Weighted Hardy inequalities, real interpolation methods and vector measures

Ricardo del Campo • Antonio Fernández • Antonio Manzano • Fernando Mayoral • Francisco Naranjo

Abstract

We analyze the relationship of the Ariño-Muckenhoupt weights with the K spaces obtained when the real interpolation method defined by a parameter function is applied to the pairs $\left(L^{1}, L^{\infty}\right)$ and $\left(L^{1, \infty}, L^{\infty}\right)$ of function spaces associated to the semivariation of a vector measure.

Keywords Weighted Hardy inequality • Real interpolation • Vector measure . Semivariation • Lorentz space

Mathematics Subject Classification Primary 46B70 - 46G10; Secondary 46E30

[^0]
1 Introduction

If the classical Lions-Peetre real interpolation method $(\cdot, \cdot)_{\theta, q}$ is applied to the pair $\left(L^{1}, L^{\infty}\right)$ of Lebesgue spaces with respect to a positive scalar measure the result is a Lorentz space $L^{p, q}$. Namely, we have

$$
\begin{equation*}
\left(L^{1}, L^{\infty}\right)_{\theta, q}=L^{p, q}, \quad 0<\theta<1 \leq q \leq \infty, p=\frac{1}{1-\theta}, \tag{1}
\end{equation*}
$$

as we can see in [3, Theorem 5.2.1]. The same Lorentz space $L^{p, q}$ is obtained by replacing the Banach space L^{1} by the quasi-Banach weak- L^{1} space $L^{1, \infty}$ (see [3, Theorem 5.3.1]). Then $\left(X, L^{\infty}\right)_{\theta, q}=L^{p, q}$ for every quasi-Banach space X such that $L^{1} \subseteq X \subseteq L^{1, \infty}$. A more general formula than (1) holds when the real interpolation method $(\cdot, \cdot)_{\rho, q}$ with a parameter function ρ is considered. The construction of this interpolation method consists in replacing the function t^{θ} associated to the real method by a more general function ρ that satisfies certain suitable conditions so that the main theorems of interpolation theory to be still valid. This is the case, for instance, when ρ is in the class $Q(0,1)$ introduced by Persson in [23]. It holds that

$$
\begin{equation*}
\left(L^{1}, L^{\infty}\right)_{\rho, q}=\left(L^{1, \infty}, L^{\infty}\right)_{\rho, q}=\Lambda_{\frac{t}{\rho(t)}}^{q}, 1 \leq q \leq \infty, \rho \in Q(0,1) \tag{2}
\end{equation*}
$$

(see [23, Proposition 6.2] and also [18, Lemma 3.1]). For the precise definition of the Lorentz space Λ_{v}^{q} see Sect. 4.

The equality (1) for spaces of scalar integrable functions with respect to a vector measure has been considered in [14] by several of the present authors. On the other hand, in [5] we extend the results given in [14] establishing interpolation formulae for different pairs of spaces associated to a vector measure and a parameter function ρ that belongs to the class $Q(0,1)$, providing in particular the corresponding version of (2) for the case of vector measures. We would like to mention that (1) has also been considered in [10] for spaces associated to a capacity. In this paper we continue the research started in [14] and [5], obtaining results that complement those ones. Now we are interested in analyzing the relationship between some conditions on the pair (ρ, q) and the K-spaces obtained by applying $(\cdot, \cdot)_{\rho, q, K}$ to the pairs $\left(L^{1}(\|m\|), L^{\infty}(m)\right)$ and $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)$, when ρ is merely a positive measurable function defined on $(0, \infty)$ (see definitions in Sects. 2 and 5). We note that for a such kind of functions the equivalence theorem may fail, unlike it happens when $\rho \in Q(0,1)$. Our approach is based on the relationship of the pair (ρ, q) with a weighted Hardy type inequality for non-increasing functions and, therefore, with the Ariño-Muckenhoupt weights (see [1] and [24]).

The paper is organized as follows. In Sect. 2 we consider the basic terminology and results on vector measures and related spaces of integrable functions. In Sect. 3 we estimate the K functionals of the interpolation pairs $\left(L^{1}(\|m\|), L^{\infty}(m)\right)$ and $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)$. These estimates will be used later in Sect. 5. Section 4 is devoted to define and study the Lorentz type spaces with respect to the semivariation of a vector measure. Namely, we establish some conditions that ensure the quasinormality of this kind of spaces. In Sect. 5 we consider the main results of the paper concerning interpolation with a parameter function and AriñoMuckenhoupt weights. Finally, in Sect. 6 we relate our results with those obtained previously by Gustavsson [18] and Persson [23], for a scalar measure and parameter functions belonging to special classes.

For non explicit results and terminology on interpolation see [3] and [4]. For quasi-Banach spaces and quasi-Banach lattices of measurable functions we refer to [19] and [22]. Detailed
information about Lorentz type spaces defined over positive scalar measures can be found in [8].

2 Vector measures and related spaces

Let $m: \Sigma \rightarrow Y$ be a countably additive vector measure defined on a σ-algebra Σ of subsets of a nonempty set Ω with values in a Banach space Y. Denote by Y^{\prime} the dual space of Y and by $B(Y)$ its unit ball. The semivariation of m is the finite set function $\|m\|: A \in \Sigma \rightarrow$ $\|m\|(A) \in[0, \infty)$ given by

$$
\|m\|(A):=\sup \left\{\left|\left\langle m, y^{\prime}\right\rangle\right|(A): y^{\prime} \in B\left(Y^{\prime}\right)\right\} .
$$

Here $\left|\left\langle m, y^{\prime}\right\rangle\right|$ denotes the variation measure of the scalar measure $\left\langle m, y^{\prime}\right\rangle$ defined by $\left\langle m, y^{\prime}\right\rangle(A):=\left\langle m(A), y^{\prime}\right\rangle$. The semivariation is a subadditive set function that may be non additive. However, every vector measure m has a Rybakov control measure (see [12, Theorem IX.1.2]), which means that there exists $y^{\prime} \in B\left(Y^{\prime}\right)$ such that m is absolutely continuous with respect to $\left|\left\langle m, y^{\prime}\right\rangle\right|$, or equivalently, $\|m\|$ and $\left|\left\langle m, y^{\prime}\right\rangle\right|$ have the same null sets (see [12, Theorem I.2.1]).

Let $L^{0}(m)$ be the space of all scalar measurable functions defined on Ω. As usual, two functions $f, g \in L^{0}(m)$ will be identified if they are equal m-a.e., that is, if $\{w \in \Omega: f(w) \neq g(w)\}$ is an $\|m\|$-null set. A function $f \in L^{0}(m)$ is called weakly integrable (with respect to m) if $f \in L^{1}\left(\left|\left\langle m, y^{\prime}\right\rangle\right|\right)$ for all $y^{\prime} \in Y^{\prime}$. The space $L_{w}^{1}(m)$ of all (equivalence classes of) weakly integrable functions becomes a Banach lattice when it is endowed with the natural order m-a.e., and the norm

$$
\|f\|_{L_{w}^{1}(m)}:=\sup \left\{\int_{\Omega}|f| d\left|\left\langle m, y^{\prime}\right\rangle\right|: y^{\prime} \in B\left(Y^{\prime}\right)\right\}, \quad f \in L_{w}^{1}(m) .
$$

A function $f \in L_{w}^{1}(m)$ is said to be integrable (with respect to m) if for every A in Σ there exists an element $\int_{A} f d m \in Y$ (called the integral of f over A) such that $\left\langle\int_{A} f d m, y^{\prime}\right\rangle=$ $\int_{A} f d\left\langle m, y^{\prime}\right\rangle$ for all $y^{\prime} \in Y^{\prime}$. The space $L^{1}(m)$ of all (equivalence classes of) integrable functions becomes an order continuous closed lattice ideal of $L_{w}^{1}(m)$. In general, the inclusion $L^{1}(m) \subseteq L_{w}^{1}(m)$ may be proper.

For $1<p<\infty$, we consider the spaces $L^{p}(m)\left(L_{w}^{p}(m)\right)$ of power p-integrable (weakly p-integrable) functions defined as those scalar measurable functions f defined on Ω such that $|f|^{p} \in L^{1}(m)\left(|f|^{p} \in L_{w}^{1}(m)\right)$. The space $L^{\infty}(m)$ of all (equivalence classes of) essentially bounded functions is equipped with the essential supremum norm $\|\cdot\|_{L^{\infty}(m)}$. The inclusion $L^{\infty}(m) \subseteq L^{1}(m)$ holds and $\|f\|_{L^{1}(m)} \leq\|f\|_{L^{\infty}(m)}\|m\|(\Omega)$ for all $f \in L^{\infty}(m)$. See [16] for a detailed study of Banach space properties of these spaces. On the other hand, complex and real interpolation methods have been considered for these classes of spaces in [6,7,14,17] and more recently in [5]. As a tool for describing real interpolation spaces of spaces of power integrable functions with respect to a vector measure several of the present authors introduced in [14] the Lorentz spaces with respect to the semivariation that we are going to recall briefly.

