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Abstract

We present a multidimensional generalization of the GRAS

method (nD-GRAS) for the estimation of multiple matrices

in an integrated framework. The potential applications of

this method in regional and multi-regional input–output

analyses based on national/regional accounts frameworks

are many. We provide two real applications, a 3D-GRAS

that estimates a use table at basic prices jointly with valua-

tion matrices for Denmark; and a 4D-GRAS for estimating

intercountry input–output tables with OECD data. We

show that higher dimensional GRAS methods provide more

consistent and accurate estimates than those with lower

number of dimensions. We provide the analytical closed-

form solution and the RAS-like algorithm for an easy

operationalization.
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1 | INTRODUCTION

Multiple variations of biproportional techniques have been applied to the field of input–output analysis since

Leontief's (1941) pioneering work, in which he used a biproportional technique to identify sources of inter-temporal

change in the cells of a series of input–output tables (Lahr & de Mesnard, 2004). This also includes –broadly

speaking– the RAS-family methods (Bacharach, 1965, 1970) and their extensions. A recent summary that provides a

good overview and a large compilation of these methods can be found in Chapter 18 of the UN Handbook on supply,

use and input–output tables with extensions and applications (United Nations, 2018).

Among these methods, the generalized RAS (GRAS, hereafter) is a biproportional adjustment method commonly

used among input–output practitioners for matrix balancing. It can deal with positive and negative elements

(Günlük-Senesen & Bates, 1988; Junius & Oosterhaven, 2003). The literature also provides several refinements of

this method such as the following:

• Improving the target function in order to avoid biases (Huang et al., 2008; Lemelin, 2009; Lenzen et al., 2007)

• Dealing with row and column totals with positive and negative elements, and a non-preserving sign method

(Lenzen, Moran, et al., 2014; Temurshoev et al., 2013)

• Incorporating partial information and allowing more flexibility to find a compromise solution with conflicting con-

straints (Lenzen et al., 2006, 2009; Paelinck & Waelbroeck, 1963).

Typically, the standard GRAS method deals with two dimensions, such as the row and column totals of a national

input–output table (IOT, hereafter). In this paper, we generalize this bi-dimensional set-up into a multidimensional

set-up. This new multidimensional GRAS method (nD-GRAS, hereafter) will allow us to include new sets of restric-

tions across every dimension.

The idea for this method stems from the fact that often in practical situations rather than simply imposing

constraints summing all the elements of a matrix row-wise or column-wise (as in standard GRAS), it is necessary to

rearrange a matrix representing multiregional information into arrays of a larger dimension imposing constraints on

all the dimensions of the array. For instance, in multiregional frameworks, where national IOTs are split using infor-

mation on bilateral exports and imports, it may be that the corresponding national use tables of imports might serve

as constraints to the balancing of a multiregional IOT. Another practical situation that requires more than two dimen-

sions is the estimation of use tables at basic prices and valuation matrices, that is, trade and transport margins tables

(TTM), taxes less subsidies on products tables (TLS) to make them consistent with the use tables at purchasers´

prices. We can estimate each of those tables independently with a GRAS method, but the result of summing TTM,

TLS and the use table at basic prices would be equal to the initial use table at purchasers´ prices only by chance.

The main contribution of this paper is the derivation of an analytical closed-form solution to the GRAS method

in a multidimensional framework with an arbitrary number of dimensions and the algorithm to handle these problems

in an accessible way. The bi-dimensional case is the standard GRAS method (2D-GRAS according to our

terminology). As it will be described in the next section, the problems addressed by the nD-GRAS method can also

be embedded and solved within the KRAS framework; nonetheless, our approach can easily be made operational in a

RAS-like algorithm, among other differences.

In this paper, we also show two practical applications of a 3D-GRAS and a 4D-GRAS methods that can be easily

implemented:

1. 3D-GRAS; the construction of use tables at basic prices, trade and transport margins tables and taxes less subsi-

dies on products tables from a use table at purchasers´ prices for the case of Denmark and data from 2015; and

2. 4D-GRAS; an inter-country IOT (ICIOT) such as the ones published by the OECD (oe.cd/icio) provides information

about commodities used by intermediate and final users by country of origin and country of destination, which

actually reflect four dimensions: commodities, users, country of origin and country of destination. We will show
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how the 4D-GRAS method can be used to project ICIO tables from 2014 to 2015. The so-called Extended Supply

and Use1 tables can also be seen as examples of more than four dimensions, as in a real n-dimensional case.

Although information might not be complete for all constraints in each dimension, this should not prevent to develop

the theoretical aspects of higher dimensional nD-GRAS methods such as the 4D-GRAS showed in this paper.

Actually, Leontief and Strout (1963) developed the theoretical framework of multiregional input–output tables

already in the 1960s, when there were very scarce data to populate them, if any.

Finally yet importantly, another contribution of this paper is to show that projections based on a higher number

of dimensions, apart from the global coherence of the estimations, lead to better performance and greater accuracy

than independent projections based on a lower number of dimensions. For instance, in general, the 3D slices

resulting from the projections using a 4D-GRAS method yield a better fit than the results that we could achieve using

a 3D-GRAS applied independently to each of the 3D slices of the 4D array. We will also see that this statement

holds for the 3D-GRAS method and the 2D matrices projections.

This paper is organized as follows. The next section frames the theoretical background of our work within the

latest related literature. Section 3 introduces how several important applications can be embedded in our

multidimensional approach. Section 4 contains all the theory about the nD-GRAS, and the set-up and solution of the

optimization algorithm. Section 5 explores some conditions regarding feasibility issues and convergence. Section 6

provide two examples for the 3D-GRAS and 4D-GRAS methods. Finally, a concluding section provides a summary of

the main findings and theoretical contributions.

2 | LITERATURE REVIEW

The RAS method and other related biproportional techniques fall under the category of what is known in other fields

as iterative proportional fitting procedures (IPFP). In a bi-dimensional context, Deming and Stephan (1940) used similar

methods for the estimation of contingency tables.2 We can find other early applications of these methods in the litera-

ture by Sheleikhovskii (Bregman, 1967) and Kruithof (Lahr & de Mesnard, 2004). Generalization for three-dimensional

contingency tables was done by Deming (1943),3 and for larger multidimensional contingency tables by Darroch (1962)

and Ireland and Kullback (1968). A good summary of these techniques, their implementation and basic literature refer-

ences can be found in the documentation of the R-package “mipfp” developed by Barthelemy et al. (2018).

We can also find other examples in the recent literature concerning the multidimensional generalization of the

RAS-family methods. Tilanus (1976) first introduced this approach in an algorithmic way, generalizing

the biproportional algorithm of RAS to four dimensions. Oosterhaven et al. (1986) introduced a method for estimat-

ing an interregional input–output system in a bi-dimensional RAS set-up where the regional cells must add up to a

national figure. The approach followed by Oosterhaven et al. (1986) is similar to the multiregional GRAS (MR-GRAS)

method developed by Temursho, Oosterhaven, and Cardenete (2020). Both methods constitute a bi-dimensional

set-up where the additional national constraint provides a sort of third dimension. In the case of the MR-GRAS, this

method includes an additional set of constraints (different from the typical row-wise and column-wise sum

constraints) in a multiregional framework using the same bi-dimensional objective function as the standard GRAS

method. In the MR-GRAS method, the third set of linear restrictions operates across any non-overlapping subsets of

elements in the multiregional IOT that must add up to a given total. As Temursho, Oosterhaven, and

Cardenete (2020) show, this approach can be adapted for updating inter-national/regional or global SUTs, where the

third dimension constraint is introduced for the interregional blocks add up to a given figure. The MR-GRAS

approach has been extensively used for the creation of a baseline scenario called PIRAMID4 for the 2018 Global

Energy and Climate Outlook (Rey Los Santos et al., 2018; Temursho, Cardenete, et al., 2020) in the projection of

national IOTs in a multiregional context for future years, ensuring the consistency of the projections with

National Accounts.
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In principle, the approaches of Oosterhaven et al. (1986) and Temursho, Oosterhaven, and Cardenete (2020) are

not a real three-dimensional approach because the authors use a bi-dimensional set-up with constraints over these

two dimensions, hence, the third dimension is not taken into account as such. Nonetheless, by introducing this addi-

tional set of restrictions, the methods of Oosterhaven et al. (1986) and Temursho, Oosterhaven, and

Cardenete (2020) produce a three-dimensional solution.

The 3D-GRAS can be solved in terms of Temursho, Oosterhaven and Cardenete's approach, since it is possi-

ble to formulate a three-dimensional array as a standard matrix, thus making these two approaches correspon-

dent. However, as Temursho, Oosterhaven, and Cardenete (2020) rightly mention, the nD-GRAS method is more

general, accounting for additional sets of non-overlapping restrictions that are included to account for other

dimensions. Indeed, the nD-GRAS method is more general and so we describe it in this paper in a geometrical

and intuitive way. We also show a solution algorithm that makes the efficient implementation of this method

straightforward, regardless the number of dimensions and without requiring the use of aggregation matrices.

The nD-GRAS method was developed within the Eurostat's FIGARO5 project (Remond-Tiedrez &

Rueda-Cantuche, 2019) and it is being profusely used in the construction of the European inter-country supply,

use and input–output tables (SUIOTs).

Other examples of RAS-like algorithm approaches can be found in Gilchrist and St. Louis (1999, 2004) and

Lenzen et al. (2006). The TRAS algorithm introduced in the papers of Gilchrist and St. Louis sets up a sort of

three-dimensional RAS that accounts for additional aggregation constraints apart from row-wise and column-wise

sums. The “cRAS” algorithm proposed by Lenzen et al. (2006) generalizes the bi-dimensional RAS algorithm to

account for additional aggregation constraints. In all these papers, as in Tilanus (1976), only the resolution algorithm

is presented as a practical way of obtaining the estimated matrix that meets all the desired constraints without math-

ematical proof. Another three-dimensional approach where valuation matrices, basic and purchasers prices inputs

are jointly estimated is in Dalgaard and Gysting (2004). In our opinion, the algorithm proposed by these authors does

not fall into the category of multidimensional algorithms, as there is not a multidimensional constraint, such that

valuation matrices and basic prices table must add up cell-wise to the purchasers' prices table. Instead, the balancing

of the GDP on the output side and the demand side respecting the outputs provided by the supply table is the target

of this algorithm. The basic prices and valuation matrices are derived individually using a sort of proportional adjust-

ment and a RAS-like algorithm for balancing, and the purchasers' prices table is the sum of all of them. The algorithm

continues until the desired balance is achieved.

