ(Ā),∆(Ā))ρ,q (see [17, (7.3)]) will be the key for obtaining our interpolation
formulas:

‖a‖(Σ(Ā),∆(Ā))ρ,q ≈
(∫ 1

0

(K(t, a; Ā)

ρ(t)

)q dt
t

) 1
q
+
(∫ ∞

1

(K(t, a; Ā)

ρ∗(t)

)q dt
t

) 1
q

(4.1)

(for q = ∞, integrals are replaced by suitable suprema as usual).



Using the fact that ar + br ≈ (a + b)r, for all a, b ≥ 0 and 0 < r < ∞, we can
reformulate (4.1) in this way:

‖a‖(Σ(Ā),∆(Ā))ρ,q ≈
(∫ ∞

0

(K(t, a; Ā)

ρ̃(t)

)q dt
t

) 1
q
. (4.2)

Moreover, we will use the following estimates for theK-functional of the couples
(Lp(‖ν‖), L∞(ν)) and (Lp,∞(‖ν‖), L∞(ν)), which can be deduced from the ones
in [6, Proposition 3.5] using Proposition 2.1.

Proposition 4.1. Let p ≥ 1.

(i) If f ∈ Lp(‖ν‖) + L∞(ν), then K(t, f ;Lp(‖ν‖), L∞(ν)) 4 (
∫ tp
0
f∗(s)

p ds)
1
p .

(ii) If f ∈ Lp,∞(‖ν‖) + L∞(ν), then K(t, f ;Lp,∞(‖ν‖), L∞(ν)) < tf∗(t
p).

Proof. We can assume that f ≥ 0 without lost of generality. Given a couple

(A0, A1) of quasinormed function spaces, it is known (see [13]) that A
(p)
0 +A

(p)
1 =

(A0 + A1)
(p) and that

K(t, f ;A
(p)
0 , A

(p)
1 ) ≈ K(tp, f p;A0, A1)

1
p . (4.3)

Applying (4.3) to the couple (A0, A1) = (L1(‖ν‖), L∞(ν)) and using Proposi-
tion 2.1 and [6, Proposition 3.5], we have

K
(
t, f ;Lp(‖ν‖), L∞(ν)

)
≈ K

(
tp, f p;L1(‖ν‖), L∞(ν)

) 1
p 4

(∫ tp

0

f∗(s)
p ds

) 1
p
.

Doing the same with the couple (A0, A1) = (L1,∞(‖ν‖), L∞(ν)), it follows that

K
(
t, f ;Lp,∞(‖ν‖), L∞(ν)

)
≈ K

(
tp, f p;L1,∞(‖ν‖), L∞(ν)

) 1
p <

(
tpfp∗ (t

p)
) 1

p

= tf∗(t
p). �

The equivalence (4.2) and the estimates in Proposition 4.1 yield the following.

Theorem 4.2. Let 1 ≤ p < ∞, let ρ ∈ Q(0, 1), let 0 < q ≤ ∞, and let ϕ̃(t) =
t
1
p

ρ̃(t
1
p )
. Then

Λqϕ̃(‖ν‖) =
(
Lp(‖ν‖) + L∞(ν), Lp(‖ν‖) ∩ L∞(ν)

)
ρ,q

=
(
Lp,∞(‖ν‖) + L∞(ν), Lp,∞(‖ν‖) ∩ L∞(ν)

)
ρ,q
.

Proof. We assume 0 < q <∞ (the case q = ∞ is similar). Let us first prove that
Λqϕ̃(‖ν‖) ⊆ (Lp(‖ν‖) + L∞(ν), Lp(‖ν‖) ∩ L∞(ν))ρ,q. First, observe that Corol-

lary 3.4 guarantees that Λqϕ̃(‖ν‖) = (Lp(‖ν‖), L∞(ν))ρ̃,q since ρ̃ ∈ Q(0, 1). Thus,

given f ∈ Λqϕ̃(‖ν‖) ⊆ Lp(‖ν‖) + L∞(ν), from (4.2) and Proposition 4.1(i), we
deduce that

‖f‖ρ,q ≈
(∫ ∞

0

(K(s, f ;Lp(‖ν‖), L∞(ν))

ρ̃(s)

)q ds
s

) 1
q

4
(∫ ∞

0

( 1

ρ̃(s)

[∫ sp

0

(
f∗(u)

)p
du

] 1
p
)q ds

s

) 1
q



≈
(∫ ∞

0

( 1

ρ̃(t
1
p )

)q[∫ t

0

(
f∗(u)

)p
du

] q
p dt

t

) 1
q

=
(∫ ∞

0

(
ϕ(t)

)q[∫ t

0

(
f∗(u)

)p
du

] q
p dt

t

) 1
q
,

where ϕ(t) := 1

ρ̃(t
1
p )
.