For a function $f \in L^{0}(m)$ we consider its distribution function with respect to the semivariation $\|m\|$ defined by $\|m\|_{f}(t):=\|m\|([|f|>t])$ for all $t \geq 0$. Here $[|f|>t]$ denotes the measurable set $\{\omega \in \Omega:|f(\omega)|>t\}$. The distribution function $\|m\|_{f}$ has similar properties to the distribution of a function with respect to a scalar positive measure. The decreasing
rearrangement f_{*} of the function f with respect to the semivariation $\|m\|$ is defined for all $s>0$ as

$$
\begin{equation*}
f_{*}(s):=\inf \left\{t>0:\|m\|_{f}(t) \leq s\right\} . \tag{3}
\end{equation*}
$$

Thus $f_{*}: s \in(0, \infty) \longrightarrow f_{*}(s) \in[0, \infty)$ is a non-increasing right-continuous function such that $f_{*}(s)=0$ for all $s \geq\|m\|(\Omega)$, and so, we may regard f_{*} as a function defined only on the interval ($0,\|m\|(\Omega)$).

The Lorentz spaces with respect to the semivariation are denoted by $L^{p, q}(\|m\|)$ for all $1 \leq p<\infty$ and $1 \leq q \leq \infty$, and consists of all $f \in L^{0}(m)$ for which the quantity

$$
\|f\|_{L^{p, q}(\|m\|)}:= \begin{cases}\left(\int_{0}^{\infty}\left[s^{\frac{1}{p}} f_{*}(s)\right]^{q} \frac{d s}{s}\right)^{\frac{1}{q}}, & \text { for } 1 \leq q<\infty, \\ \sup \left\{s^{\frac{1}{p}} f_{*}(s), s>0\right\}, & \text { for } q=\infty,\end{cases}
$$

is finite. This expression defines a lattice quasinorm for which $L^{p, q}(\|m\|)$ is a quasi-Banach lattice with the Fatou property. Obviously, if m is a scalar positive measure these spaces are the classical Lorentz spaces $L^{p, q}$. However, for a general vector measure m these spaces may be quite different from the classical Lorentz spaces. In particular, we do not have the equality of the Lorentz space $L^{p}(\|m\|):=L^{p, p}(\|m\|)$ with the space $L^{p}(m)$ of p-integrable functions with respect to m (see [14, Example 6]). For every $1 \leq p<\infty$ we have the continuous inclusions

$$
L^{\infty}(m) \subseteq L^{p}(\|m\|) \subseteq L^{p}(m) \subseteq L_{w}^{p}(m) \subseteq L^{p, \infty}(\|m\|) \subseteq L^{1, \infty}(\|m\|) .
$$

All these inclusions can be proper (see [14, Example 6]). The space $L^{p, q}(\|m\|)$ is normable for every $p>1$ and $1 \leq q \leq \infty$ (see [14, Corollary 14]). The space $L^{1}(\|m\|)$ is normed with $\|\cdot\|_{L^{1}(\|m\|)}$ if and only if m is a strongly subadditive measure, but we do not know if it is normable for every vector measure (see [15]).

Finally, note that every pair of spaces $L^{p}(m), L_{w}^{p}(m)$ or $L^{p, q}(\|m\|)$, is an interpolation pair since all of them are continuously embedded into $L^{0}(m)$.

3 Estimating the K-functionals

In this section we obtain some estimates that relate the distribution function and the decreasing rearrangement function (with respect to $\|m\|$) and the K-functionals of the interpolation pairs $\left(L^{1}(\|m\|), L^{\infty}(m)\right)$ and $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)$. Recall that the K-functional associated to a compatible pair (X_{0}, X_{1}) of quasi-Banach spaces is defined for $x \in X_{0}+X_{1}$ and $t>0$ by

$$
K(t, x):=K\left(t, x ; X_{0}, X_{1}\right)=\inf \left\{\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}}: x=x_{0}+x_{1}, x_{0} \in X_{1}, x_{1} \in X_{1}\right\} .
$$

Without explicit mention we shall use the following facts about the K-functional associated to these interpolation pairs:
(i) $K(t,|f|)=K(t, f)$ for f in $X_{0}+X_{1}$ and $t>0$, and
(ii) there exists $C>0$ such that for each $f \in X_{0}+X_{1}$ and $t>0$ we can obtain $A \in \Sigma$ that satisfies $\left\|f \chi_{A}\right\|_{X_{0}}+t\left\|f \chi_{\Omega \backslash A}\right\|_{X_{1}} \leq C K(t, f)$. The set $A:=\left[\left|f_{0}\right| \geq\left|f_{1}\right|\right]$ gives this inequality with $C=2$ if $f_{0} \in X_{0}$ and $f_{1} \in X_{1}$ satisfy that $f=f_{0}+f_{1}$ and $\left\|f_{0}\right\|_{X_{0}}+\left\|f_{1}\right\|_{X_{1}} \leq 2 K(t, f)$.

In what follows to estimate the K-functional $K(t, f)$ we assume without loss of generality that $f \geq 0$.

As usual, for two non-negative functions F and $G, F \preceq G$ means that there exists $c>0$ such that $F \leq c G ; F \succeq G$ means that $G \preceq F$ and $F \approx G$ means simultaneously that $F \preceq G$ and $F \succeq G$.

Proposition 1 Let f be a function in $L^{1, \infty}(\|m\|)$. Then

$$
\sup \left\{s \min \left\{t,\|m\|_{f}(s)\right\}, s>0\right\} \preceq K\left(t, f ; L^{1, \infty}(\|m\|), L^{\infty}(m)\right)
$$

for every $t>0$. In particular, $t f_{*}(t) \preceq K\left(t, f ; L^{1, \infty}(\|m\|), L^{\infty}(m)\right)$ for every $t>0$.
Proof The same proof as in [14, Proposition 8] works here because $\left\|\chi_{A}\right\|_{L^{1, \infty}(\|m\|)}=$ $\left\|\chi_{A}\right\|_{L^{1}(m)}=\|m\|(A)$ for every A in Σ.

Proposition 2 Let f be a function in $L^{1}(\|m\|)$. Then

$$
K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right)=\int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s=\int_{0}^{t} f_{*}(s) d s
$$

for every $t>0$.
Proof See [14, Lemma 3] for the second equality. For the first one, let us prove first that $K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right) \leq \int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s$. Put $s_{0}:=f_{*}(t) \geq 0$. If $s_{0}=0$, then $\|m\|_{f}(s)<t$ for every $s>0$, and consequently
$\int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s=\int_{0}^{\infty}\|m\|_{f}(s) d s=\|f\|_{L^{1}(\|m\|)} \geq K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right)$.
Now assume that $s_{0}>0$. Then

$$
\int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s=\int_{0}^{s_{0}} t d s+\int_{s_{0}}^{\infty}\|m\|_{f}(s) d s=t s_{0}+\int_{0}^{\infty}\|m\|_{f}\left(s_{0}+u\right) d u
$$

since $\|m\|_{f}(s) \geq t$ for every $s<s_{0}$, and $\|m\|_{f}(s) \leq\|m\|_{f}\left(s_{0}\right) \leq t$ for every $s \geq s_{0}$. Let us consider $B:=\left[f>s_{0}\right]$ and decompose $f=f_{0}+f_{1}$ where $f_{0}:=\left(f-s_{0}\right) \chi_{B}$ and $f_{1}:=f-f_{0}=s_{0} \chi_{B}+f \chi_{\Omega \backslash B}$. Then $\left\|f_{1}\right\|_{L^{\infty}(m)} \leq s_{0}$ and

$$
\left\|f_{0}\right\|_{L^{1}(\|m\|)}=\int_{0}^{\infty}\|m\|_{f_{0}}(u) d u \leq \int_{0}^{\infty}\|m\|_{f}\left(s_{0}+u\right) d u
$$

This gives the desired inequality

$$
K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right) \leq\left\|f_{0}\right\|_{L^{1}(\|m\|)}+t\left\|f_{1}\right\|_{L^{\infty}(m)} \leq \int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s
$$