Holý and Šafr (2020) introduced a multidimensional RAS method (DRAS) that reformulates the bi-dimensional

RAS problem in a purely multidimensional set-up that deals with only non-negative arrays. In Holý and Šafr (2020),

the method was introduced only in an algorithmic way, similar to Tilanus (1976). Holý and Šafr (2020) prove that this

algorithm is the solution of the cross-entropy optimization model in a multidimensional generalization. The DRAS is

a particular case of the nD-GRAS when no negative elements exist in the initial matrix. They apply the DRAS in a

three-dimensional set-up for the estimation of regional, quarterly and domestic/imported input–output (industry-

by-industry) tables of the Czech Republic. Their results show that the addition of a third dimension, apart from

ensuring the consistency of national totals among the different layers (either quarterly disaggregation, regional

disaggregation or domestic/imported split) allows more accuracy than the standard estimates in terms of the overall

input–output structure. The application of the multidimensional RAS method to Isard's interregional input–output

model also shows better results than the standard RAS method.

Another decisive development in the field of input–output projections is the continuation of methods developed

from the KRAS method introduced by Lenzen et al. (2009). In the KRAS method, the vectorization of the target

matrix allows the formulation of the optimization problem in a unidimensional set-up. This vectorization allows all

potential constraints to be embedded, such as linear constraints on arbitrarily sized and shaped subsets of matrix

elements either with unity or non-unity coefficients, in a generalized formulation. The KRAS method also

incorporates other features such as the reliability of the information supplied by the constraints and the autonomous

management of potential conflicts with external data in the case of inconsistent constraints.
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The KRAS method is at the core of multiple applications that deal with multidimensional problems. In Geschke

et al. (2011) a tool with a custom data processing language (AISHA) for the construction of series contingency tables

is described. This tool performs the estimation of large dimension contingency tables. Geschke et al. (2011) describes

how a multidimensional representation can be vectorized in a one-to-one correspondence with a unidimensional

vector. This methodology is implemented in Lenzen et al. (2013) in the construction of the EORA MRIO database,

where an eight-tiered hierarchy is used. This does not actually imply an eight-dimension problem in the same way as

in an 8D-GRAS method would work. That is, even though all the elements can be embedded in an 8D-array, the

constraints do not add up over all the eight dimensions together in a array. Nonetheless, some of the constraints rep-

resent 3D or 4D aggregations in an identical way to the 3D-GRAS and 4D-GRAS problems. Additional features of

this methodology include the possibility of using different optimization functions apart from the GRAS optimization

function. Among them, we have quadratic programming or barrier and penalty functions (Geschke et al., 2011;

Lenzen et al., 2012). In addition, different solvers prepared to deal with large-scale and sparse matrices, including

parallelization techniques and Cimmino algorithms (Geschke et al., 2019; Lenzen, Geschke, et al., 2014) are available.

Besides, this framework includes the possibility of dealing with tailored and different regional and sectoral

aggregations defined as a subset of a fixed classification (Lenzen, Geschke, et al., 2014).

This methodological proposal, deriving from the KRAS method paper, goes one step further with the develop-

ment of virtual laboratories introduced in Lenzen et al. (2012, 2017), Lenzen, Geschke, et al. (2014) and Geschke and

Hadjikakou (2017). In these virtual laboratories, researchers can assemble their own MRIO versions in a collaborative

research environment using cloud-computing platforms enabling a multitude of input–output applications in carbon,

water, ecological footprints, life-cycle assessments and trend or key driver analyses.

Undoubtedly, the problems addressed by the nD-GRAS method can be embedded and solved in this KRAS

framework, as long as a feasible solution exists, using the same objective function, a set of constraints with unity

coefficients and no conflicting information. This also applies, not only to the nD-GRAS method, but also to the rest

of the multidimensional methods mentioned in this paper such as those proposed by Holý and Šafr (2020) or

Temursho, Oosterhaven, and Cardenete (2020). Even though the advantages of the extended KRAS methodology

and virtual labs proposals are obvious, other aspects also have to be taken into account.

The nD-GRAS proposal has the advantage of having a closed-form solution, at the cost of using only linear

restrictions with unity coefficients. Finding a solution also involves providing non-conflicting exogenous information

and a well-posed prior matrix. However, the mathematical derivation of the solution of the multidimensional problem

and the associated algorithm enables a large variety of problems to be solved without IT hardware. On the other

hand, the multiple features of the KRAS methodology to be handled in the process, such as reliability and clearing up

conflicting information, but also of the size of the elements involved in the estimation problem in terms of regions,

products and sectoral disaggregation can be a barrier to entry for users. Besides, the vectorization of the target

matrix usually leads to an optimization problem that requires the management of very large and very sparse matrices

that are especially demanding in terms of computing performance. In addition, the operationalization of some

aspects of these methods, such as the construction of the constraints matrix, requires the use of automation and

“data mining, processing, and reclassification procedures as much as possible” (Lenzen et al., 2012, p. 8376).

Optimization algorithms are also another way to address the kind of problems covered by the nD-GRAS. Jackson

and Murray (2004) provide in their article an excellent review bridging between iterative techniques and optimization

algorithms. The recent proliferation of RAS-based approaches already mentioned in this article, may cause an impres-

sion that these RAS extensions sacrifice simplicity for capability (KRAS is probably a good example of this). Although

the generalization of the GRAS problem to multiple dimensions may seem complex, the existence of an analytical

solution and an algorithm for its implementation makes it easy to deal with. Besides, this algorithm can be efficiently

implemented in an easy way on widely available free software programs like R. Alternatively, more complex numeri-

cal optimization techniques may require commercial software that need to be solved with high-performance solvers

embedded in this commercial software. However, it is also true that these optimization techniques can deal with a

larger potential for setting complex constraints over any number of dimensions, subsets of coefficients, try different
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weighting patterns, penalties, and more complex objective functions. In the case of infeasibilities, in iterative process

like RAS-based approaches, the reason for non-convergence of the algorithm is easier to trace compared to the com-

plex algorithms underlying optimization routines (see Temursho, Cardenete, et al., 2020). It is also possible to inspect

some qualitative aspects of the relationship between the prior and targets (as we will see in Section 5) or checking

the paths followed by the updating factors in the iterative process.

3 | MULTIDIMENSIONAL GRAS BALANCING PROBLEMS IN PRACTICE

Before introducing the multidimensional GRAS method, we illustrate in Figure 1 how we can frame several practical

situations into this methodology. Going from the simpler to the more general, we start with some 3D-GRAS

examples.

A multiregional framework is a fertile ground for multiple 3D-GRAS applications. Let us assume that we have a

matrix of a multiregional input–output framework. In this matrix, row elements (products or industries) are usually

arranged by countries/regions of the multiregional framework. The same also applies column-wise.

For instance, if we think of a matrix representing bilateral trade for multiple regions. (i.e. the domestic part is

voided), rows will denote exports of products by destination partner/user, and columns, imports of products by

country of origin.

Figure 1 shows a matrix that schematically represents, either a standard multiregional use framework, or a bilat-

eral international trade matrix (in such case with the elements of the main diagonal block—shaded light grey—set to

zero). If we concentrate our attention on, say, trading partner (region) k (shaded in Figure 1), we see a description of

region k's imported products by region of origin. In fact element aijr represents, for region k, the imports of product i

by user j coming from region r (the main diagonal block equal to zero implies that for every destination region k,

aijr ¼0 for r¼ k,8i, j).
In this context, the column block of region k, represented in Figure 1 by elements aijr, could be embedded in a

3D array, as it is portrayed in the upper right-hand side of Figure 1. If we aggregate by region of origin (i.e., we aggre-

gate
P

raijr ¼ aij • ,8i, j) the result is a typical import use matrix of a national input–output framework, as described in

Figure 1. The dark grey elements of Figure 1 depict graphically that a11 • ¼Pk
r¼1

a11r .

F IGURE 1 Multicountry framework and multidimensional relationships
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Many practical situations in multiregional frameworks fall into this representation. For instance, balancing a mul-

tiregional framework where the totals of products and users by region are known (i.e., a typical biproportional

balancing set-up). If an additional set of constraints is added (e.g., implying that the sum of the same elements by

region add up to a known total), then this becomes a 3D generalization of a biproportional balancing. In addition, we

can estimate a set of regional input–output tables where regional target vectors are known, adding all the regional

tables up to a national one. We can solve these problems straightforwardly with the 3D-GRAS method.

This is also the situation when estimating a framework consisting of a use table at basic prices jointly with their

valuation matrices. As we can see in Figure 2, the use table at basic prices, the trade and transport margin matrix and

the taxes less subsidies matrix set up a 3D system with the use table at purchasers' prices being the 3D target.

We may also think that the third dimension accounts for the territorial dimension of the problem, and therefore,

the other two dimensions are products and industries.6

We can also consider time as a third dimension. In this situation, for instance, the aggregated table would be an

annual table, and the third dimension would account for a temporal disaggregation (e.g., quarterly). The same applies

for the breakdown of total coefficients into domestic and imported figures (see Holý & Šafr, 2020).

When performing this problem, one can interpret that we are performing three bi-dimensional GRAS

optimizations simultaneously: one for every layer of the system of matrices. Nonetheless, these bi-dimensional GRAS

problems are not accounted for independently; on the contrary, the third dimension constraint—cell-wise sum of

basic prices matrix plus valuation matrices adding up to the desired purchasers' prices values—ensures a global

approach connecting all the problems into an integrated single problem that performs all the balancing

simultaneously. A practical application of this approach is illustrated in Section 6.