Moreover, ϕ ∈ Q(−1
p
, 0) since ρ ∈ Q(0, 1) (see [17, Lemma 1.1]). Therefore,

applying [17, Lemma 3.2(a)] (with h(t) = f∗(t) and ψ(t) = t
1
p ), it follows that

‖f‖ρ,q 4
(∫ ∞

0

(
ϕ(t)

)q[∫ t

0

(
u

1
pf∗(u)

)pdu
u

] q
p dt

t

) 1
q

4
(∫ ∞

0

(
ϕ(t)t

1
pf∗(t)

)q dt
t

) 1
q
= ‖f‖Λq

ϕ̃
(‖ν‖).

Now, we will check that (Lp,∞(‖ν‖)+L∞(ν), Lp,∞(‖ν‖)∩L∞(ν))ρ,q ⊆ Λqϕ̃(‖ν‖).
Let f ∈ (Lp,∞(‖ν‖)+L∞(ν), Lp,∞(‖ν‖)∩L∞(ν))ρ,q. Using Proposition 4.1(ii) and
(4.2), we obtain

‖f‖Λq
ϕ̃
(‖ν‖) =

(∫ ∞

0

( t
1
p

ρ̃(t
1
p )
f∗(t)

)q dt
t

) 1
q ≈

(∫ ∞

0

( s

ρ̃(s)
f∗(s

p)
)q ds

s

) 1
q

4
(∫ ∞

0

(K(s, f ;Lp,∞(‖ν‖), L∞(ν)

ρ̃(s)

)q ds
s

) 1
q ≈ ‖f‖ρ,q.

Finally, observe that (Lp(‖ν‖) + L∞(ν), Lp(‖ν‖) ∩ L∞(ν))ρ,q is contained in
(Lp,∞(‖ν‖) + L∞(ν), Lp,∞(‖ν‖) ∩ L∞(ν))ρ,q since L

p(‖ν‖) ⊆ Lp,∞(‖ν‖). �

Corollary 4.3. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), let 1 ≤ p < ∞, and let

ϕ̃(t) = t
1
p

ρ̃(t
1
p )
. Then(

Lpw(ν) + L∞(ν), Lpw(ν) ∩ L∞(ν)
)
ρ,q

= Λqϕ̃(‖ν‖).

If in addition ν is locally strongly additive, then(
Lp(ν) + L∞(ν), Lp(ν) ∩ L∞(ν)

)
ρ,q

= Λqϕ̃(‖ν‖).

Proof. Use the argument of the proof of Corollary 3.5 but replace Corollary 3.4
by Theorem 4.2. �

Observe that if ν is a σ-finite scalar measure, then this result includes [17,
Example 7.1].

5. Interpolation between sum and intersection of Lp-spaces

In order to obtain a similar result to Corollary 4.3 for couples (Lp0(ν), Lp1(ν))
instead of couples (Lp(ν), L∞(ν)), we need to establish some new estimates for
theK-functional of the couples (Lp0(‖ν‖), Lp1(‖ν‖)) and (Lp0,∞(‖ν‖), Lp1,∞(‖ν‖))
that replace the ones in Proposition 4.1. This can be done with the aid of Holm-
stedt’s formula (see [17, Remark 4.4]), as the next result shows.



Proposition 5.1. Let 1 ≤ p0 < p1 <∞.

(i) If f ∈ Lp0(‖ν‖) + Lp1(‖ν‖) and we denote F (u) := ( 1
u

∫ u
0
f∗(v)

p0 dv)
1
p0 ,

then

K
(
t, f ;Lp0(‖ν‖), Lp1(‖ν‖)

)
4 t

(∫ ∞

t
p0p1
p1−p0

F (u)p1 du
) 1

p1 .

(ii) If f ∈ Lp0,∞(‖ν‖) + Lp1,∞(‖ν‖), then

K
(
t, f ;Lp0,∞(‖ν‖), Lp1,∞(‖ν‖)

)
< t

p1
p1−p0 f∗(t

p0p1
p1−p0 ).

Proof. (i) Since [5, Corollary 1] is also valid for vector measures defined on a δ-ring
(see [6, Theorem 3.6]), we have Lp1(‖ν‖) = (Lp0(‖ν‖), L∞(ν)) p1−p0

p1
,p1
. Therefore,

applying [17, Remark 4.4], it follows that

K
(
t, f ;Lp0(‖ν‖), Lp1(‖ν‖)

)
≈ t

(∫ ∞

t
p1

p1−p0

(K(s, f ;Lp0(‖ν‖), L∞(ν))

s
p1−p0

p1

)p1 ds
s

) 1
p1 ,

and, using Proposition 4.1(i), we obtain

K
(
t, f ;Lp0(‖ν‖), Lp1(‖ν‖)

)
4 t

(∫ ∞

t
p1

p1−p0

((∫ sp0
0

f∗(v)
p0 dv)

1
p0

s
p1−p0

p1

)p1 ds
s

) 1
p1

≈ t
(∫ ∞

t
p0p1
p1−p0

(
∫ u
0
f∗(v)

p0 dv)
p1
p0

u
p1
p0

du
) 1

p1

= t
(∫ ∞

t
p0p1
p1−p0

(1
u

∫ u

0

f∗(v)
p0 dv

) p1
p0 du

) 1
p1

= t
(∫ ∞

t
p0p1
p1−p0

F (u)p1 du
) 1

p1 .