For the reverse inequality $\int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s \leq K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right)$ let us consider an arbitrary decomposition $f=f_{0}+f_{1}$, with f_{0} in $L^{1}(\|m\|)$ and f_{1} in $L^{\infty}(m)$. Let us denote $s_{1}:=\left\|f_{1}\right\|_{L^{\infty}(m)} \geq 0$. For every $s>s_{1}$ we have $\|m\|_{f}(s) \leq\|m\|_{f_{0}}\left(s-s_{1}\right)$ since $\left[f=f_{0}+f_{1}>s\right] \subseteq\left[f_{0}>s-\left\|f_{1}\right\|_{L^{\infty}(m)}\right]$. Then

$$
\begin{aligned}
\int_{0}^{\infty} \min \left\{t,\|m\|_{f}(s)\right\} d s & \leq \int_{0}^{s_{1}} t d s+\int_{s_{1}}^{\infty}\|m\|_{f}(s) d s \\
& \leq t\left\|f_{1}\right\|_{L^{\infty}(m)}+\int_{s_{1}}^{\infty}\|m\|_{f_{0}}\left(s-s_{1}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& =t\left\|f_{1}\right\|_{L^{\infty}(m)}+\int_{0}^{\infty}\|m\|_{f_{0}}(u) d u \\
& =\left\|f_{0}\right\|_{L^{1}(\|m\|)}+t\left\|f_{1}\right\|_{L^{\infty}(m)} .
\end{aligned}
$$

Taking the infimum over all possible representations $f=f_{0}+f_{1}$ we obtain the desired inequality.

Corollary 1 Let X be a quasi-Banach space with $L^{1}(\|m\|) \subseteq X \subseteq L^{1, \infty}(\|m\|)$. Then
(a) $K\left(t, f ; X, L^{\infty}(m)\right) \succeq t f_{*}(t)$, for every $f \in X$ and $t>0$.
(b) $K\left(t, f ; X, L^{\infty}(m)\right) \preceq \int_{0}^{t} f_{*}(s) d s$, for every $f \in L^{1}(\|m\|)$ and $t>0$.

4 Lorentz type spaces associated to a vector measure

In a similar way to the scalar measure case, we introduce the Lorentz spaces associated to (the semivariation of) a vector measure m by using the decreasing rearrangement defined in (3).

Definition 1 For an index $1 \leq q \leq \infty$ and a weight v [a non-negative measurable function on $(0, \infty)$ that is not identically zero] denote by $\Lambda_{v}^{q}(\|m\|)$ the set of functions f in $L^{0}(m)$ such that

$$
\|f\|_{\Lambda_{v}^{q}(\|m\|)}:= \begin{cases}\left(\int_{0}^{\infty}\left(v(t) f_{*}(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}, & \text { for } 1 \leq q<\infty, \\ \operatorname{ess} \sup \left\{v(t) f_{*}(t), t>0\right\}, & \text { for } q=\infty,\end{cases}
$$

is finite.
For $v(t)=t^{\frac{1}{p}}$ we obtain the Lorentz spaces $L^{p, q}(\|m\|)$ previously considered, and $\|f\|_{\Lambda_{v}^{q}(\|m\|)}=\|f\|_{L^{p, q}(\|m\|)}$.

Now we are going to study the quasinormability of $\Lambda_{v}^{q}(\|m\|)$. It is obvious from the definition that $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$ is homogeneous. Then it is equivalent to a quasinorm if and only if itself is a quasinorm and, in that case, $\Lambda_{v}^{q}(\|m\|)$ will be necessarily a linear space. For a characterization of weights v for which $\Lambda_{v}^{q}(d t)$ is a linear space see [11].

Our first step is to describe $\|f\|_{\Lambda_{v}^{q}(\|m\|)}$ for a function $f \in \Lambda_{v}^{q}(\|m\|)$. In order to do that we denote by v_{q} the function defined by $v_{q}(t):=\frac{v(t)^{q}}{t}$ for a weight v and $1 \leq q<\infty$. Also we will denote by $V_{q}(t):=\int_{0}^{t} v_{q}(s) d s$, for all $t>0$. Note that a function f is in $\Lambda_{v}^{q}(\|m\|)$ if and only if its decreasing rearrangement f_{*} is in the weighted Lebesgue L^{q}-space $L^{q}\left(v_{q}(t) d t\right)$ and $\|f\|_{\Lambda_{v}^{q}(\|m\|)}=\left\|f_{*}\right\|_{L^{q}\left(v_{q}(t) d t\right)}$. Analogously f is in $\Lambda_{v}^{\infty}(\|m\|)$ if and only if f_{*} belongs to the weighted L^{∞}-space $L^{\infty}(v(t) d t)$ also with the equality $\|f\|_{\Lambda_{v}^{\infty}(\|m\|)}=\left\|f_{*}\right\|_{L^{\infty}(v(t) d t)}$.

The following lemma is the analogous of [8, Lemma 2.2.4] and [9, Theorem 2.1] for vector measures. It will be useful to characterize the quasinormability of the Lorentz type spaces.

Lemma 1 Let $1 \leq q<\infty$ and $v \geq 0$ a measurable function on $(0, \infty)$. Then

$$
\begin{equation*}
\int_{0}^{\infty} f_{*}(t)^{q} v(t) d t=\int_{0}^{\infty} q t^{q-1}\left[\int_{0}^{\|m\|_{f}(t)} v(s) d s\right] d t \tag{4}
\end{equation*}
$$

for every $f \in L^{0}(m)$. In particular, we have the following equality

$$
\|f\|_{\Lambda_{v}^{q}(\|m\|)}=\left(q \int_{0}^{\infty} t^{q-1} V_{q}\left(\|m\|_{f}(t)\right) d t\right)^{\frac{1}{q}}
$$

Proof Recall the every non-negative measurable function can be obtained as the m-a.e. pointwise limit of an increasing sequence of non-negative measurable simple functions. Thus, by applying the Monotone Convergence Theorem it is enough to obtain the desired equality (4) only for a non-negative measurable simple function. Then, let φ be a such function on Ω and write it as $\varphi:=\sum_{k=1}^{N+1} a_{k} \chi_{A_{k}}$, where $a_{1}>\cdots>a_{N}>a_{N+1}:=0$ and $\left\{A_{1}, \ldots, A_{N}, A_{N+1}\right\}$ is a measurable partition of Ω with $\|m\|\left(A_{k}\right)>0$ for $1 \leq k \leq N$. A direct computation gives that $\|m\|_{\varphi}=\sum_{j=1}^{N} \alpha_{j} \chi_{\left[a_{j+1}, a_{j}\right)}$ and $\varphi_{*}=\sum_{k=1}^{N} a_{k} \chi_{\left[\alpha_{k-1}, \alpha_{k}\right)}$, where $\alpha_{0}:=0$ and $\alpha_{j}:=\|m\|\left(\bigcup_{i=1}^{j} A_{i}\right)$, for $j=1, \ldots, N$. Then, we have the equality

$$
\begin{aligned}
\int_{0}^{\infty} q t^{q-1}\left[\int_{0}^{\|m\|_{\varphi}(t)} v(s) d s\right] d t & =\int_{0}^{a_{1}} q t^{q-1}\left[\int_{0}^{\|m\|_{\varphi}(t)} v(s) d s\right] d t \\
& =\sum_{j=1}^{N} \int_{a_{j+1}}^{a_{j}} q t^{q-1}\left[\int_{0}^{\alpha_{j}} v(s) d s\right] d t \\
& =\sum_{j=1}^{N}\left[a_{j}^{q}-a_{j+1}^{q}\right]\left[\int_{0}^{\alpha_{j}} v(s) d s\right] \\
& =\sum_{k=1}^{N} a_{k}^{q}\left[\int_{\alpha_{k-1}}^{\alpha_{k}} v(s) d s\right] \\
& =\int_{0}^{\alpha_{N}} \varphi_{*}(t)^{q} v(t) d t=\int_{0}^{\infty} \varphi_{*}(t)^{q} v(t) d t
\end{aligned}
$$

To get a result like Lemma 1 but for $q=\infty$, we introduce the function V_{∞} defined by $V_{\infty}(r):=\operatorname{ess} \sup \{v(t), 0<t \leq r\}$ for $r>0$, and $V_{\infty}(0):=0$. Note that V_{q} is a nondecreasing function for every $1 \leq q \leq \infty$, and therefore it has at most countably many discontinuities. Moreover the following property will be useful in the proof of the next result.