It will always be possible to project multidimensional arrays in a bi-dimensional setup (see Figure 1, the whole

multicountry frameworks constitutes a bi-dimensional representation of a 4D contingency table). However, as the

number of dimensions increase, it becomes more complex to define a set of aggregator matrices to meet all

constraints across all dimensions. The inclusion of new dimension implies a new different set of independent multi-

pliers (i.e., one cell can only be used once to meet a constraint for one specific dimension and it cannot be used again

to meet others). The geometrical intuition makes easier the implementation of this feature and so we describe it in

this paper.

Finally, we can also find an example of application of the 4D-GRAS technique in the estimation of a global multi-

regional input–output framework. First, it is very important to note that, as already mentioned, even though we have

expressed a multiregional framework in a bi-dimensional matrix, this must not hide the fact that it is a 4D array, since

every element has to be described by four sub-indexes. Hence, the multiregional framework should be expressed as

A¼ ½aijkl� where sub-index i represents the origin dimension, j represents the destination dimension, k represents the

product dimension, and l represents the user dimension.

F IGURE 2 3D array and bi-dimensional margins
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Our target now is the estimation of the full 4D array in one go. For this problem, it is necessary to have a prior

of the 4D array, and the set of 3D array margins (i.e., sums across each of the dimensions of the 4D array). In formal

language, for a 4D array, A¼ ½aijkl�, four 3D arrays constitute its margins:

A1 ¼ aijk •
� �¼X

l

aijkl8i, j,k,

A2 ¼ aij • l

� �¼X
k

aijkl8i, j, l,

A3 ¼ ai • kl½ � ¼
X
j

aijkl8i,k, l,

A4 ¼ a • jkl

� �¼X
i

aijkl8j,k, l:

The 3D array A1 is an extension of a balanced view of trade including the domestic use of products, regardless of

the user dimension. This matrix can be readily available in a multiregional context. Also, the A4 array is the use table

with total values (domestic plus exported) for every destination country. Arrays A2 and A3 are less likely to be found

in practice, but they all fall beyond the range of pieces to be estimated in the compilation process of a multiregional

framework and at least some partial information may be available in some Statistical Offices for some countries. As

long as they are available, the 4D balancing can be used to estimate the global 4D array. We will illustrate this

approach in Section 6 with an example of estimation for the OECD ICIO tables.

It is important to note the difference between a 4D projection and the estimation of 4D array using 3D projec-

tions. The bi-dimensional table represented in Figure 1 is essentially a 4D array. Conditioning on a column block such

as destination region k, it is a 3D array, that is, a 3D slice of the full 4D array, as represented in Figure 1.

Hence, it is possible to split the 4D array into a set of independent 3D arrays for every destination region l. As

long as the bi-dimensional margins of these 3D slices are known, we could perform independent 3D-GRAS methods

for each destination region l (i.e., selecting different slices every time). At the end, we will have an estimation of the

full 4D array. However, the result is not necessarily consistent with all of the 3D margins A1, A2, A3 and A4. It is

exactly the same situation that takes place in a 3D array. Recalling our previous example for the use basic prices and

valuation matrices example described in Figure 2, if all the marginal 2D vectors of these matrices are known, it is pos-

sible to perform a 2D-GRAS method to estimate each of these bi-dimensional slices of the 3D array independently.

However, this does not imply that the result is consistent with the use table at purchasers' prices matrix.

Hence, the global integrated estimation in a higher dimension adds consistency to all the elements in the system

and, as we will see, this has a positive impact on the quality of the estimations.

Another advantage of the nD-GRAS method is that it does not require having a full knowledge of the constraint

values, although we have assumed in this paper that they were all known across all dimensions. If some

constraint values are missing, the nD-GRAS method skips them in a natural way. For instance, this would be similar

to implement a standard bi-dimensional GRAS where some of the columns and/or row totals are unknown. The

solution algorithm can be executed leaving such row and/or column vector totals free.

4 | GENERALIZING THE GRAS PROBLEM TO MULTIPLE DIMENSIONS
(ND-GRAS)

In this section, we present the n-dimension generalization of the GRAS technique. For the sake of simplicity, and

making easy to understand this problem from a mathematical point of view, we initially expose the method for a tri-

dimensional array (3D-GRAS), and we will further generalize it for larger dimensions. As in a standard GRAS setup,

the 3D-GRAS problem consists of three elements: the data (prior and constraints), the problem to be solved and the

model that sets up the problem in a mathematical way.

1606 VALDERAS-JARAMILLO AND RUEDA-CANTUCHE



As usual, a prior tridimensional array A¼ ½aijk� is necessary, where i¼1,…,m; j¼1,…,n and k¼1,…,s. If we take

any slice of the 3D array A along, say, the third dimension ðAkÞ is a bidimensional matrix. We will need two vectors

as constraints for every slice, uk and vk , that can be easily arranged into two bidimensional matrices, u and v. A third

matrix t, that constitutes the constraints in the third dimension (the regional aggregated matrix) is required.

Our goal is to find a new array X¼ ½xijk� that deviates least from the given array A that satisfies:7

Xn
j¼1

xijk ¼ uik8i,k,

Xm
i¼1

xijk ¼ vjk8j,k,

Xs
k¼1

xijk ¼wij8i, j:

For that purpose, we will find updating factors θijk �ℝþ which allows us to build X¼ ½xijk � meeting the constraints

described above. In other words:

θijk ¼
xijk
aijk

if aijk ≠0

1 if aijk ¼0

8<
: :

The objective function is a tridimensional version of the improved objective function of Huang et al. (2008),

based on the Kullback–Leibler cross-entropy function (Zhou et al., 2010). This objective function is preferred to the

simpler version used by Lenzen et al. (2007) since it is non-negative and it can also be considered a generalization of

the normalized squared differences method of Friedlander (1961) or Lecomber (1975).8 Hence, assuming that

xijk ¼ θijk �aijk our objective function is:

θijk ¼ argmin
X
i, j,k

aijk
�� �� θijk lnθijk�1

� �þ1
� � ð1Þ

s.t.

Xn
j¼1

θijk �aijk ¼ uik8i,k,

Xm
i¼1

θijk �aijk ¼ vjk8j,k,

Xs
k¼1

θijk �aijk ¼wij8i, j:

The related Lagrange function of this problem is:

L θ,λ,τ,ηð Þ¼
X
i, j,k

aijk
�� �� θijk lnθijk�1

� �þ1
� �þX

i,k

λik uik �
Xn
j¼1

θijk �aijk
 !

þ
X
j,k

τik vjk�
Xm
i¼1

θijk �aijk
 !

þ
X
j,k

ηik wij�
Xs
k¼1

θijk �aijk
 !

:

ð2Þ

The optimized θi jk consists of the multiplication of three updating factors, one for each dimension.
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θijk ¼
eλik �eτjk �eηij if aijk > 0

0 if aijk ¼0

e�λik �e�τjk �e�ηij if aijk <0

8><
>: :

Calling rik ¼ eλik , sjk ¼ eτjk and tij ¼ eηij the target matrix is:

xijk ¼

aijk � rik � sjk � tij if aijk >0

0 if aijk ¼0
aijk

rik � sjk � tij if aijk < 0

8>>>>><
>>>>>:

:

Following an analogous procedure to a standard bidimensional GRAS—see Temurshoev et al. (2013) or Lenzen

et al. (2007)—the expressions for the updating factors are:

rik ¼
uikþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uik2þ4 �Pik s,tð Þ �Nik s,tð Þ

p
2 �Pik s,tð Þ if Pik s,tð Þ>0

�Nik s,tð Þ
uik

if Pik s,tð Þ¼0

8>>><
>>>:

: ð3Þ

sjk ¼
vjk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjk2þ4 �Pjk r,tð Þ �Njk r,tð Þp

2 �Pjk r,tð Þ if Pjk r,tð Þ>0
�Njk r,tð Þ

vjk
if Pjk r,tð Þ¼0

8>>><
>>>:

: ð4Þ

tij ¼
wijþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wij

2þ4 �Pij r,sð Þ �Nij r,sð Þp
2 �Pij r,sð Þ if Pij r,sð Þ>0

�Nij r,sð Þ
wij

if Pij r,sð Þ¼0

8>>><
>>>:

: ð5Þ

with

Pik s,tð Þ¼
X

j
pijk � sjk � tij,Nik s,tð Þ¼

X
j

nijk
sjk � tij ,Pjk r,tð Þ¼

X
i
pijk � rik � tij,

Njk r,tð Þ¼
X

i

nijk
rik � tij ,Pij r,sð Þ¼

X
k
pijk � rik � sjk and Nij r,sð Þ¼

X
k

nijk
rik � sjk ,

ð6Þ

where pijk ¼
aijk if aijk >0

0 otherwise

�
and nijk ¼

�aijk if aijk < 0

0 otherwise

�
.which can be solved by an iterative process in the following

way.

• Step 0. Assume that all the factors are initially equal to one at beginning

rik 0ð Þ¼ sjk 0ð Þ¼ tij 0ð Þ¼1 8i, j,k:

Iteration 1:
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• Step 1. Use Equation 3 to calculate rikð1Þ8i,k, based in sjkð0Þ and tijð0Þ.
• Step 2. Move to Equation 4 to calculate sjkð1Þ8j,k, based in rikð1Þ and tijð0Þ,
• Step 3. Move to Equation 5 to calculate tijð0Þ8i, j, based in rikð1Þ and sjkð1Þ.

This algorithm continues sequentially, initiating a new iteration that repeats steps 1 to 3 for every iteration. This

is represented in the flow diagram of Figure 3, being d the iteration number, for d≥1:

The iterations will continue until the algorithm converges in terms of a desired metrics. For instance, a demand-

ing metrics could be the one that concerns the maximum absolute error of the difference between the targets and

the totals of the updated matrix:

max
i, j,k

Xm
i¼1

xijk dð Þ�vjk
�� ��,Xn

j¼1

xijk dð Þ�uik
�� ��,Xs

k¼1

xijk dð Þ�wij

�� ��" #
< ε,

withxijk dð Þ¼

aijk � rik dð Þ � sjk dð Þ � tij dð Þ if aijk >0

0 if aijk ¼0
aijk

rik dð Þ � sjk dð Þ � tij dð Þ if aijk < 0

8>>>>><
>>>>>:

:

As long as the error is larger than a desired threshold ε>0, the process will continue starting a new iteration.