(ii) We also have Lp1,∞(‖ν‖) = (Lp0,∞(‖ν‖), L∞(ν)) p1−p0
p1

,∞ by [5, Corollary 1].

Thus, applying again [17, Remark 4.4], we deduce that

K
(
t, f ;Lp0,∞(‖ν‖), Lp1,∞(‖ν‖)

)
≈ t sup

s≥t
p1

p1−p0

K(s, f ;Lp0,∞(‖ν‖), L∞(ν))

s
p1−p0

p1

< t sup

s≥t
p1

p1−p0

sf∗(s
p0)

s
p1−p0

p1

= t sup

s≥t
p1

p1−p0

(
s

p0
p1 f∗(s

p0)
)

≥ tt
p0

p1−p0 f∗(t
p0p1
p1−p0 ) = t

p1
p1−p0 f∗(t

p0p1
p1−p0 ). �

Now, the equivalence (4.2) and Proposition 5.1 give the following result.

Theorem 5.2. Let 1 ≤ p0 < p1 ≤ ∞, ρ ∈ Q(0, 1), let 0 < q ≤ ∞, and let

ϕ̃(t) = t
1
p0

ρ̃(t
1
p0

− 1
p1 )

. It holds that

Λqϕ̃(‖ν‖) =
(
Lp0(‖ν‖) + Lp1(‖ν‖), Lp0(‖ν‖) ∩ Lp1(‖ν‖)

)
ρ,q

=
(
Lp0,∞(‖ν‖) + Lp1,∞(‖ν‖), Lp0,∞(‖ν‖) ∩ Lp1,∞(‖ν‖)

)
ρ,q
.



Proof. The case p1 = ∞ is precisely Theorem 4.2, and so we can assume that
p1 < ∞. Suppose that 0 < q < ∞ (the case q = ∞ is similar). Let us first prove
that

Λqϕ̃(‖ν‖) ⊆
(
Lp0(‖ν‖) + Lp1(‖ν‖), Lp0(‖ν‖) ∩ Lp1(‖ν‖)

)
ρ,q
.

First, note that Corollary 3.4 ensures that Λqϕ̃(‖ν‖) = (Lp0(‖ν‖), Lp1(‖ν‖))ρ̃,q
since ρ̃ ∈ Q(0, 1). Thus, given f ∈ Λqϕ̃(‖ν‖) ⊆ Lp0(‖ν‖) + Lp1(‖ν‖), from (4.2)
and Proposition 5.1 we deduce that

‖f‖ρ,q ≈
(∫ ∞

0

(K(s, f ;Lp0(‖ν‖), Lp1(‖ν‖))
ρ̃(s)

)q ds
s

) 1
q

4
(∫ ∞

0

( s

ρ̃(s)

[∫ ∞

s
p0p1
p1−p0

F (u)p1 du
] 1

p1

)q ds
s

) 1
q

4
(∫ ∞

0

( t
p1−p0
p0p1

ρ̃(t
p1−p0
p0p1 )

)q[∫ ∞

t

F (u)p1 du
] q

p1 dt

t

) 1
q

=
(∫ ∞

0

(
ϕ(t)

)q[∫ ∞

t

F (u)p1 du
] q

p1 dt

t

) 1
q
,

where ϕ(t) := t
p1−p0
p0p1

ρ̃(t
p1−p0
p0p1 )

.

Note that ϕ ∈ Q(0, p1−p0
p0p1

) since ρ ∈ Q(0, 1) (see [17, Lemma 1.1]). There-

fore, applying [17, Lemma 3.2(b)] (with ψ(t) = t
1
p1 and h(t) = F (t), which is

nonincreasing), it follows that

‖f‖ρ,q '
(∫ ∞

0

(
ϕ(t)

)q[∫ ∞

t

(
u

1
p1F (u)

)p1 du
u

] q
p1 dt

t

) 1
q

4
(∫ ∞

0

(
ϕ(t)t

1
p1F (t)

)q dt
t

) 1
q
=

(∫ ∞

0

(
ϕ̃(t)F (t)

)q dt
t

) 1
q

=
(∫ ∞

0

( ϕ̃(t)
t

1
p0

)q(∫ t

0

f∗(v)
p0 dv

) q
p0 dt

t

) 1
q
.