Lemma $2 V_{\infty}$ is a left-continuous function.
Proof Since V_{∞} is a non-decreasing function, for every $r>0$ there exists the limit $L:=$ $\lim _{\varepsilon \rightarrow 0^{+}} V_{\infty}(r-\varepsilon) \leq V_{\infty}(r)$. Then, it is enough to prove that $\{t \in(0, r): v(t)>L\}$ is a null set. But for a certain $k \in \mathbb{N}$ we have the equality

$$
\{t \in(0, r): v(t)>L\}=\bigcup_{n \geq k}\left\{t \in\left(0, r-\frac{1}{n}\right]: v(t)>L\right\}
$$

and the Lebesgue measure of each set $\left\{t \in\left(0, r-\frac{1}{n}\right]: v(t)>L\right\}$, where $n \geq k$, is zero since $V_{\infty}\left(r-\frac{1}{n}\right) \leq L$.

Lemma 3 Let f be a measurable function on Ω. Then
(a) $\|f\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)}=\|f\|_{\Lambda_{v}^{\infty}(\|m\|)}$.
(b) $\sup \left\{s V_{\infty}\left(\|m\|_{f}(s)\right), s>0\right\}=\sup \left\{V_{\infty}(t) f_{*}(t), t>0\right\}$.

Proof (a) Obviously $\|f\|_{\Lambda_{v}^{\infty}(\|m\|)} \leq\|f\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)}$ since $v \leq V_{\infty}$. Reciprocally, if f belongs to $\Lambda_{v}^{\infty}(\|m\|)$, then $V_{\infty}(t) f_{*}(t) \leq \operatorname{ess} \sup \left\{v(s) f_{*}(s), 0<s \leq t\right\} \leq\|f\|_{\Lambda_{v}^{\infty}(\|m\|)}<\infty$, for every $t>0$, and therefore $\|f\|_{\Lambda_{v}^{\infty}(\|m\|)} \geq\|f\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)}$.
(b) To obtain $s V_{\infty}\left(\|m\|_{f}(s)\right) \leq \sup \left\{V_{\infty}(t) f_{*}(t), t>0\right\}$ for every $s>0$ it is enough to consider the points $s>0$ such that $\|m\|_{f}(s)>0$. In this case, for every positive $\varepsilon<\|m\|_{f}(s)$ we have $0<\|m\|_{f}(s)-\varepsilon<\|m\|_{f}(s)$ and the definition of f_{*} gives us $f_{*}\left(\|m\|_{f}(s)-\varepsilon\right) \geq s$. Then
$\sup \left\{V_{\infty}(t) f_{*}(t), t>0\right\} \geq V_{\infty}\left(\|m\|_{f}(s)-\varepsilon\right) f_{*}\left(\|m\|_{f}(s)-\varepsilon\right) \geq V_{\infty}\left(\|m\|_{f}(s)-\varepsilon\right) s$.
Taking limit as $\varepsilon \rightarrow 0^{+}$and using Lemma 2 , we have the claimed inequality. To establish the reverse inequality, $\sup \left\{s V_{\infty}\left(\|m\|_{f}(s)\right), s>0\right\} \geq V_{\infty}(t) f_{*}(t)$ for every $t>0$, it suffices to consider the points $t>0$ for which $f_{*}(t)>0$. In this case, if $0<\varepsilon<f_{*}(t)$, we have $0<f_{*}(t)-\varepsilon<f_{*}(t)$ and therefore $t<\|m\|_{f}\left(f_{*}(t)-\varepsilon\right)$. Then, since V_{∞} is non-decreasing, we obtain
$\sup \left\{s V_{\infty}\left(\|m\|_{f}(s)\right), s>0\right\} \geq\left(f_{*}(t)-\varepsilon\right) V_{\infty}\left(\|m\|_{f}\left(f_{*}(t)-\varepsilon\right)\right) \geq\left(f_{*}(t)-\varepsilon\right) V_{\infty}(t)$.
Taking limit as $\varepsilon \rightarrow 0^{+}$we get the claimed inequality.

The following result characterizes the quasinormability of $\Lambda_{v}^{q}(\|m\|)$ by means of the behavior of V_{q} on the range of $\|m\|$. See [8, Lemma 2.2.10] for the scalar measure case with $1 \leq q<$ ∞.

Proposition 3 Suppose $1 \leq q \leq \infty$. Then $\Lambda_{v}^{q}(\|m\|)$ is a quasinormed space if and only if there exists $C>0$ such that

$$
\begin{equation*}
0<V_{q}(\|m\|(A \cup B)) \leq C\left[V_{q}(\|m\|(A))+V_{q}(\|m\|(B))\right] \tag{5}
\end{equation*}
$$

for every pair $A, B \in \Sigma$ such that $\|m\|(A \cup B)>0$.
Proof Let us assume first that $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$ is a quasinorm. Then, for some $D>0$, we have $\|f+g\|_{\Lambda_{v}^{q}(\|m\|)} \leq D\left(\|f\|_{\Lambda_{v}^{q}(\|m\|)}+\|g\|_{\Lambda_{v}^{q}(\|m\|)}\right)$ for every $f, g \in \Lambda_{v}^{q}(\|m\|)$. Applying this inequality to the characteristic functions of two measurable subsets A and B of Ω such that $\|m\|(A \cup B)>0$, we obtain

$$
\left\|\chi_{A \cup B}\right\|_{\Lambda_{v}^{q}(\|m\|)} \leq\left\|\chi_{A}+\chi_{B}\right\|_{\Lambda_{v}^{q}(\|m\|)} \leq D\left(\left\|\chi_{A}\right\|_{\Lambda_{v}^{q}(\|m\|)}+\left\|\chi_{B}\right\|_{\Lambda_{v}^{q}(\|m\|)}\right) .
$$

Then, condition (5) follows from the fact that for every E in Σ,

$$
\left\|\chi_{E}\right\|_{\Lambda_{v}^{q}(\|m\|)}=\left\{\begin{array}{l}
V_{q}(\|m\|(E))^{\frac{1}{q}} \text { for } 1 \leq q<\infty \\
V_{\infty}(\|m\|(E)) \text { for } q=\infty
\end{array}\right.
$$

For the converse, we only need to prove that

$$
\|f+g\|_{\Lambda_{v}^{q}(\|m\|)} \leq D\left(\|f\|_{\Lambda_{v}^{q}(\|m\|)}+\|g\|_{\Lambda_{v}^{q}(\|m\|)}\right),
$$

for some constant $D>0$ and every $f, g \in \Lambda_{v}^{q}(\|m\|)$. To do this we will apply Lemmas 1 and 3 together with the well-known inequality $\|m\|_{f+g}(t) \leq\|m\|_{f}\left(\frac{t}{2}\right)+\|m\|_{g}\left(\frac{t}{2}\right)$ for every $t>0$. Let us denote $h:=f+g$. Now we consider two cases:
(i) For $1 \leq q<\infty$, condition (5) and Lemma 1 give

$$
\begin{aligned}
\|h\|_{\Lambda_{v}^{q}(\|m\|)}^{q} & =\int_{0}^{\infty} h_{*}(t)^{q} v_{q}(t) d t=\int_{0}^{\infty} q t^{q-1}\left[\int_{0}^{\|m\|_{h}(t)} v_{q}(s) d s\right] d t \\
& \leq \int_{0}^{\infty} q t^{q-1} V_{q}\left(\|m\|_{f}\left(\frac{t}{2}\right)+\|m\|_{g}\left(\frac{t}{2}\right)\right) d t \\
& \leq C \int_{0}^{\infty} q t^{q-1}\left[V_{q}\left(\|m\|_{f}\left(\frac{t}{2}\right)\right)+V_{q}\left(\|m\|_{g}\left(\frac{t}{2}\right)\right)\right] d t \\
& =C 2^{q} \int_{0}^{\infty} q s^{q-1}\left[V_{q}\left(\|m\|_{f}(s)\right)+V_{q}\left(\|m\|_{g}(s)\right)\right] d t \\
& =2^{q} C\left(\|f\|_{\Lambda_{v}^{q}(\|m\|)}^{q}+\|g\|_{\Lambda_{v}^{q}(\|m\|)}^{q}\right) .
\end{aligned}
$$

Hence, $\|f+g\|_{\Lambda_{v}^{q}(\|m\|)} \leq 2 C^{\frac{1}{q}}\left(\|f\|_{\Lambda_{v}^{q}(\|m\|)}+\|g\|_{\Lambda_{v}^{q}(\|m\|)}\right)$.
(ii) For $q=\infty$, condition (5) and Lemma 3 give

$$
\begin{aligned}
\|h\|_{\Lambda_{v}^{\infty}(\|m\|)} & =\|h\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)} \leq \underset{s>0}{\operatorname{ess} \sup s} V_{\infty}\left(\|m\|_{f}\left(\frac{s}{2}\right)+\|m\|_{g}\left(\frac{s}{2}\right)\right) \\
& \leq C \operatorname{ess} \sup _{s>0}\left[V_{\infty}\left(\|m\|_{f}\left(\frac{s}{2}\right)\right)+V_{\infty}\left(\|m\|_{f}\left(\frac{s}{2}\right)\right)\right] \\
& \leq 2 C\left(\|f\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)}+\|g\|_{\Lambda_{V_{\infty}}^{\infty}(\|m\|)}\right) .
\end{aligned}
$$

In order to give another sufficient condition for the quasinormability of $\Lambda_{v}^{q}(\|m\|)$ we consider the following definition.