The more demanding a metric or the threshold is, the higher the number of iterations and the longer the time

required for the algorithm to converge. Other standard metrics consists of introducing a bound to the maximum

absolute relative error:

max
i, j,k

Xm
i¼1

xijk dð Þ�vjk
�� ��

vjk
�� �� ,

Xn
j¼1

xijk dð Þ�uik
�� ��

uikj j ,
Xs
k¼1

xijk dð Þ�wij

�� ��
wij

�� ��
" #

< ε:

In another common metrics used in Lenzen et al. (2007) or Temurshoev and Timmer (2011), the algorithm stops

when the variation of factors is below a desired threshold:

max
ij ,k

rik dð Þ� rik d�1ð Þj j, sjk dð Þ� sjk d�1ð Þ�� ��, tij dð Þ� tij d�1ð Þ�� ��� �
< ε: ð7Þ

This solution of the 3D-GRAS method generalizes the concept of biproportion (see De Mesnard, 1994) to tridi-

mensional proportion, but in a standard setup like the standard GRAS with positive and negative figures. This is

F IGURE 3 Algorithmic flow to compute updating factor in a 3D-GRAS
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described in Figure 4, where element a125 (assumed to be positive in this example) is updated by a factor, θ125 con-

sisting of the multiplication of three factors r1,5 � s2,5 � t1,2.
The 3D-GRAS method can be easily generalized to higher dimensions if necessary, as well as the solution algo-

rithm, and the result would consist of a multidimensional proportion (see de Mesnard, 2020). For instance, if we

wanted to add a fourth dimension, our prior would be a 4D array and we would need to know the totals for the con-

strains in the four dimensions (i.e., 3D arrays). There would be a set of four factors, one for every dimension: r,s,t—in

an analogous way to the 3D version—and a fourth factor, say h, for the fourth dimension. The updated value would

be:

xijkl ¼

aijkl � rikl � sjkl � tijl �hijk if aijkl >0

0 if aijkl ¼0
aijkl

rikl � sjkl � tijl �hijk if aijkl <0

8>>>>><
>>>>>:

,

where the factors r,s,t would have expressions analogous to (3), (4) and (5), redefining the terms P and N in (6) as

accounting for the fourth dimension where every element aijkl is multiplicated by the rest of factors involved. This is

illustrated in Equations 8 and 9 where the expression of the new factor h is provided:

hijk ¼
bijkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bijk

2þ4 �Pijk r,s,tð Þ �Nijk r,s,tð Þ
q

2 �Pijk r,s,tð Þ if Pijk r,s,tð Þ>0
�Nijk r,s,tð Þ

bijk
if Pijk r,s,tð Þ¼0

8>>>><
>>>>:

, ð8Þ

being bijk the generic constraining element in the fourth dimension, and

F IGURE 4 Factors in a 3D-GRAS set-up
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Pijk r,s,tð Þ¼
X

l
pijkl � rikl � sjkl � tijl ,Nijk r,s,tð Þ¼

X
l

nijkl
rikl � sjkl � tijl , ð9Þ

where pijkl ¼
aijkl if aijkl >0

0 otherwise

�
and nijkl ¼

�aijkl if aijkl <0

0 otherwise

�
.

The algorithm for convergence is depicted in the flow diagram represented in Figure 5 that represents the itera-

tive procedure to find a solution till the tolerance margin is achieved.

The solution algorithm can be implemented very efficiently in R, since it is very easy to operationalize. We pro-

vide the R scripts for the 3D-GRAS and 4D-GRAS methods upon request. They can be easily generalized for any

dimension using the same sequence of updating factors for each dimension at once in each step.

5 | SOME FURTHER CONSIDERATIONS ON FEASIBILITY AND
CONVERGENCE

The convergence of the nD-GRAS method is guaranteed as long as the optimization problem is well defined and a

solution exists. As such, this is the case because the target function in (1) is a sum of strictly convex functions and

hence, strictly convex. All the constraints are linear functions, and hence convex even though not strictly convex.

The Lagrangian function in (2) is also a (strictly) convex functions since it is a sum of strictly convex and convex

functions. Hence, our algorithm will converge to this solution if it exists. Besides, if a solution exists, given the char-

acteristics of the optimization function and the constraints, according to Chiang (1984), this solution is unique.9

One of the main advantages of using analytical solutions and simple iterative algorithms is the possibility of

controlling for problem resolution and therefore, fixing potential infeasibilities. As a result, there are some basic nec-

essary conditions concerning feasibility that are important to highlight. These are presented as follows.

First, it is important to note that the constraints by dimension must add up to the same number regardless

dimensions; otherwise, the problem would be infeasible. Bacharach (1970) proved10 this necessary condition for

bi-dimensional non-negative matrices. This necessary condition of Bacharach remains valid in the multidimensional

generalization, since no solution would exist otherwise.

Second, the number of null elements in the prior is another important issue regarding convergence since they

existence of zeros reduce the degrees of freedom of the system to find a solution. However, if zeroes happen to split

the array into two independent sub-arrays, then the first constraint identified by Bacharach (1970)11 can be applied

independently for each sub-array. Bacharach (1970)12 also provided for non-negative bi-dimensional matrices,

F IGURE 5 Algorithmic flow to compute updating factors in the 4D-GRAS
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necessary and sufficient conditions for convergence when zeros in the prior exist. Again, this proof can be general-

ized for a non-negative multidimensional array. Very sparse matrices are prone to present more convergence prob-

lems if targets are not well defined.

Third, the existence of negative elements modifies the necessary conditions given by Bacharach (1970), giving

the problem a sort of additional flexibility. This way, problems that were initially infeasible for non-negative arrays

become feasible if negative numbers appear. As far as we know, we have not seen theorems for the convergence of

general matrices with positive and negative elements.

On the contrary, at the same time, the existence of negatives leave space to new potential problems concerning

the existence of a solution to the optimization problem and, consequently, the convergence of the algorithm. These

problems are usually linked to sign shifts: either, sign shifts in totals, or sign shifts in individual elements between the

prior and the targets.

A qualitative exploration of the prior matrix and targets is a good practice to detect potential sources of infeasi-

bilities such as null vectors with non-zero targets or negative (resp. positive) vectors with positive (resp. negative)

target. In the first situation, when all the elements of a vector13 are zero in the prior and the sum target a value dif-

ferent to zero, the infeasibility arises since the nD-GRAS is a multiplicative and sign-preserving method, and zero ele-

ments in the prior will remain zero after the update. In the second case, we need to use a non-sign preserving

alternative like the one described in Lenzen et al. (2014).

It is also important to check vectors that will be set to zero after the first iteration. This is the case when a target

is zero and all the elements are either null and positive, or null and negative. In these situations all the elements in

this vector will be set to zero after the first iteration, modifying the qualitative structure of the array in other trans-

versal vectors that may lead to additional infeasibilities as those described in the previous paragraph.

To our knowledge, beyond the above-mentioned remarks, for general matrices that contain positive and nega-

tive elements, there are no references in the literature addressing the feasibility, existence and uniqueness of a solu-

tion of this optimization problem.

Another interesting subject is checking the amount of information required in terms of number of elements in

the constraints (i.e., without taking into account the prior), in order to perform an optimization problem of this kind

and some of its consequences.

In a bi-dimensional problem, if the matrix has m1 rows and m2 columns, m1�m2 elements have to be estimated

while only m1þm2 additional pieces of information are required. For a 3D problem, the 3D array consists of

m1�m2�m3 elements, and our pieces of information are the three target matrices, with m1�m2, m1�m3, m2�m3

elements each.

In the generalized n-dimensional problem, the multidimensional array to be estimated has
Qn
i¼1

mi elements and we

need n arrays of dimension n�1 of aditional information. This set of target arrays accrue for
Pn
i¼1

Qn
j¼1

j≠ i

mj

0
BBBB@

1
CCCCA elements in

total. Note that this number of elements equals the number of vectors inside the array in our nD-GRAS problem, and

the number of factors to be estimated, and this is directly connected to the numbers of operations involved and the

required time in computing a solution using the algorithm.

We can also compute the ratio of information needed for a complete nD-GRAS, as the number of factors over

the number of elements to be estimated, that is,

Pn
i¼1

Qn
j¼1

j≠ i

mj

0
BBBB@

1
CCCCA

Qn
i¼1

mi

¼Pn
i¼1

1
mi
:

If all the dimensions had the same number of elements, that is, mi ¼m8i , the ratio of available information sim-

plifies to n
m, namely, the dimension of the problem over the number of elements in every dimension. The sparsity of
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the matrix also affects this ratio, since the number of null elements reduces the degrees of freedom, i.e. the number

of coefficients to be estimated. In this case, the ratio would be

Pn
i¼1

Qn
j¼1

j≠ i

mj

0
BBBB@

1
CCCCA

�zþ
Qn
i¼1

mi

where z is the number of null elements in

the prior array.

This ratio can be connected to feasibility issues. For instance, if it is equal to one (as it would be the easiest case

of a 2 � 2 matrix) our problem is initially determined and it could be solved directly as a system of linear equations,

as long as the targets are not ill-posed leading to an inconsistent problem. If the ratio were higher than one, we

would have an overdetermined problem that could also be infeasible if targets are ill-posed. The closer to one this

ratio, implies that our problem is more constrained, either because the sparsity of the matrix is very high or because

the number of dimension is potentially high for the number of elements across all the dimensions. These situations

are more prone to generate potential infeasibilities because of incompatibilities between the prior and targets.

6 | PRACTICAL APPLICATIONS OF 3D-GRAS AND 4D-GRAS METHODS

In this section, we show two examples of the nD-GRAS method for three and four dimensions. The first one is a

3D-GRAS for the estimation of valuation matrices in Denmark. And the second one, is a 4D-GRAS example for illus-

tration purposes where we estimate the 2015 OECD Intercountry input–output (OECD-ICIO) table (oecd\icio).