Observe that ϕ̃(t)

t
1
p0

∈ Q(−, 0), and so applying [17, Lemma 3.2(a)] (now with

ψ(t) = t
1
p0 and h(t) = f∗(t)), it follows that

‖f‖ρ,q 4
(∫ ∞

0

( ϕ̃(t)
t

1
p0

)q(∫ t

0

(
v

1
p0 f∗(v)

)p0 dv
v

) q
p0 dt

t

) 1
q

'
(∫ ∞

0

(
ϕ̃(t)f∗(t)

)q dt
t

) 1
q
= ‖f‖Λq

ϕ̃
(‖ν‖).

Now, we will check that(
Lp0,∞(‖ν‖) + Lp1,∞(‖ν‖), Lp0,∞(‖ν‖) ∩ Lp1,∞(‖ν‖)

)
ρ,q

⊆ Λqϕ̃(‖ν‖).



Let f ∈ (Lp0,∞(‖ν‖) + Lp1,∞(‖ν‖), Lp0,∞(‖ν‖) ∩ Lp1∞(‖ν‖))ρ,q. By Proposi-
tion 5.1(ii) and (4.2) we obtain

‖f‖Λq
ϕ̃
(‖ν‖) =

(∫ ∞

0

( t
1
p0

ρ̃(t
1
p0

− 1
p1 )

f∗(t)
)q dt

t

) 1
q

≈
(∫ ∞

0

(s p1
p1−p0

ρ̃(s)
f∗(s

p0p1
p1−p0 )

)q ds
s

) 1
q

4
(∫ ∞

0

(K(s, f ;Lp0,∞(‖ν‖), Lp1∞(‖ν‖))
ρ̃(s)

)q ds
s

) 1
q ≈ ‖f‖ρ,q. �

Corollary 5.3. Let 0 < q ≤ ∞, let ρ ∈ Q(0, 1), let 1 ≤ p0 < p1 ≤ ∞, and let

ϕ̃(t) = t
1
p0

ρ̃(t
1
p0

− 1
p1 )

. It holds that (Lp0w (ν) + Lp1w (ν), Lp0w (ν) ∩ Lp1w (ν))ρ,q = Λqϕ̃(‖ν‖).

If in addition ν is locally strongly additive, then(
Lp0(ν) + Lp1(ν), Lp0(ν) ∩ Lp1(ν)

)
ρ,q

=
(
Lp0w (ν) + Lp1(ν), Lp0w (ν) ∩ Lp1(ν)

)
ρ,q

=
(
Lp0(ν) + Lp1w (ν), Lp0(ν) ∩ Lp1w (ν)

)
ρ,q

= Λqϕ̃(‖ν‖).

Proof. Use the argument of the proof of Corollary 3.5, but replace Corollary 3.4
by Theorem 5.2. �

Note that if ν is a vector measure on a σ-algebra, then this result recovers [5,
Corollary 4].
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p-integrable functions with respect to a vector measure, Positivity 10 (2006), no. 1, 1–16.
Zbl 1111.46018. MR2223581. DOI 10.1007/s11117-005-0016-z. 817

9. J. Gustavsson, A function parameter in connection with interpolation of Banach spaces,
Math. Scand. 42 (1978), no. 2, 289–305. Zbl 0389.46024. MR0512275. 819

10. J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), no. 1,
33–59. Zbl 0353.46019. MR0438102. 819

11. S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 4 (1981), no. 1,
50–73. Zbl 0492.46059. MR0638294. DOI 10.1016/0022-1236(81)90004-5. 819

12. L. Maligranda, Interpolation between sum and intersection of Banach spaces, J. Approx.
Theory 47 (1986), no. 1, 42–53. Zbl 0636.46063. MR0843454. DOI 10.1016/
0021-9045(86)90045-6. 816

13. L. Maligranda, The K-functional for p-convexifications, Positivity 17 (2013), no. 3, 707–710.
Zbl 1283.46023. MR3090688. DOI 10.1007/s11117-012-0200-x. 822

14. C. Merucci, Interpolation réele avec fonction paramètre: réitération et applications aux
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Mat. Pura Apli., Conselho Nacional de Pesquisas, Rio de Janeiro, 1968. Zbl 0162.44502.
MR0243340. 819

17. L. E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986), no. 2,
199–222. Zbl 0619.46064. MR0884656. 816, 818, 819, 820, 821, 823, 824, 825

18. V. D. Stepanov, Weighted Hardy’s Inequality for Nonincreasing Functions, Trans. Amer.
Math. Soc. 338 (1993), no. 1, 173–186. Zbl 0786.26015. MR1097171. DOI 10.2307/2154450.
819
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