Definition 2 It is said that a function $V \geq 0$ satisfies the Δ_{2}-condition on the interval $[0, L]$ if there exits $C>0$ such that $V(2 t) \leq C V(t)$ for every $0<t \leq \frac{L}{2}$.

Remark 1 A non-negative non-decreasing function V satisfies the Δ_{2}-condition on the interval $[0, L]$ if and only if there exists $C>0$ such that

$$
\begin{equation*}
V(s+t) \leq C(V(s)+V(t)), \tag{6}
\end{equation*}
$$

for every $s>0$ and $t>0$ with $s+t \leq L$. Indeed, If V satisfies the Δ_{2}-condition on $[0, L]$ with constant C and s and t are given in $(0, L]$ such that $\max \{s, t\} \leq \frac{L}{2}$ then $V(s+t) \leq$ $V(2 \max \{s, t\}) \leq C V(\max \{s, t\}) \leq C(V(s)+V(t))$. If $s+t \leq L$, but now $\max \{s, t\}>$ $\frac{L}{2}$, we also have

$$
V(s+t) \leq V(L) \leq C V\left(\frac{L}{2}\right) \leq C V(\max \{s, t\}) \leq C(V(s)+V(t))
$$

For the reverse implication it is enough to take $s=t$ in (6).
Corollary 2 Let $1 \leq q \leq \infty$. If V_{q} satisfies the Δ_{2}-condition on $[0,\|m\|(\Omega)]$, then $\Lambda_{v}^{q}(\|m\|)$ is a quasinormed space.

Proof Let us assume that $V_{q}(s+t) \leq C\left(V_{q}(s)+V_{q}(t)\right)$ for every s, t in $(0,\|m\|(\Omega)]$ with $s+t \leq\|m\|(\Omega)$. For $A, B \in \Sigma$ arbitrary, we distinguish two cases.

If $\|m\|(A)+\|m\|(B) \leq\|m\|(\Omega)$ we obtain

$$
V_{q}(\|m\|(A \cup B)) \leq V_{q}(\|m\|(A)+\|m\|(B)) \leq C\left[V_{q}(\|m\|(A))+V_{q}(\|m\|(B))\right] .
$$

If $\|m\|(A)+\|m\|(B)>\|m\|(\Omega)$, we may assume that $v_{q}(t)=0$ for every $t \geq\|m\|(\Omega)$ and therefore $V_{q}(\|m\|(A)+\|m\|(B))=V_{q}(\|m\|(\Omega))$. Moreover, we may assume, in this case, that $2\|m\|(A)>\|m\|(\Omega)$. Then

$$
\begin{aligned}
V_{q}(\|m\|(A \cup B)) & \leq V_{q}(\|m\|(\Omega)) \leq C V_{q}\left(\frac{1}{2}\|m\|(\Omega)\right) \leq C V_{q}(\|m\|(A)) \\
& \leq C\left[V_{q}(\|m\|(A))+V_{q}(\|m\|(B))\right] .
\end{aligned}
$$

Remark 2 In the context of a positive non-atomic scalar measure μ it is easy to prove that V_{q} satisfies the Δ_{2}-condition on $[0, \mu(\Omega)]$ if and only if $\Lambda_{v}^{q}(\mu)$ is a quasinormed space. We do not know if this result remains true for a non-atomic vector measure.

5 Interpolation with a parameter function and Ariño-Muckenhoupt weights

From now on we mean by a parameter function ρ a positive measurable function defined on the interval $(0, \infty)$. For a parameter function ρ we denote by v the weight $v(t):=\frac{t}{\rho(t)}$ defined on $(0, \infty)$. We are going to study the pairs (ρ, q) for which $\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}=$ $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}$ holds. In these cases, we characterize such space as a Lorentz type space $\Lambda_{v}^{q}(\|m\|)$. To do it, no special assumptions is done on ρ, so our results also include some trivial cases. Let us recall briefly the construction of the space $(\cdot, \cdot)_{\rho, q, K}$ associated with the function lattice $\Phi(\rho, q)$. This function lattice consists of all measurable functions g on $(0, \infty)$ such that

$$
\|g\|_{\Phi(\rho, q)}:= \begin{cases}\left(\int_{0}^{\infty}\left[\frac{|g(t)|}{\rho(t)}\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}, & \text { for } 1 \leq q<\infty, \\ \operatorname{ess} \sup _{t>0}^{|g(t)|} \\ \rho(t) & \end{cases}
$$

is finite. For a given compatible pair $\left(X_{0}, X_{1}\right)$ of quasi-Banach spaces $\left(X_{0}, X_{1}\right)_{\rho, q, K}$ denotes the set of all elements $x \in X_{0}+X_{1}$ such that $K(\cdot, x) \in \Phi(\rho, q)$. In that case, we put $\|x\|_{\rho, q, K}:=\|K(\cdot, x)\|_{\Phi(\rho, q)}$. The classical Lions-Peetre real interpolation space $\left(X_{0}, X_{1}\right)_{\theta, q}$ is obtained for the particular parameter function $\rho(t):=t^{\theta}$, with $0<\theta<1$.

We note that $\left(X_{0}, X_{1}\right)_{\rho, q, K}$ is an intermediate space with respect to $\left(X_{0}, X_{1}\right)$ if and only if $\min \{1, t\}$ belongs to $\Phi(\rho, q)$. In fact, if we assume that $\min \{1, t\}$ belongs to $\Phi(\rho, q)$ it follows that $\left(X_{0}, X_{1}\right)_{\rho, q, K} \subseteq X_{0}+X_{1}$ since $\min \{1, t\} K(1, x) \leq K(t, x)$ for $t>0$ (see (1) in [3, page 38]). Moreover, $K(t, x) \leq \min \{1, t\}\|x\|_{X_{0} \cap X_{1}}$ for $t>0$ (see (2) in [3, page 42]), and so $X_{0} \cap X_{1} \subseteq\left(X_{0}, X_{1}\right)_{\rho, q, K}$. On the other hand, if $\left(X_{0}, X_{1}\right)_{\rho, q, K}$ is an intermediate space, in particular, $X_{0} \cap X_{1} \subseteq\left(X_{0}, X_{1}\right)_{\rho, q, K}$. Thus taking into account that, for any $0 \neq x \in\left(X_{0}, X_{1}\right)_{\rho, q, K} \subseteq X_{0}+X_{1}$, it holds that $\min \{1, t\} K(1, x) \leq$
$K(t, x)$, it follows that $\min \{1, t\} \in \Phi(\rho, q)$. Moreover, $\left(X_{0}, X_{1}\right)_{\rho, q, K}$ is an interpolation space of the pair $\left(X_{0}, X_{1}\right)$ when the condition $\min \{1, t\} \in \Phi(\rho, q)$ is fulfilled (see [4, Proposition 3.3.1]).

We start by proving the following inclusion.
Lemma 4 It holds that $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)_{p, q, K} \subseteq \Lambda_{v}^{q}(\|m\|)$ for every $1 \leq q \leq \infty$. Moreover, if $\Lambda_{v}^{q}(\|m\|)$ is a quasinormed space the above inclusion is continuous.

Proof From Proposition 1 we have

$$
v(t) f_{*}(t)=\frac{t f_{*}(t)}{\rho(t)} \preceq \frac{K\left(t, f ; L^{1, \infty}(\|m\|), L^{\infty}(m)\right)}{\rho(t)} .
$$

Then for every f in $\left(L^{1, \infty}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}$ we obtain that f is in $\Lambda_{v}^{q}(\|m\|)$, and also $\|f\|_{\Lambda_{v}^{q}(\|m\|)} \leq\|f\|_{\rho, q, K}$.