6.1 | A 3D-GRAS method for the estimation of valuation matrices and use table at
basic prices in Denmark

We show here how the 3D-GRAS method is used for the estimation of the 2015 Danish “use table at basic prices”
(Ubp), ‘table of trade and transport margins” (TTM) and ”table of taxes less subsidies on products” (TLS), consistent
with 2015 ”use table at purchasers’ prices” (Upp), all of them at current prices.

Although national statistical offices typically have all the information for the calculation of trade and transport

margins and taxes less subsidies on products by product (in the format of column vectors) and therefore, output at

basic prices, they often do not have the details for splitting them into fully-fledged matrices. At most, they estimate

various distributive trade channels with specific margin rates for wholesalers and retailers (Rueda-Cantuche

et al., 2006). At this point, it is of utmost importance to make such breakdown across the users of a use table so that

there would be a full consistency between Ubp, TTM, TLS and Upp. Besides, MRIO compilers will surely require the

use of the 3D-GRAS method to produce the corresponding missing use tables at basic prices.

For Denmark, the official 2010 observed tables will be our prior. Source data for 2015 and 2010 have been

directly downloaded from the Eurostat website. Regarding the dimensions involved, we have N1 ¼65 products,

N2 ¼72 activities, 65 industries plus a split of seven final users; and N3 ¼3 layers in our three-dimensional arrays,

corresponding to Ubp, TTM and TLS tables. The 2010 Ubp, TTM and TLS tables will be our priors.

We have calculated the required targets from the real observed tables of 2015. In fact, we need the following

matrices as targets:

• Use table at purchasers' prices of 2015.

• Basic prices use totals, trade and transport margins totals and taxes less subsidies totals by product.

• Basis prices totals, trade and transport margins totals and taxes less subsidies totals by intermediate and final

users.
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This set-up is equivalent to the one described in Figure 2. Our goal is to estimate the three internal layers of the cube

for 2015 using 2010 tables as priors, which will require the calculation of ð65�72Þþð65�3Þþð3�72Þ¼5091

updating factors. The information ration of this example initially is 1
3þ 1

65þ 1
72¼36:3%, but since there are 6.347 null

elements in our prior, the ratio turns 66.2%.

An important feature of the balancing problem that we want to highlight concerns trade and transport margins

by users. Summing trade and transport margins over all the products by user is always zero by definition. The ratio-

nale behind this is that the amount of trade and transport margins included in all products has to be reallocated to

trade and transport services. The GRAS benchmarking procedure presents the following property: if a target value is

zero, the vector involved will turn zero in the iterative procedure when all the elements are only positive or negative.

However, if positive and negative elements coexist, the GRAS benchmarking algorithm transforms both positive and

negative elements respecting the zero-sum target. In other similar situations in an economic context, when a total is

to be zero, it is illogical to think that positive and negative elements adding up to that total would be compensating.

It may seem logical to require the annulation of all the elements that add up to zero. Trade and transport margins

provide a good example of a zero-sum vector where its elements, far from being turned zero, need to compensate

each other in the updating process.

The 2010 tables have been checked to detect and remove direct infeasibilities of the prior with respect to the

targets, trying to set up reliable prior structures of the vectors affected by these direct infeasibilities. Comparing

the prior with respect to the 2015 target tables, there are 34 sign shifts and 245 elements that change from zero to

non-zero, or vice versa. The modifications in the prior to remove infeasibilities have been very scarce, as we can see

in Table 1, accounting for less than 0.5% of the elements in the prior. The results after performing the 3D-GRAS

method are summarized in the following tables.

TABLE 1 Composition of 2010 prior and 2015 target matrices

# elements Usebp table TTM table TLS table Global

2010 0 835 17.8% 3110 66.5% 2423 51.8% 6368 45.4%

>0 3822 81.7% 1350 28.8% 2035 43.5% 7207 51.3%

<0 23 0.5% 220 4.7% 222 4.7% 465 3.3%

2010 modified 0 821 17.5% 3108 66.4% 2418 51.7% 6347 45.2%

>0 3842 82.1% 1360 29.1% 2044 43.7% 7246 51.6%

<0 17 0.4% 212 4.5% 218 4.7% 447 3.2%

2015 0 835 17.9% 3106 66.4% 2417 51.6% 6358 45.3%

>0 3825 81.9% 1366 29.2% 2089 44.6% 7280 51.9%

<0 10 0.2% 208 4.4% 174 3.7% 392 2.8%

TABLE 2 Error measures for 3D-GRAS and 2D-GRAS estimations

3D-GRAS estimation Independent 2D-GRAS estimations

WAPE MAPE SWAPE SMAPE WAPE MAPE SWAPE SMAPE

Full 3D hypermatrix 3.2% 52.2% 3.5% 33.1% 9.8% 34.6% 10.5% 24.0%

Basic prices layer 1.8% 4.4% 2.0% 3.9% 9.8% 38.9% 10.5% 29.3%

TTM layer 9.8% 20.4% 10.7% 17.5% 10.4% 16.6% 11.3% 14.0%

TLS layer 9.7% 131.9% 10.2% 78.0% 8.3% 48.4% 8.7% 28.5%

Upper theoretical bound - - 200% 200% - - 200% 200%
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The left part of Table 2 shows error measures for the 3D-GRAS estimation;14 first for the whole 3D array and

then, as calculated individually for each 2D layer. It is important to note that it makes no sense to match the esti-

mated values with respect to the 2015 use table at purchasers´ prices matrix, since this a constraint of the problem

and, given that our problem has converged, this total is met by construction.

In order to assess the performance of the 3D-GRAS estimation, we also conducted three independent standard

2D-GRAS projections for each of the Ubp, TTM and TLS tables. The error measures of these estimations can also be

found on the right hand side of Table 2.

A global view of Table 2 shows that results of 3D-GRAS estimation are overall very good. The weighted average

percentage error (WAPE) is only 3.24%. This value increases until nearly 10% when we compare the results of the

full 3D array resulting from joining the layers of the 2D-GRAS independent estimations. Besides, we must bear in

mind that the 2D-GRAS estimates of Ubp, TTM and TLS tables do not add up to the Upp values.

The simple average of the relative errors (MAPE and SMAPE) indicates that some important relative errors in

the 3D-GRAS estimation exist, compared their 2D-GRAS counterparts. However, in general, at the same time the

WAPE and SWAPE inform us that those are concentrated in tiny and negligible values as these error measures are

lower if compared to the 2D-GRAS counterparts.15 These features indicate that the 3D-GRAS produces a better

estimate in general, but, at the same time seems to produce a larger number of high relative errors concentrated in

very tiny values. We can confirm this in Figure 616 and Table 3, where we see the error distributions for each layer

in the 3D-GRAS. In the case of Ubp table, the results of the 3D-GRAS estimations clearly improve the results of the

2D-GRAS method. We can also see in this figure that the errors distribution are largely overlapping for the TTM and

TLS tables but slightly better off the 3D-GRAS estimations. Distribution of relative errors of 3D-GRAS is more

skewed to 0 compared to the 2D-GRAS. The median error is lower and if we look at Table 3 that provides the fre-

quency distribution of relative errors, we can clearly see that the relative error distribution of 3D-GRAS estimates

are better off that those the 2D-GRAS methods.

Hence, the main features to emphasize here are threefold. First, the use of a 3D-GRAS method ensures the con-

sistency of the results with the Upp. The projections resulting from the three independent 2D-GRAS are not consis-

tent with it. Besides, the individual error measures are also generally better for the tables in the 3D-GsRAS

estimation. The only minor drawback seems to be the larger number of highest relative errors concentrated in small

coefficients of the 3D-GRAS estimates.

This behaviour will also appear in the 4D-GRAS example, as we will see. In this example, the highest relative

errors are largely concentrated in the Inventories column and TLS table in general. Inventories are characterized by a

high volatility in their values and, together with the TLS elements, concentrate most of the sign changes in cells

F IGURE 6 Element-wise absolute relative errors (%) distribution for Ubp, TTM and TLS matrices
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between 2010 and 2015. The sign preservation property of the GRAS method makes it very difficult to provide good

fits under these circumstances

All in all, the additional constraint in the 3D-GRAS problem that forces the Ubp, TTM and TLS tables to add up

to the Upp plays a central role in this better performance and greater accuracy for two main reasons in our opinion.

First, the use of these 3D constraints is a piece of additional available information in the optimization problem.

Second, this additional piece of information links all the updated tables in a single estimation process that restricts

cells variation, thus avoiding more extreme solutions and increasing the global goodness of fit.

6.2 | A 4D-GRAS method for the estimation of the ICIO table of the OECD

In this subsection, we introduce an example of application of the 4D-GRAS method to estimate the 2015

OECD-ICIO. Data and all the relevant information for the interpretation of this dataset is available at oe.cd/icio.

We have considered 65 available geographical areas (64 OECD countries plus a rest of the world area) as origin

and destination areas of the domestic production of these countries.17 The OECD-ICIO table is an industry by

industry input–output table. In order to avoid ambiguity, we will denominate as ”products” inputs coming from

different industries. Products are split into 36 categories plus an additional category for taxes less subsidies. Users

are split in 36 intermediate demand industries plus six final demand categories. Hence, Origin (65 geographical

areas), destination (65 geographical areas), product (37 products aggregation plus TLS row) and user (42 different

users) are the four dimensions considered in our illustration. The entire table consists of 6,565,650 elements.

Among them, we find 1,028,538 elements that are equal to zero (15.7% of the total), 21,976 negative elements

(0.3%) and the rest positive. For this example, the number of updating factors to be estimated is

ð65�65�37Þþð65�65�42Þþ2�ð65�37�42Þ¼535795, and the information ratio is initially
1
65þ 1

65þ 1
42þ 1

35¼8:2%. However, the number of null elements in the prior increases this ratio to 9.7%.

