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We describe the real interpolation spaces obtained when we apply the real K-method
of Lions–Peetre to Banach lattices of p-integrable and weakly p-integrable functions
with respect to a Banach-space-valued measure defined on a δ-ring. In general, the
obtained results are quite different from those in the case of vector measures on
σ-algebras described in [9]. However, we find a wide class of vector measures on
δ-rings for which the results on σ-algebras hold true.
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1. Introduction

A basic problem in interpolation theory is to describe the spaces obtained by applying an interpola-
tion method to concrete compatible couples of spaces. For a Banach-space-valued measure m defined on
a σ-algebra, we obtained in [11] the Calderón interpolation spaces [X0, X1][θ] and [X0, X1][θ], and in [9]
the real interpolation spaces (X0, X1)θ,q of the couples (X0, X1), where X0 and X1 are the Banach lattices
Lp(m) or Lp

w(m) of equivalence classes of scalar p-integrable or, respectively, weakly p-integrable functions
with respect to the measure m. Later we investigated in [5] the Calderón interpolation methods of the
same spaces, but for measures defined on δ-rings. We showed in [5] that the interpolation results for vector
measures on δ-rings can be very different from those on the context of σ-algebras. However, we identified
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a certain type of vector measures on δ-rings (called locally strongly additive measures) which keep com-
pletely the same behavior (for all the different combinations of couples) as measures defined on σ-algebras.
In the present note we complete the picture with the study of real interpolation methods of Banach lattices
of p-integrable and weakly p-integrable functions with respect to a Banach-space-valued measure defined
on a δ-ring. As in the case of complex methods we can say that certain interpolation equalities for vector
measures on σ-algebras described in [9] remain true for vector measures on δ-rings, but some others cease
to be true for vector measures on δ-rings. Curiously, for the same type of measures (locally strongly addi-
tive measures) real interpolation equalities in the setting of measures defined on σ-algebra remain true for
measures on δ-rings. However, the reasons why this happens are very different from those on the context of
complex interpolation methods.

2. Preliminaries

In this section we establish the preliminaries necessaries about integration of scalar functions with respect
to vector measures on δ-rings, in order to make the paper more self-contained and readable. The basic
references about integration for us will be [7,12–14]. Throughout this paper we will consider a vector measure
ν : R → X defined on a δ-ring R of subsets of some nonempty set Ω with values in a real Banach space X,
with dual X ′. We denote by Rloc the σ-algebra of subsets A ⊆ Ω such that A ∩ B ∈ R for each B ∈ R.
Measurability of functions f : Ω → R will be considered with respect to the measurable space (Ω,Rloc). The
semivariation of ν is the set function ‖ν‖ : Rloc → [0,∞] defined by ‖ν‖(A) := sup{|〈ν, x′〉|(A) : ‖x′‖X′ ≤ 1},
where |〈ν, x′〉| is the variation of the scalar measure

〈
ν, x′〉 : A ∈ R →

〈
ν, x′〉(A) :=

〈
ν(A), x′〉 ∈ R.

A set N ∈ Rloc is called ν-null if ‖ν‖(N) = 0. A property holds ν-almost everywhere (ν-a.e.) if it holds
except on a ν-null set.

A measurable function f : Ω → R is called weakly integrable (with respect to ν) if f ∈ L1(〈ν, x′〉) for all
x′ ∈ X ′. A weakly integrable function f is said to be integrable (with respect to ν) if, for each A ∈ Rloc

there exists an element (necessarily unique)
∫
A
fdν ∈ X, satisfying

〈∫
A

fdν, x′
〉

=
∫
A

fd
〈
ν, x′〉, x′ ∈ X ′.

If 1 ≤ p < ∞, a measurable function f : Ω → R is called weakly p-integrable (with respect to ν) if |f |p is
weakly integrable and p-integrable (with respect to ν) if |f |p is integrable. The space Lp

w(ν) of all (ν-a.e.
equivalence classes of) weakly p-integrable functions becomes a Banach lattice with the Fatou property when
endowed with the usual ν-a.e. pointwise order and the norm

‖f‖Lp
w(ν) := sup

{(∫
Ω

|f |p d
∣∣〈ν, x′〉∣∣) 1

p

:
∥∥x′∥∥

X′ ≤ 1
}
.