The following theorem is the key result of this section. In the proof we make use of the weighted Hardy inequality (7) for non-increasing functions g and, in particular, the characterization of those weights w allowed in the inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left[\frac{1}{t} \int_{0}^{t} g(s) d s\right]^{q} w(t) d t \leq C \int_{0}^{\infty} g(t)^{q} w(t) d t \tag{7}
\end{equation*}
$$

If $1 \leq q<\infty$, the weights w for which (7) is true for all non-increasing functions g are exactly those weights in the Ariño-Muckenhoupt class B_{q}, that is, weights w on $(0, \infty)$ such that there exists $C>0$ for which

$$
\begin{equation*}
\int_{r}^{\infty} \frac{w(t)}{t^{q}} d t \leq \frac{C}{r^{q}} \int_{0}^{r} w(t) d t \tag{8}
\end{equation*}
$$

for all $r>0$ (see [1, Theorem 1.7] and [24]).
We continue with the notation of Sect. 4 and consider in what follows the functions v_{q} for $1 \leq q<\infty$, and V_{q} for $1 \leq q \leq \infty$, associated to $v(t):=\frac{t}{\rho(t)}$.

Theorem 1 If $v_{q} \in B_{q}$, then $\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}=\Lambda_{v}^{q}(\|m\|)$ for all $1 \leq q<\infty$.
Proof First note that $\Lambda_{v}^{q}(\|m\|) \subseteq L^{1}(\|m\|)$ if $v_{q} \in B_{q}$. Indeed, if f is in $\Lambda_{v}^{q}(\|m\|)$ we have

$$
\int_{0}^{\infty}\left[\frac{1}{t} \int_{0}^{t} f_{*}(s) d s\right]^{q} v_{q}(t) d t \leq C \int_{0}^{\infty} f_{*}(t)^{q} v_{q}(t) d t=C\|f\|_{\Lambda_{v}^{q}(\|m\|)}^{q}<\infty
$$

Thus, the integrand of the left hand side $\left[\frac{1}{t} \int_{0}^{t} f_{*}(s) d s\right]^{q} v_{q}(t)$ is finite $a . e$. and

$$
\|f\|_{L^{1}(\|m\|)}=\int_{0}^{\infty} f_{*}(s) d s=\int_{0}^{\|m\|(\Omega)} f_{*}(s) d s<\infty
$$

We only need to prove that $\Lambda_{v}^{q}(\|m\|) \subseteq\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}$. Let $f \geq 0$ be in $\Lambda_{v}^{q}(\|m\|)$ and denote by $K(t, f)$ the K-functional associated to the pair $\left(L^{1}(\|m\|), L^{\infty}(m)\right)$. Taking into account that $f_{*} \geq 0$ is a non-increasing function and that $v_{q} \in B_{q}$, the quasinorm $\|f\|_{\rho, q, K}$ of f in $\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}$ can be estimated as follows, having in mind Proposition 2 and the Hardy inequality (7)

$$
\begin{aligned}
\|f\|_{\rho, q, K}^{q} & =\int_{0}^{\infty}\left[\frac{K(t, f)}{\rho(t)}\right]^{q} \frac{d t}{t}=\int_{0}^{\infty}\left[\frac{1}{\rho(t)} \int_{0}^{t} f_{*}(s) d s\right]^{q} \frac{d t}{t} \\
& =\int_{0}^{\infty}\left[\frac{1}{t} \int_{0}^{t} f_{*}(s) d s\right]^{q} \frac{t^{q-1}}{\rho(t)^{q}} d t \preceq \int_{0}^{\infty} f_{*}(t)^{q} \frac{t^{q-1}}{\rho(t)^{q}} d t \\
& =\|f\|_{\Lambda_{v}^{q}(\|m\|)}^{q}<\infty .
\end{aligned}
$$

Therefore $\Lambda_{v}^{q}(\|m\|) \subseteq\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}$.
Remark 3 (a) Note that Theorem 1 holds, in particular, if $m=\mu$ is a finite positive scalar measure (in which case $\|m\|=\mu$). Our proof also works for the pair $\left(L^{1}(\mu), L^{\infty}(\mu)\right)$, even for $\left(L^{1, \infty}(\mu), L^{\infty}(\mu)\right)$, if μ is merely a σ-finite measure.
(b) If $v_{q} \in B_{q}$, then V_{q} satisfies the Δ_{2}-condition on the interval $[0,\|m\|(\Omega)]$, and therefore $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$ is a quasinorm as we have seen in Corollary 2. In addition, if $\min \{1, t\} \in$ $\Phi(\rho, q)$ we have that $\Lambda_{v}^{q}(\|m\|)$ is an interpolation space, and otherwise we obtain the null space. Note that the function $\min \{1, t\}$ belongs to $\Phi(\rho, q)$ for $1 \leq q<\infty$ if, and only if,

$$
\begin{align*}
\int_{0}^{\infty}\left(\frac{\min \{1, t\}}{\rho(t)}\right)^{q} \frac{d t}{t} & =\int_{0}^{1}\left[\frac{t}{\rho(t)}\right]^{q} \frac{d t}{t}+\int_{1}^{\infty}\left[\frac{1}{\rho(t)}\right]^{q} \frac{d t}{t} \\
& =\int_{0}^{1} v_{q}(t) d t+\int_{1}^{\infty} \frac{v_{q}(t)}{t^{q}} d t<\infty \tag{9}
\end{align*}
$$

Having in mind the above expression (9) for the condition $\min \{1, t\} \in \Phi(\rho, q)$, and Theorem 1 it follows directly the following corollary.

Corollary 3 Let X be a quasi-Banach space with $L^{1}(\|m\|) \subseteq X \subseteq L^{1, \infty}(\|m\|)$ and let $1 \leq q<\infty$. If $v_{q} \in B_{q} \cap L^{1}(0,1)$, then $\left(X, L^{\infty}(m)\right)_{\rho, q, K}=\bar{\Lambda}_{v}^{q}(\|m\|)$.

Since $L^{1}(m)$ is an intermediate Banach space between $L^{1}(\|m\|)$ and $L^{1, \infty}(\|m\|)$, the above Corollary 3 says in particular that $\Lambda_{v}^{q}(\|m\|)$ is an interpolation space of the pair of Banach spaces $\left(L^{1}(m), L^{\infty}(m)\right)$ and therefore it is a normable space for the corresponding interpolation norm which is, in fact, equivalent to the functional $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$.

Now, we are going to consider a weak version of the reciprocal of Theorem 1. Note that in its proof we only need to consider non-increasing functions supported on the finite interval $(0,\|m\|(\Omega))$. Then, the condition $v_{q} \in B_{q}$ does not seem to be necessary. Nevertheless, we can say some thing about the function v_{q} when the measure m is non-atomic. Recall that a set $A \in \Sigma$ is called an atom of the vector measure m if $m(A) \neq 0$ and if $B \subseteq A, B \in \Sigma$ implies that either $m(B)=0$ or $m(A \backslash B)=0$, and a measure without atoms is called non-atomic (see [21, page 32]). By a standard set-theoretic argument it can be proved that m is non-atomic if and only if its semivarition $\|m\|$ is non-atomic. Then, we can see that the semivariation has the Darboux property (see [13, Theorem 10] or [20, Corollary 3]), which means that range of the semivariation is the closed interval $[0,\|m\|(\Omega)]$, that is,

$$
\begin{equation*}
\{\|m\|(A): A \in \Sigma\}=[0,\|m\|(\Omega)] . \tag{10}
\end{equation*}
$$

Proposition 4 Let m be a non-atomic vector measure and $1 \leq q<\infty$. If $\Lambda_{v}^{q}(\|m\|)$ is a quasinormed space and $\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}=\Lambda_{v}^{q}(\|m\|)$ algebraically, then $v_{q} \chi_{(0, T)} \in$ B_{q} for each $0<T<\infty$.