As we mentioned in Section 3, the four 3D arrays that work as constraints would be the result of the aggrega-

tion of the 4D table across each one of the four dimensions:

1. A1: Origin and destination of product, summed across users (balanced view of trade in goods and services) —

(ODP table); country's exports of products to trading partners for all users. For instance, Belgian exports of choc-

olate to Germany or German imports of chocolate from Belgium.

2. A2: Origin and destination by user, summed across products—(ODU table); total exports of countries to specific

users and trading partners, for instance, total Belgian exports to the German food industry or alternatively, total

imports of Belgian products by the German food industry.

3. A3: Use table by country of origin, summed across destination countries—(OPU table); country's exports of prod-

ucts to specific users worldwide. For instance, Belgian exports of nuts to the food industry worldwide or alterna-

tively, world food industry's imports of nuts from Belgium.

4. A4: Use table by importing country, summed across countries of origin— (DPU table); national use tables of

imports. For instance, Belgian food industry's total imports of nuts or alternatively, total world exports of nuts to

the Belgian food industry.

It might look like that data on A1 and A4 could be the only ones really available but in practice, trade statistics,

business statistics and specific surveys for input–output tables alike can provide data on the other two layers, too.

Indeed, business surveys or other alternative national sources can provide data, for instance, about how much the

German food industry imports from Belgium (ODU) and how much of the world imports of nuts are produced/

exported from Belgium (OPU). Moreover, the implementation of the 4D-GRAS method does not require having full

information on the corresponding 3D layers. Even if this is partial, with more degrees of freedom and less number of

constraints, a solution will also exist and converge with a better performance than for individual and separate
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estimations of the four different layers. Nevertheless, in the total absence of information on any layer, we believe

the 4D-GRAS method is still useful as it was the Leontief and Strout (1963) paper on multiregional input–output

analysis when no data of this type existed by then.

We have used a random realization of the 2015 OECD-ICIO table as a prior for the 4D-GRAS optimization prob-

lem. The elements of this random prior were calculated as v�prior ¼ v2015 � 1þ rð Þ with r�Uð�0:5,0:5Þ. We opted for

this simplification for several reasons. First, the OECD table provides a lot of detail on the bilateral transactions on a

global scale. This makes the figures in the table very uneven, ranging from an order of magnitude of 1E+06 to largely

below 1E-0818. If we opt to round figures to a reasonable threshold, the matrix becomes very sparse and the number

of potential infeasibilities grows exponentially. These facts, together with the number of interventions required to fix

the prior, led us to opt for a more transparent solution for illustration purposes.

With this random prior and the target calculated from the 2015 OECD-ICIO table, we set a convergence thresh-

old of 1E-05 in Equation 7. The maximum absolute error in the target constraints is 144.7 units and represents only

0.01% of the desired target. The maximum relative error in the target constraints is only 0.6% and represents an

absolute error of 1.8E-04 units.

In order to assess the performance of the 4D-GRAS method, we calculate the goodness of fit measures of the

estimated ICIOT using the 4D-GRAS. They are summarized in Table 4. In a similar way to our 3D-GRAS example, we

have also the errors of our 4D-GRAS estimations for each of the three-dimensional “slices” of the 4D array achieved

by independent 3D-GRAS. It is important to note that there are 209 three-dimensional “slices” in our 4D array,

arranged by:

• 65 different slices according to the Origin country dimension (DPU tables by origin);

• 65 different slices according to the Destination country dimension (OPU tables by destination);

• 37 different slices according to the Product dimension (ODU tables by product); and

• 42 different slices according to the User dimension (ODP tables by user).

Given this multiplicity, Table 4 provides averages and standard deviations for error measures for each group of

slices.

The results show similar findings to those highlighted in the 3D-GRAS methods. First, the 4D-GRAS method

achieve a satisfactory goodness of fit for the full OECD-ICIO table estimation. The WAPE and SWAPE of the full

OECD-ICIO table is around 2.5%. These results improve the goodness of fit the full OECD-ICIO table if we join the

TABLE 4 Error measures for the estimated 2015 OECD-ICIO table

4D-GRAS estimations 3D-GRAS estimations

WAPE MAPE SWAPE SMAPE WAPE MAPE SWAPE SMAPE

Full OECD_ICIOT 2015 2.54% 31.41% 2.55% 31.73% 3.32% 29.89% 3.33% 30.24%

0.2% 0.7% 0.2% 0.7%

ODP tables by

user

Average 3.36% 32.18% 3.37% 32.51% 3.71% 29.55% 3.72% 29.90%

St.Dev. 1.5% 2.5% 1.5% 2.5% 2.5% 1.4% 2.5% 1.4%

ODU tables by

product

Average 2.99% 31.41% 3.00% 31.73% 3.60% 28.88% 3.61% 29.25%

St.Dev. 2.4% 6.3% 2.4% 6.3% 2.9% 5.8% 2.9% 5.8%

OPU tables by

destination

Average 4.16% 31.41% 4.16% 31.73% 5.29% 30.55% 5.29% 30.88%

St.Dev. 1.6% 1.3% 1.6% 1.3% 1.7% 1.6% 1.7% 1.6%

DPU tables by

origin

Average 4.12% 31.41% 4.13% 31.73% 5.05% 30.58% 5.06% 30.93%

St.Dev. 1.9% 4.1% 1.9% 4.2% 2.1% 4.2% 2.1% 4.3%
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results of the independent 3D-GRAS estimations into a full OECD-ICIO estimation. In addition, the 4D-GRAS esti-

mation of the full OECD-ICIO estimation ensures that the sum over any the four dimensions matches the observed

3D projections of the OECD-ICIO.

We can also compare the goodness of fit of each of the 3D slices resulting from the 4D-GRAS estimation with

their counterparts obtained with the independent 3D-GRAS estimations. This is summarized in Table 5 grouped by a

kind of 3D projection. On average, the 4D-GRAS method results again show a higher accuracy compared to the

results of the 3D-GRAS methods. In overall, in 86% of the situations the 3D ‘slices’ estimated jointly in a 4D-GRAS

method are better off than their equivalent estimations using independent 3D-GRAS.

Again, as it happened for the 3D-GRAS method compared with respect to their lower dimension counterparts,

using a 4D-GRAS method not only ensures the coherence of the results in the fourth dimension, it also leads to over-

all better estimation than using 3D-GRAS. The 3D-GRAS only outperforms the results achieved in the 4D-GRAS in

29 situations out of 209. For ODP and DPU tables, no 3D-GRAS projection improves the ones achieved in the 4D-

GRAS. This result is more ambiguous for ODU and OPU tables but, in general, the 4D-GRAS projections generally

outperforms their equivalent 3D-GRAS counterparts.

However, in those cases where the 3D-GRAS methods outperform the 4D-GRAS results, the difference is mini-

mum as we can see in Figure 7, where we represent the absolute relative error distribution for some selected cases

of ODP and ODU. In the left-hand side, we show some of the “slices” with a better goodness of fit for 3D-GRAS

methods in ODP and ODU tables. On the right-hand side, we have the same but for 4D-GRAS methods.

TABLE 5 Assessment of 4D-GRAS projections outperforming their equivalent 3D projections

SWAPE WAPE

ODP tables (42) 22 52.4% 22 52.4%

ODU tables (37) 28 75.7% 28 75.7%

OPU tables (65) 65 100.0% 65 100.0%

DPU tables (65) 65 100.0% 65 100.0%

Total (209) 180 86.1% 180 86.1%

F IGURE 7 Absolute relative errors' distributions
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In the upper left-hand side, we see the empirical density estimations of the best 3D-GRAS performance in ODU

tables. This is the ODU table for product “41 T43.” We can see that the distribution of relative errors in the

3D-GRAS is consistently closer to the origin. Nonetheless, both distributions are very close and the differences in

errors are very small. On the upper right-hand side we have the distribution for the best 4D-GRAS option for a ODU

table, for product “49 T53” in which the situation is quite the opposite. In this case, we clearly see that errors of 4D-

GRAS are consistently smaller than for the 3D-GRAS method. The same applies for the two examples of ODP tables,

for user “09”and user “HFCE,” in the bottom part of Figure 7.

Finally, as it happened in the example of the 3D-GRAS Danish estimation, the proportion of large relative errors

in tiny and negligible elements of the OECD-ICIO table is larger in the 4D-GRAS estimation compared to the 3D-

GRAS method. This can be seen from the direct comparison of MAPE and SMAPE of the 4D-GRAS method with

respect to the 3D-GRAS in Table 4. While, WAPE and SWAPE are smaller in the 4D-GRAS estimations, on MAPE

and SMAPE is the opposite, which indicates that the 4D-GRAS produces a better estimate in general, but, seems

again to be producing a larger number of high relative errors concentrated in very tiny values. This situation is

described in Figure 8.

In Figure 8, the x-axis represents the absolute value of the element, distinguishing between positive and nega-

tive values; the y-axis represents the absolute relative error in percentage terms. Both axis are on a logarithmic scale.

In Figure 8, it is easy to see a pattern of steady decrease of relative errors as the size of the element increases; this

decline is more intense when this absolute value increases.

In general, it is natural to think that the largest values would concentrate the smallest relative errors and big

outliers are prone to occur among the coefficients with tiniest values and/or sign shifts. The multiplicative nature of

GRAS balancing techniques may seem to neutralize this effect, since the size of the coefficient in the prior does not

affect the relative change of the coefficient that will depend on the size of the updating factors and the value of that

coefficient in the target matrix. Nonetheless, we have appreciated in these two examples introduced in this

section that larger dimensional GRAS generate a larger proportion of high relative errors concentrated in coefficients

with the tiniest values.

To sum up, the conclusions drawn from these two example of the application of the multidimensional GRAS are

parallel and congruent:

• If possible, it is a better option to use a higher dimensional approach since it ensures the global consistency

because of the joint estimation in a larger dimension.

F IGURE 8 Distribution of relative errors by size of the element
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• Besides, in overall, it also improves the estimation accuracy of the whole problem and of the sub-pieces, if com-

pared with estimations done with lower dimension methods.

• Higher dimension methods, despite ensuring a better global goodness of fit, seem to generate a large proportion

of higher relative errors mostly concentrated in tiny and negligible values.