Moreover, the space Lp(ν) of all (ν-a.e. equivalence classes of) p-integrable functions is a closed order
continuous ideal of Lp

w(ν). In fact, it is the closure of S(R), the space of simple functions supported on R.
The Banach lattices Lp(ν) and Lp

w(ν) of equivalence classes of scalar p-integrable and weakly p-integrable
functions were initially studied in [10] for vector measures ν on a σ-algebra and its basic properties can be
extended and remain true for vector measures on δ-rings (see [4]). Also we can find in [15, Chapter 3] a very
good material about spaces of integrable functions with respect to a vector measure on a σ-algebra. Finally,
let us consider two more spaces strongly related with the spaces of p-integrable functions with respect
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to a vector measure. Denote by L∞(ν) the space of classes of essentially bounded measurable functions
f : Ω → R with the essential supremum norm. Consider also the vector space L0(ν) of all classes of
measurable functions f : Ω → R. If the vector measure ν is defined on a σ-algebra it is well-known (see [10,
Corollary 3.2]) that the following inclusions hold for all p > 1

L∞(ν) ⊆ Lp(ν) ⊆ Lp
w(ν) ⊆ L1(ν) ⊆ L1

w(ν) ⊆ L0(ν), (1)

and all of them are continuous inclusions, where the topology of convergence in measure is considered
on L0(ν). When the vector measure ν is defined on a δ-ring instead of a σ-algebra, the inclusions (1) are in
general false, but we can save something (see, for example, Proposition 2.2 and Remark 3.3).

In what follows we will always consider vector measures ν : R → X which are σ-finite, that is, there exist
a pairwise disjoint sequence (Ωk)k in R, and a ν-null set N ∈ Rloc, such that Ω = (

⋃
k≥1 Ωk) ∪ N . The

simplest example of a σ-finite vector measure on a δ-ring is given by the Lebesgue measure λ defined on
the δ-ring R := {A ∈ M : λ(A) < ∞}, where M is the σ-algebra of all Lebesgue measurable subsets of the
real line R. If we consider the vector measure ν : A ∈ R → ν(A) = λ(A) ∈ R, then Lp

w(ν) = Lp(ν) = Lp(R)
for all p ≥ 1.

In the context of interpolation it is well-known that we need a topological vector space as an environment
space in order to consider couples of Banach spaces. In our case it is the linear space L0(ν), endowed with the
topology of convergence in measure on each subset Ωk. This topology is generated by the F -norm ‖ · ‖L0(ν)
that we shall now describe. For each k = 1, 2, . . . consider the σ-algebra Σk := {A ∈ R : A ⊆ Ωk} of subsets
of Ωk and the vector measure νk : A ∈ Σk → νk(A) = ν(A) ∈ X, that is, the restriction of ν to Σk. Now
define

‖f‖L0(ν) :=
∞∑
k=1

1
2k(1 + ‖ν‖(Ωk))

∥∥∥∥ |f |
1 + |f |χΩk

∥∥∥∥
L1

w(νk)
, f ∈ L0(ν).

For details see [5, Lemmas 3.2, 3.3 and 3.4]. In particular, let us mention that each pair of spaces Lp
w(ν)

or Lp(ν) forms a compatible couple of Banach spaces, that is, they are imbedded continuously in the same
topological vector space L0(ν).

Given f ∈ L0(ν), we shall consider its distribution function (with respect to the vector measure ν) defined
by

‖ν‖f : s ∈ [0,∞) → ‖ν‖f (s) := ‖ν‖
({

w ∈ Ω :
∣∣f(w)

∣∣ > s
})

∈ [0,∞],

where ‖ν‖ is the semivariation of the measure ν. This distribution function has similar properties as in the
scalar case (see [9]). For instance, ‖ν‖f is non-increasing and right-continuous. The decreasing rearrangement
of f (with respect to the measure ν) is given by

f∗ : t ∈ (0,∞) → f∗(t) := inf
{
s > 0 : ‖ν‖f (s) ≤ t

}
∈ [0,∞].

Some properties of f∗ can be found in [9] when the measure is defined on a σ-algebra. Nevertheless, it is
not difficult to see (even for measures on δ-rings) that f∗ is a non-increasing, right-continuous function.
Moreover the following two equalities hold

∞∫
0

‖ν‖f (t)dt =
∞∫
0

f∗(t)dt and sup
t>0

t‖ν‖f (t) = sup
t>0

tf∗(t).