Proof It is standard to prove that $\Lambda_{v}^{q}(\|m\|)$ is complete if $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$) is a quasinorm (see [8, Theorem 2.3.1] for the scalar case), that is, under our assumption $\Lambda_{v}^{q}(\|m\|)$ is a quasiBanach space. Then, by the hypothesis and Lemma 4 the open mapping theorem assures that $\|\cdot\|_{\Lambda_{v}^{q}(\|m\|)}$ and $\|\cdot\|_{\rho, q, K}$ are equivalent quasinorms. Therefore there exists $C>0$ such that $\|f\|_{\rho, q, K} \leq C\|f\|_{\Lambda_{v}^{q}(\|m\|)}$ for every $f \in \Lambda_{v}^{q}(\|m\|)$. Equivalently,

$$
\int_{0}^{\infty}\left[\frac{1}{\rho(t)} \int_{0}^{t} f_{*}(s) d s\right]^{q} \frac{d t}{t} \leq C^{q} \int_{0}^{\infty}\left[\frac{t}{\rho(t)} f_{*}(t)\right]^{q} \frac{d t}{t}
$$

Since m is non-atomic, by using (10), for every $r \in(0,\|m\|(\Omega)]$ there exists $A \in \Sigma$ such that $\|m\|(A)=r$. Having in mind that $\left(\chi_{A}\right)_{*}=\chi_{(0,\|m\|(A))}$ the above inequality read as

$$
\int_{0}^{\infty}\left[\frac{1}{\rho(t)} \int_{0}^{t} \chi_{(0, r)}(s) d s\right]^{q} \frac{d t}{t} \leq C^{q} \int_{0}^{\infty}\left[\frac{t}{\rho(t)} \chi_{(0, r)}(t)\right]^{q} \frac{d t}{t}
$$

for every $r \in(0,\|m\|(\Omega)]$. Then, we obtain for those r the following inequality

$$
\begin{aligned}
\int_{0}^{\infty}\left[\frac{1}{\rho(t)} \int_{0}^{t} \chi_{(0, r)}(s) d s\right]^{q} \frac{d t}{t} & =\int_{0}^{r}\left[\frac{t}{\rho(t)}\right]^{q} \frac{d t}{t}+\int_{r}^{\infty}\left[\frac{r}{\rho(t)}\right]^{q} \frac{d t}{t} \\
& \leq C^{q} \int_{0}^{r}\left[\frac{t}{\rho(t)}\right]^{q} \frac{d t}{t}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\int_{r}^{\infty} \frac{v_{q}(t)}{t^{q}} d t \leq \frac{C^{q}-1}{r^{q}} \int_{0}^{r} v_{q}(t) d t \tag{11}
\end{equation*}
$$

for every $r \in(0,\|m\|(\Omega)]$. Recall that in order to prove that $v_{q} \chi_{(0, T)}$ belongs to B_{q} for every $0<T<\infty$ we have to check (8). If $T \leq\|m\|(\Omega)$ it follows directly from (11). Suppose now that $\|m\|(\Omega)<T$ and $\|m\|(\Omega)<r$. By using (11) again we obtain

$$
\begin{aligned}
\int_{r}^{\infty} \frac{v_{q}(t)}{t^{q}} \chi_{(0, T)}(t) d t & \leq \int_{\|m\|(\Omega)}^{\infty} \frac{v_{q}(t)}{t^{q}} \chi_{(0, T)}(t) d t \\
& \leq \frac{C^{q}-1}{(\|m\|(\Omega))^{q}} \int_{0}^{\|m\|(\Omega)} v_{q}(t) \chi_{(0, T)}(t) d t \\
& \leq \frac{C^{q}-1}{(\|m\|(\Omega))^{q}}\left[\frac{T}{r}\right]^{q} \int_{0}^{r} v_{q}(t) \chi_{(0, T)}(t) d t,
\end{aligned}
$$

and $v_{q} \chi_{(0, T)} \in B_{q}$.
For the case $q=\infty$ we have the following result analogous to Theorem 1.
Theorem 2 If $\int_{0}^{t} \frac{\rho(s)}{s} d s \leq C \rho(t)$ for some constant $C>0$ and all $t>0$, then

$$
\begin{equation*}
\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, \infty, K}=\Lambda_{v}^{\infty}(\|m\|) \tag{12}
\end{equation*}
$$

Proof We only need to prove that $\Lambda_{v}^{\infty}(\|m\|) \subseteq\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, \infty, K}$. The other inclusion is already proved in Lemma 4. Now, if $f \in \Lambda_{v}^{\infty}(\|m\|)$ we have $t f_{*}(t) \leq D \rho(t)$ for some constant $D>0$ and all $t>0$. Therefore

$$
K\left(t, f ; L^{1}(\|m\|), L^{\infty}(m)\right)=\int_{0}^{t} f_{*}(s) d s \leq D \int_{0}^{t} \frac{\rho(s)}{s} d s \leq D C \rho(t)
$$

for all $t>0$. Thus $f \in\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, \infty, K}$.

Note that this theorem includes some trivial cases. For example, it is easy to prove that $\Lambda_{v}^{\infty}(\|m\|)$ is the null space for $v(t):=t^{1-\alpha}$, with $\alpha>1$, in which case, $\rho(t)=t^{\alpha}$. Recall that $\left(X_{0}, X_{1}\right)_{\rho, \infty, K}$ is an interpolation space for every pair $\left(X_{0}, X_{1}\right)$ if $\min \{1, t\} \in \Phi(\rho, \infty)$. Otherwise we obtain the null space. If $\Lambda_{v}^{\infty}(\|m\|)$ is a non-trivial quasinormed space, then we have the equality (12) as quasi-Banach spaces.

Remark 4 Under the hypothesis of the above theorem, the following equality

$$
\left(X, L^{\infty}(m)\right)_{\rho, \infty, K}=\Lambda_{v}^{\infty}(\|m\|)
$$

holds for every quasi-Banach space X such that $L^{1}(\|m\|) \subseteq X \subseteq L^{1, \infty}(\|m\|)$. If moreover $t \leq D \rho(t)$ for some constant $D>0$ and all $t \in(0,1)$, the function $\min \{1, t\} \in \Phi(\rho, \infty)$. Take into account that the hypothesis of Theorem 2 implies that $\int_{0}^{1} \frac{\rho(s)}{s} d s \leq C \rho(t)$ for all $t>1$. Consequently, under this additional assumption, $\Lambda_{v}^{\infty}(\|m\|)$ is an interpolation space of each pair $\left(X, L^{\infty}(m)\right)$. In particular, $\Lambda_{v}^{\infty}(\|m\|)$ is normable with the norm of the space $\left(L^{1}(m), L^{\infty}(m)\right)_{\rho, \infty, K}$.

6 Examples

Next let us relate our results with the corresponding results for the scalar measure case given by Gustavsson [18] and Persson [23]. These authors study the interpolation with a parameter function belonging to certain classes of functions, such as B_{ψ} (see [18, Definition 1.2]), $Q(0,1)$ or \mathcal{P}^{+-}(see [23, pages 201-202]). These classes can be considered (in some sense) the same class ([23, Proposition 1.3]). Next we recall the definition of the class $Q(0,1)$.

Definition 3 A parameter function ρ is said to be in the class $Q(0,1)$ if there exist $0<\alpha<$ $\beta<1$ such that $\rho(t) t^{-\alpha}$ is non-decreasing and $\rho(t) t^{-\beta}$ is non-increasing.

Example 1 Note that the function $\rho(t):=t^{\theta}(1+|\log t|)^{\gamma}$ belongs to the class B_{ψ} whenever $0<\theta<1$ and $|\gamma|<\min \{\theta, 1-\theta\}$. On the other hand, recall that $B_{\psi} \subseteq Q(0,1)$ (see [23, Proposition 1.3]). For this function ρ and a positive σ-finite scalar measure μ the Lorentz space $\Lambda_{v}^{q}(\mu)$, associated to $v(t):=\frac{t}{\rho(t)}$, is the Lorentz-Zygmund space $L^{p, q}(\log L)^{\gamma}(\mu)$ for $\frac{1}{p}:=1-\theta$ (see [2] and [23, page 218]).

We are ready to analyze the role of each one of the conditions involved in the definition of the class $Q(0,1)$ in connection with the Ariño-Muckenhoupt classes B_{q} considered above.

Proposition 5 If $\rho(t) t^{-\alpha}$ is non-decreasing for some $\alpha>0$, then:
(a) $v_{q} \in B_{q}$, for each $1 \leq q<\infty$.
(b) $\int_{0}^{t} \frac{\rho(s)}{s} d s \leq \frac{1}{\alpha} \rho(t)$, for every $t>0$.