7 | CONCLUSIONS

This paper generalizes the GRAS method in a multidimensional framework and provides its analytical closed-form19

solution. We have also described an intuitive iterative algorithm that provides a handy resource-efficient

operationalization of the multidimensional GRAS method, and some conditions to trace, detect and solve infeasibil-

ities and convergence problems.

The multidimensional GRAS methods can be useful for practical applications in, broadly speaking, input–output

analyses, especially when dealing with multiregional frameworks. The 3D-GRAS method can be used directly for esti-

mating annual use tables at basic prices from an existing use table at purchasers´ prices, including the estimations of

the corresponding valuation matrices (i.e., trade and transport margins and taxes less subsidies on products tables).

In multiregional frameworks with information about exports and imports by trading partner, the 3D-GRAS method

can also be used to split the use table of imports of a specific importer by country of origin. The 4D-GRAS method is

also useful for the projection of complete multiregional IOTs, with products, users, countries of origin and countries

of destination being the corresponding four dimensions. We have presented two examples that illustrate two appli-

cations for Denmark (3D-GRAS) and for the OECD inter-country IO Tables (4D-GRAS). Both applications are based

on real problems being faced by MRIO compilers one way or another, although the required data to implement them

might sometimes be difficult to find. In any case, although in the absence of information, the theoretical method is

still valid as it was, for instance, the multiregional input–output theoretical model published by Leontief and

Strout (1963) when such MRIO tables did not exist then.

We have also shown that dealing with a higher number of dimensions, apart from ensuring consistency, usually

leads to a better performance than using independent estimations of the corresponding slices, with a lower number

of dimensions. It is important to raise awareness about some features that are relevant for empirical applications.

First, it is necessary to check for existing infeasibilities between the prior and the target constraints. In the event

that those infeasibilities are not a priori corrected, our problem will remain infeasible and the algorithm will not pro-

vide a solution. These infeasibilities stem from the sign-preservation feature of GRAS methods and, in particular,

concerns the sparsity of the prior, sign shifts and lack of match of zero and non-zero elements between priors and

targets. Second, the higher dimension methods generate a larger amount of relative errors especially in tiny and

negligible elements of our prior, and in elements with sign shifts between priors and targets. The KRAS method is

an existing alternative for dealing automatically with infeasibilities and with many other features. However, as long

as a feasible solution exists—or when we have expert information that can help us to remove infeasibilities in a

manual way—our approach is easy to operationalize without the need for significant resource intensive IT

infrastructures.

In sum, the multidimensional GRAS methods developed in this paper are successful for balancing multiregional

IOTs with available information about the margin totals of each dimension and for balancing a full supply and use

framework from purchasers´ prices to basic prices, including their valuation matrices. Moreover, they are also suit-

able to allow for further extensions up to as many dimensions as required, for example, multiregional IOTs split

according to the domestic and foreign ownership of multinational enterprises (in extended supply and use Tables).

That is, this multidimensional balancing situations can be addressed and solved with a 5D-GRAS algorithm where the

fifth dimension would be that the sum of the two columns depicting domestic-owned firms' and foreign-owned

firms' input structures for every industry must match the total aggregated input structure of that industry as shown

in the original ICIO. However, this is clearly beyond the scope of this paper.
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ENDNOTES
1 https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.20/2015/July/Item_5_UNECE_NADIM.pdf
2 Contingency tables are by definition non-negative tables since they are representations of frequency distributions or dis-

crete joint probability distributions of several variables.
3 Deming (1943) used least squares objective functions instead of a maximum entropy objective function.
4 PIRAMID stands for Platform to Integrate, Reconcile and Align Model-based Input–Output Data.
5 FIGARO stands for Full International and Global Accounts for Research in input–Output analysis.
6 However, this approach is not enough for disaggregating national tables into full subnational tables. If we use this

approach, the subnational tables coefficients will add up to the national one. However, domestic values of these sub-

national tables estimated with a 3D-GRAS would also be including the interregional trade coming from other regions and

it would not be a real “domestic” coefficient. We would need to generalize this problem into a method that falls between

a 3D-GRAS and a 4D-GRAS. This issue is explicitly mentioned and treated in Valderas-Jaramillo, et al. (2019).
7 Our generalization of the GRAS method for higher dimensions considers that constraints are arrays in a lower dimension

to the problem posed. However, this is not the only way to consider the constraints. De Mesnard (2020) poses a 3D-RAS

problem where restrictions are the axes of the cube, instead of the faces. The solution is also a tri-dimensional method.

This approach can also be extended to a 3D-GRAS with no difficulties. For a 4D array, it is also possible to pose the con-

straints in different ways to the 3D arrays. However, these approaches go beyond the scope of this paper and are not

considered here.
8 See Huang et al. (2008), Section 4 for more details.
9 Chiang (1984 p. 342, Theorems I-III).

10 Bacharach (1970, p. 47. Theorem I).
11 This idea stems directly from the concept of ‘connectedness’ described in Bacharach (1970), p. 44).
12 Bacharach (1970, p. 51, Theorem III).
13 When we talk about a vector inside a multidimensional array, we mean a vector composed of all the elements taken

across one of the dimensions in the multidimensional array. For instance, in a bi-dimensional matrix we can find row and

column vectors. In a tridimensional array apart from row and column vectors in any of the 2D slices, there are also vec-

tors ranging across the third dimension.
14 These are standard error measures in this context. For a detailed explanation of all these measures and their interpreta-

tion see Valderas-Jaramillo, Rueda-Cantuche, et al. (2019)
15 In fact, five elements in the TLS table and one observation in the TTM table have a large influence in the MAPE as they

account for a relative error over 10,000% concentrated in negligible values.
16 Due to the logarithmic scale used for the representation of the error—necessary to represent the highest errors—zero

errors are not present in the Boxplot diagram. The complete frequency distribution of errors can be found in Table 6.
17 The OECD-ICIO table splits Mexico and China into two sub-tables accounting for export processing activities and non-

export processing activities. For the sake of simplicity, we have decided to aggregate these areas and work with the

tables for each country as whole without distinctions.
18 Values in the 2015 OECD-ICIO range between a maximum 2.347.855 and a minimum of �9.019.8 millions of US$. The

lowest reasonable threshold from an economic point of view would be 1E-08 in absolute value (cents of dollars), as data

are expressed in current million US$. However, there are around 40.000 figures falling below this threshold in the 2015

OECD-ICIO.
19 For the 2D-GRAS and the 3D-GRAS methods, the main related references in the literature were also included for the

sake of completeness.

1622 VALDERAS-JARAMILLO AND RUEDA-CANTUCHE

https://orcid.org/0000-0003-2582-6477
https://orcid.org/0000-0003-2582-6477
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.20/2015/July/Item_5_UNECE_NADIM.pdf


REFERENCES

Bacharach, M. (1965). Estimating nonnegative matrices from marginal data. International Economic Review, 6(3), 294–310.
Bacharach, M. (1970). Biproportional matrices and input–output change. Cambridge University Press.

Barthelemy, J., Suese, T., & Namazi-Rad, M. (2018). mipfp: Multidimensional iterative proportional fitting and alternative

models. R-package version 3.2.1. URL: https://cran.r-project.org/web/packages/mipfp/mipfp.pdf

Bregman, L. M. (1967). Proof of convergence of Sheleikhovskii's method for a problem with transportation constraints. USSR

Computational Mathematics and Mathematical Physics, 1, 191–204.
Chiang, A. C. (1984). Fundamentals methods of mathematical economics (3rd ed.). McGraw-Hill.

Dalgaard, E., & Gysting, C. (2004). An algorithm for balancing commodity-flow systems. Economic Systems Research, 16(2),

169–190. https://doi.org/10.1080/0953531042000219295
Darroch, J. N. (1962). Interactions in multi-factor contingency tables. Journal of the Royal Statistical Society, Series B, 24(1),

251–263.
de Mesnard, L. (1994). “Unicity of biproportion”, SIAM Journal on Matrix. Analysis and Applications, 15(2), 490–495.
de Mesnard L. (2020). Holy-Safr ‘s multidimensional RAS method is not unique. DOI: https://doi.org/10.13140/RG.2.2.

14584.88323. Available on researchGate.

Deming, W. E. (1943). Statistical adjustment of data. Wiley.

Deming, W. E., & Stephan, F. F. (1940). On a least squares adjustment of a sampled frequency table when the expected mar-

ginal totals are known. The Annals of Mathematical Statistics, 11(4), 427–444. https://doi.org/10.1214/aoms/

1177731829

Friedlander, D. (1961). A technique for estimating a contingency table, given the marginal total and some supplementary

data. Journal of the Royal Statistical Society, Series a, 124, 412–420.
Geschke, A., & Hadjikakou, M. (2017). Virtual laboratories and MRIO analysis—an introduction. Economic Systems Research,

29(2), 143–157.
Geschke, A., Lenzen, M., Kanemoto, K., & Moran, D. (2011). AISHA: A tool to construct a series of contingency tables, 19th

International input–output Conference, Alexandria, United States: International input–output Association (IIOA).

Geschke, A., Ugon, J., Lenzen, M., Kanemoto, K., & Moran, D. D. (2019). Balancing and reconciling large multi-regional

input–output databases using parallel optimisation and high-performance computing. Journal of Economic Structures,

Pan-Pacific Association of input–output Studies (PAPAIOS), 8(1), 1–24.
Gilchrist, D., & St. Louis, L. (1999). Completing input–output tables using partial information, with an application to Canadian

data. Economic Systems Research, 11(2), 185–194.
Gilchrist, D., & St. Louis, L. (2004). An algorithm for the consistent inclusion of partial information in the revision of input–

output tables. Economic Systems Research, 16(2), 149–156.
Günlük-Senesen, G., & Bates, J. M. (1988). Some experiments with methods of adjusting unbalanced data matrices. Journal

of the Royal Statistical Society, Series a, 151(3), 473–490.
Holý and Šafr. (2020). Disaggregating input–output tables by the Mmultidimensional RAS method, arXiv:1704.07814

[stat. AP].