For 1 ≤ p, q ≤ ∞ the Lorentz space Lp,q(‖ν‖) with respect to the vector measure ν consists of all functions
f ∈ L0(ν) for which the quantity
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‖f‖Lp,q(‖ν‖) :=
{

(
∫∞
0 (s

1
p f∗(s))q ds

s )
1
q (1 ≤ q < ∞)

sups>0 s
1
p f∗(s) (q = ∞)

is finite. The functional f → ‖f‖Lp,q(‖ν‖) is not always a norm, even when p, q ≥ 1, because the triangle
inequality fails. Nevertheless it is not difficult to prove that ‖f +g‖Lp,q(‖ν‖) ≤ C(‖f‖Lp,q(‖ν‖) +‖g‖Lp,q(‖ν‖)),
where C ≥ 1 is a constant depending on p and q. Therefore ‖ · ‖Lp,q(‖ν‖) is only a quasi-norm. We also note
that Lp,q(‖ν‖) is a quasi-Banach lattice with the Fatou property. For the special case p = q, we denote
the space Lp,p(‖ν‖) simply by Lp(‖ν‖). As it has been pointed out in [9], in general, the spaces Lp(‖ν‖)
and Lp(ν) do not coincide. For p > 1 and 1 ≤ q ≤ ∞ the Lorentz spaces Lp,q(‖ν‖) are intermediate
spaces of the couple (L1(‖ν‖), L∞(ν)), that is, L1(‖ν‖)∩L∞(ν) ⊆ Lp,q(‖ν‖) ⊆ L1(‖ν‖)+L∞(ν). Moreover,
if the measure ν is defined on a σ-algebra, it holds the following inclusions, for all 1 ≤ p < ∞ (see [9,
Proposition 7])

L∞(ν) ⊆ Lp,1(‖ν‖) ⊆ Lp
(
‖ν‖

)
⊆ Lp(ν) ⊆ Lp

w(ν) ⊆ Lp,∞(
‖ν‖

)
, (2)

and all these inclusions are continuous. However, if the vector measure ν is defined on a δ-ring instead
of a σ-algebra, the inclusion Lp(‖ν‖) ⊆ Lp(ν) is in general false as Example 2.1 below points out. The
inclusion L∞(ν) ⊆ Lp,1(‖ν‖) is false even for a non-finite positive scalar measure. On the contrary the
others inclusions of the chain (2) remain true as we shall see with the following Proposition 2.2 (see also
Remark 3.3).

Example 2.1. Let R be the δ-ring of finite subsets of natural numbers N, and consider the σ-finite vector
measure ν : A ∈ R → ν(A) := χA ∈ c0, where c0 is the space of null sequences. For every 1 ≤ p < ∞,
it is easy to check that Lp

w(ν) = 	∞, the space of bounded sequences, and Lp(ν) = c0. In what follows it
will be interesting to note that ‖ν‖(A) = 1, for every nonempty A ⊆ N, and ‖ν‖(∅) = 0. This means, in
particular, that ‖ν‖f = χ[0,∞) if f is an unbounded sequence, but ‖ν‖f = χ[0,‖f‖∞) if f ∈ 	∞. Consequently,
we have for an unbounded sequence f that f∗(t) = ∞ if t ∈ (0, 1) and f∗(t) = 0 if t ≥ 1. On the other hand,
f∗ = ‖f‖∞χ(0,1) if f ∈ 	∞. Thus L1(‖ν‖) = 	∞ = L1

w(ν), and L1(‖ν‖) � L1(ν).

Proposition 2.2. The following continuous inclusions hold

L1(‖ν‖) ⊆ L1
w(ν) ⊆ L1,∞(

‖ν‖
)
⊆ L0(ν). (3)

Proof. First we check the inclusion L1(‖ν‖) ⊆ L1
w(ν). Take f ∈ L1(‖ν‖), and choose any x′ ∈ X ′, with

‖x′‖ ≤ 1. For the positive σ-additive measure |〈ν, x′〉| we have (see [2, Proposition II.1.8] for the first
equality)

∫
Ω

|f | d
∣∣〈ν, x′〉∣∣ =

∞∫
0

∣∣〈ν, x′〉∣∣
f
(t)dt ≤

∞∫
0

‖ν‖f (t)dt = ‖f‖L1(‖ν‖). (4)

Taking supremum in (4) when ‖x′‖ ≤ 1, we obtain ‖f‖L1
w(ν) ≤ ‖f‖L1(‖ν‖).