Proof (a) For $0<r \leq t$, we have $\rho(r) r^{-\alpha} \leq \rho(t) t^{-\alpha}$ by the hypothesis. Then $\frac{1}{\rho(t)} \leq$ $\frac{r^{\alpha}}{\rho(r) t^{\alpha}}$. Hence

$$
\begin{equation*}
\int_{r}^{\infty} \frac{v_{q}(t)}{t^{q}} d t=\int_{r}^{\infty} \frac{1}{t \rho(t)^{q}} d t \leq \frac{r^{\alpha q}}{\rho(r)^{q}} \int_{r}^{\infty} \frac{1}{t^{1+\alpha q}} d t=\frac{1}{q \alpha \rho(r)^{q}} \tag{13}
\end{equation*}
$$

For $0<t<r$, we have $\rho(t) t^{-\alpha} \leq \rho(r) r^{-\alpha}$ and therefore $\frac{1}{\rho(t)} \geq \frac{r^{\alpha}}{\rho(r) t^{\alpha}}$. Hence

$$
\begin{equation*}
\int_{0}^{r} v_{q}(t) d t=\int_{0}^{r} \frac{t^{q-1}}{\rho(t)^{q}} d t \geq \frac{r^{\alpha q}}{\rho(r)^{q}} \int_{0}^{r} t^{q(1-\alpha)-1} d t=\frac{r^{q}}{q(1-\alpha) \rho(r)^{q}} \tag{14}
\end{equation*}
$$

Then from (13) and (14) we get $\int_{r}^{\infty} \frac{v_{q}(t)}{t^{q}} d t \leq \frac{1-\alpha}{\alpha} \frac{1}{r^{q}} \int_{0}^{r} v_{q}(t) d t$.
(b) Using that $\rho(s) s^{-\alpha}$ is non-decreasing we have

$$
\int_{0}^{t} \frac{\rho(s)}{s} d s=\int_{0}^{t} \frac{\rho(s)}{s} d s \leq \int_{0}^{t} \frac{\rho(t)}{t^{\alpha}} \frac{s^{\alpha}}{s} d s=\frac{1}{\alpha} \rho(t)
$$

for every $t>0$.

Next corollary follows directly from Proposition 5 and Theorems 1 and 2.
Corollary 4 If $\rho(t) t^{-\alpha}$ is non-decreasing for some $\alpha>0$, then

$$
\left(L^{1}(\|m\|), L^{\infty}(m)\right)_{\rho, q, K}=\Lambda_{v}^{q}(\|m\|)
$$

with equivalence of quasinorms, for all $1 \leq q \leq \infty$.
Proposition 6 If $\rho(t) t^{-\beta}$ is non-increasing for some $\beta<1$, then:
(a) $v_{q} \in L^{1}(0, T)$ for every $0<T<\infty$ and $1 \leq q<\infty$.
(b) $\rho(1) t \leq \rho(t)$, for all $0<t<1$.

Proof (a) Since $\rho(t) t^{-\beta}$ is non-increasing, we have $\frac{\rho(t)}{t^{\beta}} \geq \frac{\rho(T)}{T^{\beta}}$ for every $0<t<T$, and therefore

$$
\int_{0}^{T} v_{q}(t) d t=\int_{0}^{T} \frac{t^{q-1}}{\rho(t)^{q}} d t \leq \frac{T^{q \beta}}{\rho(T)^{q}} \int_{0}^{T} \frac{t^{q-1}}{t^{q \beta}} d t=\frac{1}{q(1-\beta)} \frac{T^{q}}{\rho(T)^{q}}<\infty
$$

(b) Suppose $0<t<1$. Then $\rho(1) t \leq \rho(t) t^{-\beta} t \leq \rho(t)$.

The following result follows directly from Propositions 5 and 6 and condition (9).
Corollary 5 If $\rho \in Q(0,1)$ then:
(a) $v_{q} \in B_{q} \cap L^{1}(0,1)$, for each $1 \leq q<\infty$.
(b) There exits a constant $C>0$ such that $t \leq C \rho(t)$ for all $0<t<1$, and $\int_{0}^{t} \frac{\rho(s)}{s} d s \leq$ $C \rho(t)$ for all $t>0$.
(c) $\min \{1, t\} \in \Phi(\rho, q)$, for each $1 \leq q \leq \infty$.

Finally, we summarize the relationship between our Corollary 3 and Remark 4 with the results obtained by Gustavsson [18, Lemma 3.1] and Persson [23, Proposition 6.2]: If X is a quasi-Banach space with $L^{1}(\|m\|) \subseteq X \subseteq L^{1, \infty}(\|m\|)$ and $\rho \in Q(0,1)$, then the equality $\left(X, L^{\infty}(m)\right)_{p, q, K}=\Lambda_{v}^{q}(\|m\|)$ holds for all $1 \leq q \leq \infty$, with equivalence of quasinorms. In particular, $\Lambda_{v}^{q}(\|m\|)$ is an interpolation space of the pair $\left(L^{1}(m), L^{\infty}(m)\right)$ and so it is normable with the norm of the space $\left(L^{1}(m), L^{\infty}(m)\right)_{\rho, q, K}$.

Acknowledgments The authors wish to express their heartfelt thanks to the anonymous referees and the editor for their detailed and helpful suggestions for revising the manuscript.

References

1. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727-735 (1990)
2. Bennett, C., Rudnick, K.: On Lorentz-Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175 (1980)
3. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin (1976)
4. Brudnyĭ, Y.A., Krugljak, Y.N.: Interpolation functors and interpolation spaces, vol. I. North-Holland Publishing Co., Amsterdam (1991)
5. del Campo, R., Fernández, A., Manzano, A., Mayoral, F., Naranjo, F.: Interpolation with a parameter function and integrable function spaces with respect to vector measures. Math. Inequal. Appl. (to appear)
6. del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: Complex interpolation of L^{p}-spaces of vector measures on δ-rings. J. Math. Anal. Appl. 405, 518-529 (2013)
7. del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: A note on real interpolation of L^{p}-spaces of vector measures on δ-rings. J. Math. Anal. Appl. 419, 995-1003 (2014)
8. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc. 187, 877 (2007)
9. Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112, 480-494 (1993)
10. Cerdà, J., Martín, J., Silvestre, P.: Capacitary function spaces. Collect. Math. 62, 95-118 (2011)
11. Cwikel, M., Kamińska, A., Maligranda, L., Pick, L.: Are generalized Lorentz "spaces" really spaces? Proc. Am. Math. Soc. 132, 3615-3625 (2004)
12. Diestel, J., Uhl Jr, J.J.: Vector measures. Mathematical Surveys, no. 15. American Mathematical Society, Providence (1977)
13. Dobrakov, I.: On submeasures I. Dissertationes Math. (Rozprawy Mat.) 112 (1974)
14. Fernández, A., Mayoral, F., Naranjo, F.: Real interpolation method on spaces of scalar integrable functions with respect to vector measures. J. Math. Anal. Appl. 376, 203-211 (2011)
15. Fernández, A., Mayoral, F., Naranjo, F.: Bartle-Dunford-Schwartz integral versus Bochner, Pettis and Dunford integrals. J. Convex Anal. 20, 339-353 (2013)
16. Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E.A.: Spaces of p-integrable functions with respect to a vector measure. Positivity 10, 1-16 (2006)
17. Fernández, A., Mayoral, F., Naranjo, F., Sánchez-Pérez, E.A.: Complex interpolation of spaces of integrable functions with respect to a vector measure. Collect. Math. 61(3), 241-252 (2010)
18. Gustavsson, J.: A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42, 289-305 (1978)
19. Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-space sampler. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1984)
20. Klimkin, V.M., Svistula, M.G.: The Darboux property of a nonadditive set function. Sb. Math. 192, 969-978 (2001)
21. Kluvánek, I., Knowles, G.: Vector measures and control systems. Notas de Matemática, no. 58, NorthHolland, Amsterdam (1976)
22. Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal domain and integral extension of operators: acting in function spaces. Operator theory: advances and applications. Birkhäuser, Basel (2008)
23. Persson, L.E.: Interpolation with a parameter function. Math. Scand. 59, 199-222 (1986)
24. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96, 145-158 (1990)

[^0]: Supported by Ministerio de Economía and Competitividad (Spain) and FEDER funds, under projects MTM2013-42220-P and MTM2012-36740, and by La Junta de Andalucía (FQM133).
 R. del Campo

 Dpto. Matemática Aplicada I, EUITA, Universidad de Sevilla, Ctra. de Utrera Km. 1, 41013 Seville, Spain
 e-mail: rcampo@us.es
 A. Fernández (\boxtimes) • F. Mayoral • F. Naranjo

 Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, Spain
 e-mail: afcarrion@etsi.us.es
 F. Mayoral
 e-mail: mayoral@us.es
 F. Naranjo
 e-mail: naranjo@us.es
 A. Manzano

 Dpto. de Matemáticas y Computación, Escuela Politécnica Superior, Universidad de Burgos, 09001 Burgos, Spain
 e-mail: amanzano@ubu.es