Huang, W., Kobayashi, S., & Tanji, H. (2008). Updating an input–output matrix with sign-preservation: Some improved

objective functions and their solutions. Economic Systems Research, 20, 111–123.
Ireland, C. T., & Kullback, S. (1968). Contingency tables with given marginals. Biometrika, 55(1), 179–188.
Jackson, R., & Murray, A. (2004). Alternative input–output matrix updating formulations. Economic Systems Research, 16(2),

135–148.
Junius, T., & Oosterhaven, J. (2003). The solution of updating or regionalizing a matrix with both positive and negatives

entries. Economic Systems Research, 15, 87–96.
Lahr, M., & de Mesnard, L. (2004). Biproportional techniques in input–output analysis: Table updating and structural analysis.

Economic Systems Research, 16(2), 115–134.
Lecomber, J. R. C. (1975). A critique of methods of adjusting updating and projecting matrices. In R. I. G. Allen & W. F.

Gossling (Eds.), Estimating and Projecting input–output Coefficients (pp. 43–56). Input–Output Publishing Company.

Lemelin, A. (2009). A GRAS variant solving for minimum information loss. Economic Systems Research, 21, 399–408.
Lenzen, M., Gallego, B., & Wood, R. (2006). A flexible approach to matrix balancing under partial information. Journal of

Applied Iput–Output Analysis, 11 & 12, 1–24.
Lenzen, M., Gallego, B., & Wood, R. (2009). Matrix balancing under conflicting information. Economic Systems Research,

21(1), 23–44.
Lenzen, M., Geschke, A., Abd Rahman, M. D., Xiao, Y., Fry, J., Reyes, J., Dietzenbacher, E., Inomata, S., Kanemoto, K., Los, B.,

Moran, D., Schulte in den Bäumen, H., Tukker, A., Walmsley, T., Wiedmann, T., Wood, R., & Yamano, N. (2017). The

Global MRIO Lab – charting the world economy. Economic Systems Research, 29(2), 158–186. https://doi.org/10.1080/
09535314.2017.1301887

VALDERAS-JARAMILLO AND RUEDA-CANTUCHE 1623

https://cran.r-project.org/web/packages/mipfp/mipfp.pdf
https://doi.org/10.1080/0953531042000219295
https://doi.org/10.13140/RG.2.2.14584.88323
https://doi.org/10.13140/RG.2.2.14584.88323
https://doi.org/10.1214/aoms/1177731829
https://doi.org/10.1214/aoms/1177731829
https://arxiv.org/abs/1704.07814v2
https://doi.org/10.1080/09535314.2017.1301887
https://doi.org/10.1080/09535314.2017.1301887


Lenzen, M., Geschke, A., Wiedmann, T., Lane, J., Anderson, N., Baynes, T., Boland, J., Daniels, P., Dey, C., Fry, J.,

Hadjikakou, M., Kenway, S., Malik, A., Moran, D., Murray, J., Nettleton, S., Poruschi, L., Reynolds, C., Rowley, H., …
West, J. (2014). Compiling and using input–output frameworks through collaborative virtual laboratories. Science of the

Total Environment, 485–486, 241–251.
Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mapping the structure of the world economy. Environmental

Science and Technology, 46(15), 8374–8381.
Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building EORA: A global multi-region input–output database at

high country and sector resolution. Economic Systems Research, 25(1), 20–49.
Lenzen, M., Moran, D. D., Geschke, A., & Kanemoto, K. (2014). A non-sign-preserving RAS variant. Economic Systems

Research, 26(2), 197–208. https://doi.org/10.1080/09535314.2014.897933
Lenzen, M., Wood, R., & Gallego, B. (2007). Some comments on the GRAS method. Economic Systems Research, 19(4), 461–465.
Leontief, W. (1941). The structure of the American economy 1919–1929. Cambridge University Press.

Leontief, W., & Strout, A. (1963). Multiregional input–output Analysis. In T. Barna (Ed.), Structural interdependence and eco-

nomic development. Palgrave Macmillan.

Oosterhaven, J., Piek, G., & Stelder, D. (1986). Theory and practice of updating regional versus interregional interindustry

tables. Papers of the Regional Science Association, 59, 57–72.
Paelinck, J., & Waelbroeck, J. (1963). Etude empirique sur l'évolution de coefficients ‘input–output’: essai d'application de la

procédure RAS de Cambridge au tableau industriel belge. Economie Appliquee, 16, 81–111.
Remond-Tiedrez, I., & Rueda-Cantuche, J. M. (Eds.) (2019). EU inter-country supply, use and input–output tables — Full interna-

tional and global accounts for research in input–output analysis (FIGARO). European Union, Publications Office of the

European Union in Luxembourg.

Rey Los Santos, L., Wojtowicz, K., Tamba, M., Vandyck, T., Weitzel, M., Saveyn, B., & Temursho, U. (2018). Global macroeco-

nomic balances for mid-century climate analyses. Supplementary material to Global Energy and Climate Outlook 2018.

JRC Technical Reports. European Commission.

Rueda-Cantuche, J. M., Titos, A., & Asensio, M. (2006). A use-side trade margins matrix for the Andalusian economy. Journal

of Applied Input–Output Analysis, 11–12, 121–135.
Temursho, U., Cardenete, M. A., Wojtowicz, K., Rey Los Santos, L., Weitzel, M., Vandyck, T., & Saveyn, B. (2020). Projecting

input–output tables for model baselines”. JRC Technical Report. Publications Office of the European Union, Luxembourg.

Temursho, U., Oosterhaven, J., & Cardenete, M. A. (2020). A multi-regional generalized RAS updating technique. Spatial Eco-

nomic Analysis, 1–16. https://doi.org/10.1080/17421772.2020.1825782
Temurshoev, U., Miller, R. E., & Bouwmeester, M. C. (2013). A note on the GRAS method. Economic Systems Research, 25,

342–361.
Temurshoev, U., & Timmer, M. P. (2011). Joint estimation of supply and use tables. Papers in Regional Science, 90(4), 863–883.
Tilanus, C. B. (1976). The multiproportional RAS algorithm. In C. B. Tilanus (Ed.), Quantitative methods in budgeting.

(pp. 164–165). Leiden: Martinus Nijhoff Social Sciences Division.

United Nations. (2018). Handbook on supply, use and input-output tables with extensions and applications. The United Nations,

Series F, No. 74, Rev. 1. New York: United Nations Publication. https://unstats.un.org/unsd/nationalaccount/docs/

SUT_IOT_HB_Final_Cover.pdf

Valderas-Jaramillo, J. M., Amores, A. F., Oliva Mora, J. R., & Boniquito Fernández, S. (2019). Provincializaci�on de tablas de

origen y destino SUT-RAS tridimensional (3DSUT-RAS): Desarrollo y aplicaci�on al caso andaluz. VIII Jornadas de Análisis

input–output, organized by the Hispanoamerican Society of input–output Analysis (SHAIO), doi: https://doi.org/10.

13140/RG.2.2.25012.37763. Available on researchGate.

Valderas-Jaramillo, J. M., Rueda-Cantuche, J. M., Olmedo, E., & Beutel, J. (2019). Projecting supply and use tables: new vari-

ants and fair comparisons. Economic Systems Research, 31, 423–444. https://doi.org/10.1080/09535314.2018.1545221
Zhou, P., Fan, L. W., & Zhou, D. Q. (2010). Data aggregation in constructing composite indicators: A perspective of informa-

tion loss. Expert Systems with Applications, 37(1), 360–365. https://doi.org/10.1016/j.eswa.2009.05.039

How to cite this article: Valderas-Jaramillo, J. M., & Rueda-Cantuche, J. M. (2021). The multidimensional

nD-GRAS method: Applications for the projection of multiregional input–output frameworks and valuation

matrices. Papers in Regional Science, 100(6), 1599–1624. https://doi.org/10.1111/pirs.12625

1624 VALDERAS-JARAMILLO AND RUEDA-CANTUCHE

https://doi.org/10.1080/09535314.2014.897933
https://doi.org/10.1080/17421772.2020.1825782
https://unstats.un.org/unsd/nationalaccount/docs/SUT_IOT_HB_Final_Cover.pdf
https://unstats.un.org/unsd/nationalaccount/docs/SUT_IOT_HB_Final_Cover.pdf
https://doi.org/10.13140/RG.2.2.25012.37763
https://doi.org/10.13140/RG.2.2.25012.37763
https://doi.org/10.1080/09535314.2018.1545221
https://doi.org/10.1016/j.eswa.2009.05.039
https://doi.org/10.1111/pirs.12625


Resumen. En este artículo se presenta una generalización multidimensional del método GRAS (nD-GRAS) para la

estimación de matrices múltiples en un marco integrado. Las aplicaciones potenciales de este método en los análisis

input-output regionales y multirregionales basados en los marcos de cuentas nacionales o regionales son numerosas. Se

incluyen dos aplicaciones reales, un 3D-GRAS que estima una tabla de uso a precios básicos conjuntamente con matri-

ces de valoración para Dinamarca; y un 4D-GRAS para estimar tablas input-output entre países con datos de la OCDE.

Se demuestra que los métodos GRAS de mayores dimensiones proporcionan estimaciones más consistentes y precisas

que aquellos con un menor número de dimensiones. Para una fácil operacionalización, se proporciona la solución

analítica en forma cerrada y el algoritmo tipo RAS.

抄録: 本稿では、統合フレームワークにおける複数の行列の推定のためのGRAS法(n D-GRAS)の多次元一般化モデ
ルを示す。国別・地域別会計のフレームワークに基づく地域別・複数地域別の産業連関分析にこの手法を適用でき
る可能性のある方法は多くある。デンマークの評価行列と一緒に基本価格で使用表を推定する3 D-GRASまた、
OECDのデータを用いて各国間の産業連関表を推定するための4 D-GRAS、以上の実際の二つの応用事例を示す。
高次元のGRAS法は、低次元のGRAS法よりも、より一貫性があり正確な推定値が得られることが示された。また、
解析的閉形式解と簡単な操作のためのRAS様アルゴリズムが得られた。
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