Now we prove second inclusion L1
w(ν) ⊆ L1,∞(‖ν‖). Take f ∈ L1

w(ν) and let t > 0. Then
tχ{w∈Ω:|f(w)|>t} ≤ |f |, and so tχ{w∈Ω:|f(w)|>t} ∈ L1

w(ν). Moreover

t‖ν‖f (t) = ‖tχ{w∈Ω:|f(w)|>t}‖L1
w(ν) ≤ ‖f‖L1

w(ν). (5)

Taking supremum in (5) we obtain ‖f‖L1,∞(ν) := supt>0 t‖ν‖f (t) ≤ ‖f‖L1
w(ν).

The continuity of the last inclusion L1,∞(‖ν‖) ⊆ L0(ν) (and also all other inclusions in the paper) follows
from [1, Theorem 16.6]. �
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3. Real interpolation results for measures on δ-rings

Let us recall briefly the construction of the real interpolation method of Lions–Peetre. Let (A0, A1) be a
quasi-Banach couple, that is, two quasi-Banach spaces A0, A1 which are continuously embedded in some
Hausdorff topological vector space. The Peetre K-functional is defined, for t > 0 and f ∈ A0 + A1, by

K(t, f ;A0, A1) := inf
{
‖f0‖A0 + t‖f1‖A1 : f = f0 + f1, f0 ∈ A0, f1 ∈ A1

}
.

For 0 < θ < 1 and 1 ≤ q ≤ ∞, the space (A0, A1)θ,q is formed by all those elements f ∈ A0 + A1 such that
the quasi-norm

‖f‖(A0,A1)θ,q :=
{

(
∫∞
0 (t−θK(t, f ;A0, A1))q dt

t )
1
q , if 1 ≤ q < ∞,

supt>0 t
−θK(t, f ;A0, A1), if q = ∞,

is finite. One of the main results in [9] is Corollary 17 which assures, for 0 < θ < 1 ≤ q ≤ ∞, 1 ≤ p0 �=
p1 ≤ ∞, and a vector measure ν defined on a σ-algebra that

(
Lp0(ν), Lp1(ν)

)
θ,q

=
(
Lp0
w (ν), Lp1

w (ν)
)
θ,q

= Lp,q
(
‖ν‖

)
, (6)

where 1
p = 1−θ

p0
+ θ

p1
. As Example 2.1 shows, the above equalities are not longer true if the measure ν

is defined on a δ-ring. That is, for such a measure (Lp0(ν), Lp1(ν))θ,q = c0 but (Lp0
w (ν), Lp1

w (ν))θ,q = 	∞.
Nevertheless, there are cases where the situation is similar to the case of σ-algebras, described in (6), even
for measures genuinely defined on δ-rings. There is a broad class of vector measures for which this occurs:
locally strongly additive vector measures. Recall that a vector measure ν : R → X is called locally strongly
additive if limn→∞ ‖ν(An)‖X = 0 for all disjoint sequences (An)n in R such that ‖ν‖(

⋃
n≥1 An) < ∞. Note

that the vector measure we have considered in Example 2.1 is not locally strongly additive. In what follows
we continue with a σ-finite vector measure ν : R → X. Locally strongly additive vector measures were
characterized in [5] in the following form.

Lemma 3.1. (See Lemma 4.1 in [5].) The following conditions are equivalent:

A) The measure ν is locally strongly additive.
B) If B ∈ Rloc and χB ∈ L1

w(ν), then χB ∈ L1(ν).

Now we add some more equivalent conditions to that characterization.

Proposition 3.2. The following conditions are equivalent:

A) The measure ν is locally strongly additive.
C) If B ∈ Rloc and χB ∈ L1(‖ν‖), then χB ∈ L1(ν).
D) L∞(ν) ∩ L1(‖ν‖) ⊆ L∞(ν) ∩ L1(ν).
E) L1(‖ν‖) ⊆ L1(ν).

Proof. A) ⇔ C). For a set B ∈ Rloc note that χB ∈ L1(‖ν‖) if and only if χB ∈ L1
w(ν), because

‖χB‖L1(‖ν‖) = ‖χB‖L1
w(ν) = ‖ν‖(B). Then, the equivalence A) ⇔ C) follows from Lemma 3.1.

C) ⇒ D). Take f ∈ L∞(ν)∩L1(‖ν‖). For every k ≥ 1 consider the subsets Bk := {w ∈ Ω : 1
k ≤ |f(w)|} ∈

Rloc. Note that 1
kχBk

≤ |f |. Thus χBk
∈ L1(‖ν‖), and by the hypothesis χBk

∈ L1(ν). Consider for all k ≥ 1
the functions gk := fχBk

, and note that gk ≤ ‖f‖L∞(ν)χBk
. Thus gk ∈ L1(ν) for all k ≥ 1 and moreover

(taking into account Proposition 2.2) we get
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‖f − gk‖L1
w(ν) ≤ ‖f − gk‖L1(‖ν‖) =

∞∫
0

‖ν‖f−gk(t)dt ≤

1
k∫

0

‖ν‖f (t)dt → 0,

as k → ∞ because f ∈ L1(‖ν‖). Then f ∈ L1(ν) since L1(ν) ⊆ L1
w(ν) is closed.

D) ⇒ E). Take 0 ≤ f ∈ L1(‖ν‖). For every n ≥ 1 consider the functions fn := min{f, n} ∈ L∞(ν). Note
that fn ∈ L∞(ν) ∩ L1(‖ν‖), and so fn ∈ L1(ν) for all n ≥ 1. Again taking into account Proposition 2.2 we
get

‖f − fn‖L1
w(ν) ≤ ‖f − fn‖L1(‖ν‖) =

∞∫
0

‖ν‖f−fn(t)dt

=
n∫

0

‖ν‖f−fn(t)dt +
∞∫
n

‖ν‖f−fn(t)dt

≤
n∫

0

‖ν‖f (n)dt +
∞∫
n

‖ν‖f (t)dt

= n‖ν‖f (n) +
∞∫
n

‖ν‖f (t)dt → 0,

as n → ∞ because f ∈ L1(‖ν‖). Then f ∈ L1(ν) since L1(ν) ⊆ L1
w(ν) is closed.

The implication E) ⇒ C) is obvious. �
Remark 3.3. Let ν : R → X be a locally strongly additive σ-finite vector measure. Then, for all 1 ≤ p < ∞,
we have the following continuous inclusions

Lp,1(‖ν‖) ⊆ Lp
(
‖ν‖

)
⊆ Lp(ν) ⊆ Lp

w(ν) ⊆ Lp,∞(
‖ν‖

)
. (7)

The chain of inclusions Lp,1(‖ν‖) ⊆ Lp(‖ν‖) ⊆ Lp,∞(‖ν‖) is similar to the case of a positive scalar measure
(see [2, Proposition IV.4.2]). The rest of the inclusions in (7) follow from the equivalence E) of Proposition 3.2
and also the continuous inclusions (3) in Proposition 2.2, by noting that Lp(‖ν‖) = {f ∈ L0(ν) : |f |p ∈
L1(‖ν‖)}.

Remark 3.4. Lewis proved in [12, Theorem 5.1] the equivalence of the following assertions:

i) The Banach space X has no subspace isomorphic to c0.
ii) L1(ν) = L1

w(ν) for every X-valued vector measure ν defined on a δ-ring.

Thus Lemma 3.1 tells us that every σ-finite measure ν : R → X is locally strongly additive if the Banach
space X has no subspace isomorphic to c0. This result is a sort of Diestel–Faires theorem for measures on
δ-rings (see [8, Theorem I.4.2]).

In what follows we need some estimates for the K-functional that will be useful to establish our inter-
polation results. These estimates can be obtained following the same techniques used in [9] with minor
modifications (see [9, Lemma 3 and Propositions 8 and 10] for details). Let us also mention that similar
estimates were obtained independently by Cerdà, Martín and Silvestre in [6] for capacities. As usual, in
what follows a � b means that a ≤ cb for some positive constant c independent of the quantities a and b.
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Proposition 3.5. For a σ-finite vector measure ν : R → X the following estimates for the K-functional hold:

i) If f ∈ L1(‖ν‖) + L∞(ν), then K(t, f ;L1(‖ν‖), L∞(ν)) �
∫ t

0 f∗(s)ds.
ii) If f ∈ L1,∞(‖ν‖) + L∞(ν), then tf∗(t) � K(t, f ;L1,∞(‖ν‖), L∞(ν)).

Theorem 3.6. Let ν : R → X be a σ-finite vector measure, and 0 < θ < 1 ≤ q ≤ ∞. Then
(L1(‖ν‖), L∞(ν))θ,q = (L1,∞(‖ν‖), L∞(ν))θ,q = L

1
1−θ ,q(‖ν‖).

Proof. The inclusion (L1(‖ν‖), L∞(ν))θ,q ⊆ (L1,∞(‖ν‖), L∞(ν))θ,q follows from the inclusion L1(‖ν‖) ⊆
L1,∞(‖ν‖), and since this last inclusion is continuous we have the inequality

‖f‖(L1,∞(‖ν‖),L∞(ν))θ,q � ‖f‖(L1(‖ν‖),L∞(ν))θ,q , f ∈
(
L1(‖ν‖), L∞(ν)

)
θ,q

. (8)

We have also the inclusion (L1,∞(‖ν‖), L∞(ν))θ,q ⊆ L
1

1−θ ,q(‖ν‖) as a consequence of the inequality ii) in
Proposition 3.5. In particular, we obtain

‖f‖
L

1
1−θ

,q(‖ν‖)
� ‖f‖(L1,∞(‖ν‖),L∞(ν))θ,q , f ∈

(
L1,∞(

‖ν‖
)
, L∞(ν)

)
θ,q

. (9)

In order to check that the inclusion L
1

1−θ ,q(‖ν‖) ⊆ (L1(‖ν‖), L∞(ν))θ,q holds, we assume first that q < ∞.
Proposition 3.5.i) and the Hardy inequality (see [2, Lemma III.3.9]) give, for any f ∈ L

1
1−θ ,q(‖ν‖),

‖f‖(L1(‖ν‖),L∞(ν))θ,q =
( ∞∫

0

(
t−θK

(
t, f ;L1(‖ν‖), L∞(ν)

))q dt
t

) 1
q

�
( ∞∫

0

[
t−θ

t∫
0

f∗(u)du
]q

dt

t

) 1
q

=
( ∞∫

0

[
t1−θ 1

t

t∫
0

f∗(u)du
]q

dt

t

) 1
q

�
( ∞∫

0

[
t1−θf∗(t)

]q dt
t

) 1
q

= ‖f‖
L

1
1−θ

,q(‖ν‖)
. (10)

This implies that L
1

1−θ ,q(‖ν‖) ⊆ (L1(‖ν‖), L∞(ν))θ,q. For the case q = ∞, the inclusion L
1

1−θ ,∞(‖ν‖) ⊆
(L1(‖ν‖), L∞(ν))θ,∞ can be obtained by using the estimate i) in Proposition 3.5 and noting that

t−θK
(
t, f ;L1(‖ν‖), L∞(ν)

)
� t−θ

t∫
0

f∗(s)ds = t−θ

t∫
0

s1−θf∗(s)sθ−1ds

≤ 1
θ
‖f‖

L
1

1−θ
,∞(‖ν‖)

.

Taking supremum, we obtain L
1

1−θ ,∞(‖ν‖) ⊆ (L1(‖ν‖), L∞(ν))θ,∞, and

‖f‖(L1(‖ν‖),L∞(ν))θ,∞ � ‖f‖
L

1
1−θ

,∞(‖ν‖)
, f ∈ L

1
1−θ ,∞

(
‖ν‖

)
. (11)

Finally note that we get the equality between the three spaces (even for q = ∞) as metric spaces. The
equivalence of their quasi-norms is given by (8), (9) and (10), or (11) for q = ∞. �
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Corollary 3.7. Let ν : R → X be a σ-finite locally strongly additive vector measure, and 0 < θ < 1 ≤ q ≤ ∞.
Then

(
L1(ν), L∞(ν)

)
θ,q

=
(
L1
w(ν), L∞(ν)

)
θ,q

= L
1

1−θ ,q
(
‖ν‖

)
.

Proof. For a σ-finite locally strongly additive vector measure ν : R → X take into account the equivalence E)
of Proposition 3.2 and also the continuous inclusions (3) in Proposition 2.2, that is,

L1(‖ν‖) ⊆ L1(ν) ⊆ L1
w(ν) ⊆ L1,∞(

‖ν‖
)
⊆ L0(ν),

and apply the above Theorem 3.6. �
Remark 3.8. 1) Note that the second equality in Corollary 3.7 holds even for a non-locally strongly additive
σ-finite vector measure ν due to the inclusions (3) in Proposition 2.2. Then if ν is a vector measure for
which L1(ν) = L1

w(ν) (recall Remark 3.4) both equalities in Corollary 3.7 hold.
2) On the other hand, if ν is a strongly additive, that is, limn→∞ ‖ν(An)‖X = 0 for all disjoint sequences

(An)n in R, then L1(ν), L1
w(ν) and also Lp,q(‖ν‖), 1 ≤ p, q ≤ ∞ coincide with the corresponding spaces for

certain vector measure defined on a σ-algebra, see [7, Corollary 3.2.a)]. In that case, Corollary 3.7 follows
from [9, Corollary 13]. Nevertheless, there are locally strongly additive σ-finite vector measures ν which are
not strongly additive and such that L1(ν) � L1

w(ν) as the following example shows.

Example 3.9. (See Example 3.11 in [5].) Let R be the δ-ring of finite subsets of natural numbers N, and let
α := (αn)n be a sequence without any bounded subsequence. Consider the σ-finite vector measure

ν : A ∈ R → ν(A) := α · χA ∈ c0.

It is easy to check that

L1
w(ν) =

{
(fn)n : (fnαn)n ∈ 	∞

}
,

L1(ν) =
{
(fn)n : (fnαn)n ∈ c0

}
.

On the other hand it is not difficult to see that ‖ν‖(A) = supn∈A |αn|, for every nonempty A ⊆ N. This
means, in particular, that ‖ν‖(A) < ∞ if and only if A ∈ R since (αn)n has not bounded subsequences,
and consequently ν is locally strongly additive. Finally note that ν is clearly not strongly additive and
L1(ν) � L1

w(ν).

Remark 3.10. Let 1 < p < ∞ and take θ = 1 − 1
p . Putting q = 1 in the above Corollary 3.7 we obtain,

in particular, (L1(ν), L∞(ν))θ,1 = Lp,1(‖ν‖). Similarly, we have (L1(ν), L∞(ν))θ,∞ = Lp,∞(‖ν‖) if we take
q = ∞ in Corollary 3.7. Now from (7) in Remark 3.3 we conclude that

(
L1(ν), L∞(ν)

)
θ,1 ⊆ Lp(ν) ⊆ Lp

w(ν) ⊆
(
L1(ν), L∞(ν)

)
θ,∞. (12)

In the terminology of [3, Theorem 3.5.2] the inclusions above say that the spaces Lp(ν) and Lp
w(ν) belong

both to the both classes CJ(θ, L1(ν), L∞(ν)) and CK(θ, L1(ν), L∞(ν)). See [3, p. 49] just after Defini-
tion 3.5.1. Also note that for a general vector measure ν it follows that Lp

w(ν) belongs to the classes
CJ(θ, L1

w(ν), L∞(ν)) and CK(θ, L1
w(ν), L∞(ν)).

Corollary 3.11. Let ν : R → X be a σ-finite locally strongly additive vector measure, 0 < η < 1 ≤ q ≤ ∞,
and 1 < p0 �= p1 < ∞. Then
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(
Lp0(ν), Lp1(ν)

)
η,q

=
(
Lp0
w (ν), Lp1

w (ν)
)
η,q

= Lp,q
(
‖ν‖

)
,

where 1
p = 1−η

p0
+ η

p1
.

Proof. Having in mind the inclusions (12) in the previous remark, we can apply the reiteration theorem [3,
Theorem 3.5.3] with parameters θ0 = 1 − 1

p0
and θ1 = 1 − 1

p1
. The reiteration theorem tells us that

(
Lp0(ν), Lp1(ν)

)
η,q

=
(
Lp0
w (ν), Lp1

w (ν)
)
η,q

=
(
L1(ν), L∞(ν)

)
θ,q

,

where θ = (1−η)θ0 +ηθ1, in which case 1−θ = 1
p . Finally the above Corollary 3.7 gives (L1(ν), L∞(ν))θ,q =

L
1

1−θ ,q(‖ν‖) = Lp,q(‖ν‖), which is the last equality. �
Remark 3.12. Note that the second equality in Corollary 3.11 holds even for non-locally strongly additive
vector measures.
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